Wednesday, September 23, 2020

#### **Urban Elephant Media**

~ PRESENTS ~

#### **Strategies for Upgrading Biogas to RNG**

Featuring Jan Scott, Adam Klaas, Eric Wilgenbusch, Kim Murdock-Timmerman

Sponsored by Unison Solutions

# URBANELEPHANTMEDIA

PEER-TO-PEER LEARNING MADE EASY

Sustainability Training for Urban Designers and Policymakers

Randy Rodgers, Director of Big Ideas Randy@UrbanElephantMedia.com 563-562-2925

UrbanElephantMedia.com





our sponsor





our eseriers

Jan Scott Co-owner Unison Solutions



# Strategies for Upgrading Biogas to RNG

September 23, 2020

#### Unison Solutions, Inc. Overview

- Company founded on January 1, 2000
- Located in Dubuque, Iowa
- Over 50 employees (10 engineers)
- 65,000 ft<sup>2</sup> manufacturing facility
- Design and fabrication
  - Biogas conditioning and upgrading systems
  - Custom systems and technologies
  - Over 325 systems sold worldwide

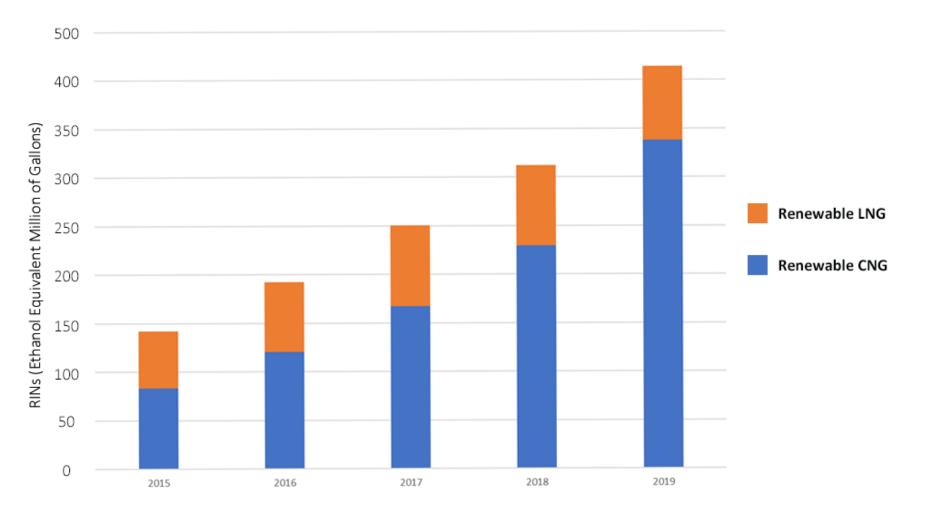




#### Definitions

- **CNG:** Compressed Natural Gas
- **DGE:** Diesel Gallon Equivalent, 129,500 BTU/gal
- **GGE:** Gasoline Gallon Equivalent, 114,000 BTU/gal
- LCFS: Low Carbon Fuel Standard, transportation fuels that reduce CO<sub>2</sub> emissions (\$/MT, million tons CO<sub>2</sub>)
- **RIN:** Renewable Identification Numbers, biogas that has been upgraded to renewable fuel
- **RFS:** Renewable Fuel Standard, a federal program requiring transportation fuel sold in the United States to contain a minimum volume of renewable fuels.
- **RNG:** Renewable Natural Gas (BioCNG)
- Wobbe Index: Used to compare the combustion energy output of different fuels




#### Getting Started: RIN Basic Information

- EPA monitors compliance for the RFS using a system of tradable credits referred to as renewable identification numbers (RINs)
- A RIN credit is a serial number assigned to each gallon of renewable fuel as it is introduced into U.S. commerce
- Only biogas used as renewable transportation fuel can generate RINs
- RIN Agents: similar to Carbon Credit Exchange Brokers
- Congress has mandated volumes that are in place until 2022
- After 2022, the EPA is expected to continue implementing the RFS without the congressionally mandated schedule of Renewable Volume Obligation (RVO)



#### **RNG Market Growth**

RNG Production Qualifying as Cellulosic (D3) or Advanced (D5) Biofuel Under RFS, 2015-2019





RIN generation data https://www.epa.gov/fuels-registration-reporting-and-compliance-help/rins-generated-transactions

## **RIN** Pricing

| RIN Type                   | Description                                                                                               | Greenhouse Gas<br>Reduction Requirement | <b>Price</b><br>9/1/2020 |
|----------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------|
| Cellulosic Biofuel<br>(D3) | Municipal wastewater plants and<br>landfill biogas qualify (cellulose,<br>hemicellulose, or lignin)       | 60%                                     | \$1.47/RIN<br>\$2.20/GGE |
| Advanced Biofuel<br>(D5)   | Produced from non-corn starch,<br>renewable biomass. Includes manure,<br>agricultural and food processing | 50%                                     | \$0.70/RIN<br>\$1.05/GGE |
|                            |                                                                                                           | 1 6                                     | RIN = 77.000 BTU/gal     |

https://www.biocycle.net/2017/11/13/101-for-rins/

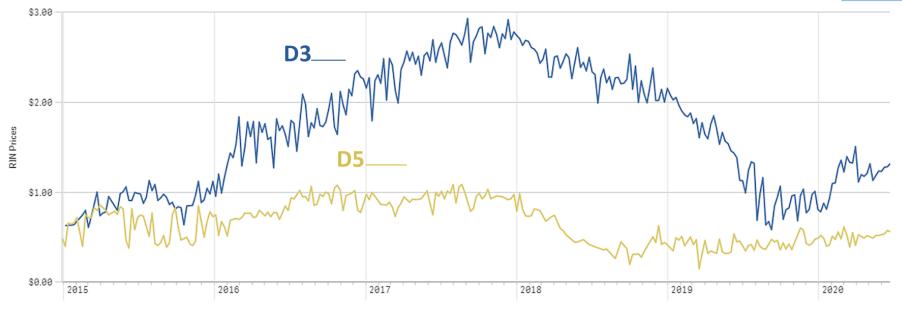
<u>"Properties of Fuels"</u> (PDF). Energy Efficiency and Renewable Energy. United States Department of Energy. Alternative Fuels Data Center. October 29, 2014. Retrieved January 1, 2015.

1 RIN = 77,000 BTU/gal 1 GGE = 115,000 BTU/gal

USDOE Property of Fuels

RIN Price Ecoengineer



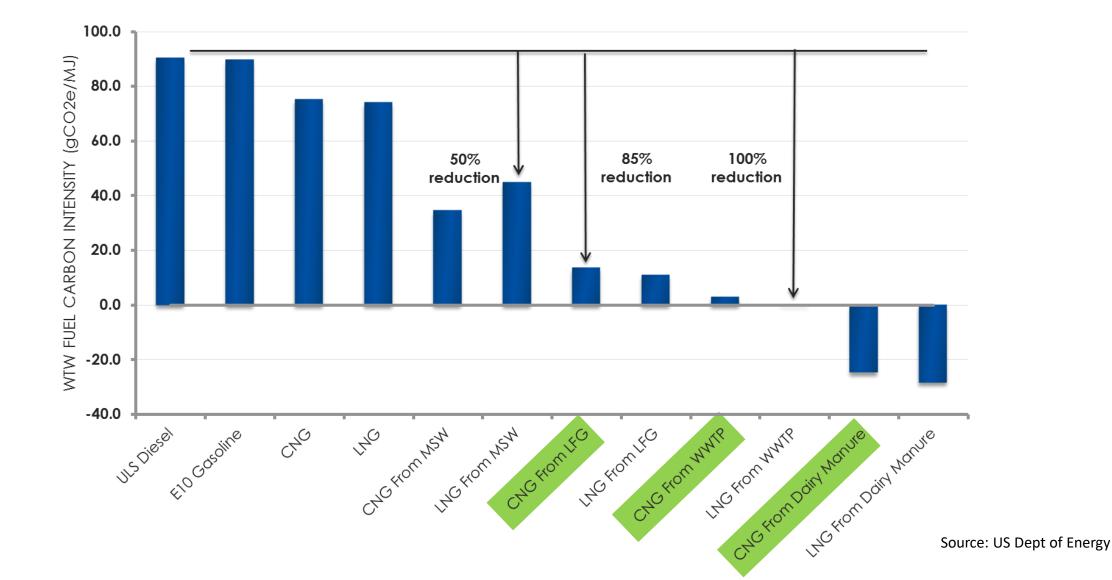

## Historical RIN Pricing



#### Last updated date: Jul, 10, 2020 (Updated monthly)

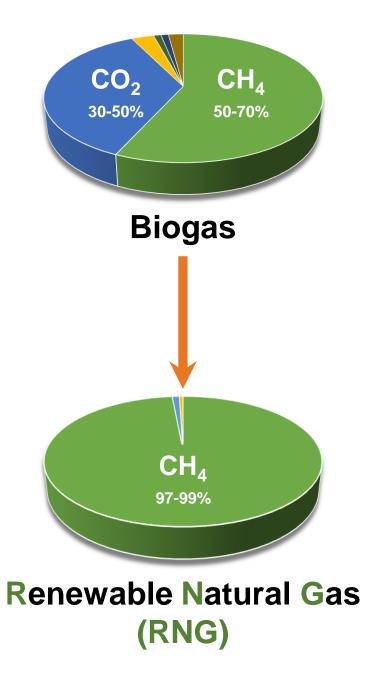
| D-Code | Average Price |        |  |
|--------|---------------|--------|--|
| D-Code | 2019          | 2020   |  |
| D3     | \$1.59        | \$1.65 |  |
| D5     | \$0.56        | \$0.56 |  |

#### Weekly D3, D4, D5 and D6 RINs Prices




Transfer Date by Week, FUEL (D Code)

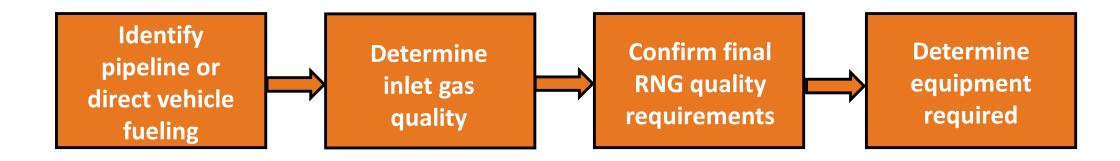



#### Why RNG as Vehicle Fuel?

UNISON SOLUTIONS



| Fuel Type      | Current<br>Pricing /GGE<br>9/1/2020 | Current Pricing<br>/MMBTU<br>9/1/2020 | Conversions          |
|----------------|-------------------------------------|---------------------------------------|----------------------|
| Natural<br>Gas |                                     | \$2.30                                |                      |
| CNG            | \$2.27                              | \$19.97                               | 8.8 GGE=1 MMBTU      |
|                |                                     |                                       |                      |
| RNG (RIN)      |                                     | \$19.36                               | 1 RIN=77,000 BTU/Gal |
| D3 RIN         | \$2.20                              |                                       | 1.5 RIN/GGE          |









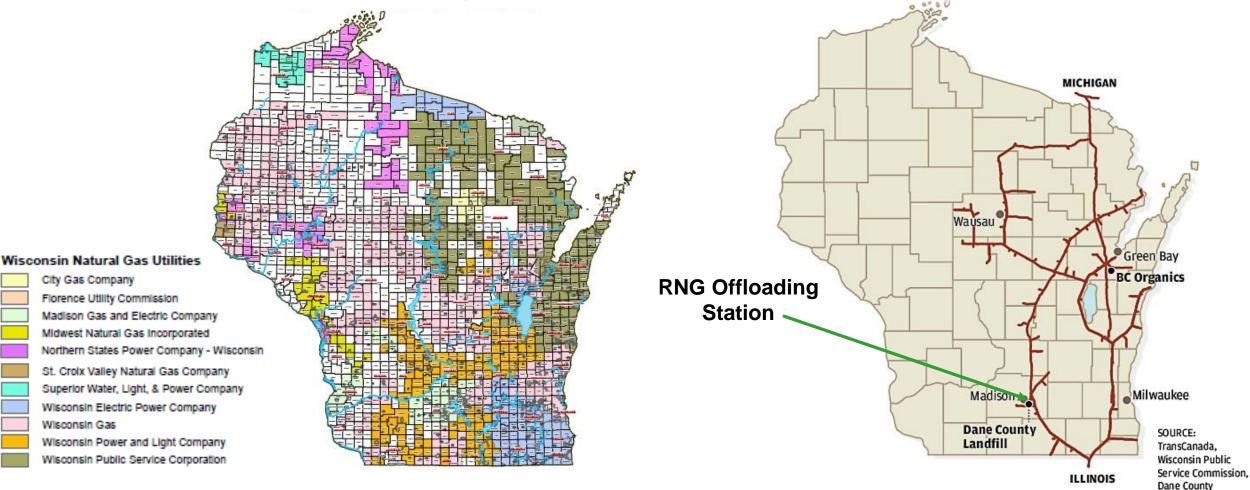

#### Steps to a Successful RNG Project





#### Know Your Pipeline Requirements

- Gas quality requirements\*
  - BTU Content
    - Methane
  - Carbon dioxide
  - Oxygen
  - Nitrogen
  - Hydrogen sulfide
  - Siloxanes and VOCs
  - > Bacteria
  - Water content


#### • Tie-in location and requirements

- Interconnect fees
- Pressure
- Flow
- Transport to offloading station (virtual pipeline)
  - Compression
  - Tube trailers
- What RNG monitoring is required?
  - Online
  - Monthly
  - Yearly
  - Single validation test



#### **Example: Natural Gas Utilities**







## Fuel Quality Specification

| Biogas Constituents                                                 | Raw Biogas | Natural Gas Pipeline*         | Midwest Pipeline 1                                                | Midwest Pipeline 2                        |
|---------------------------------------------------------------------|------------|-------------------------------|-------------------------------------------------------------------|-------------------------------------------|
| Methane                                                             | 50-80%     |                               |                                                                   |                                           |
| Wobbe Index                                                         |            | 1,400 BTU/ft <sup>3</sup> max |                                                                   |                                           |
| Higher Heating Value (HHV)                                          |            | 950-990 BTU/ft <sup>3</sup>   | 950 BTU/ft <sup>3</sup>                                           | 967–1,200 BTU/ft <sup>3</sup>             |
| Carbon Dioxide (CO <sub>2</sub> ) and<br>Nitrogen (N <sub>2</sub> ) | 20–50%     | <2%                           | <2%                                                               | CO <sub>2</sub> <2%<br>N <sub>2</sub> <3% |
| Oxygen (O <sub>2</sub> )                                            | 0–1%       | 0.0005% to 0.2%               | 0.2%                                                              | <1%                                       |
| Hydrogen Sulfide (H <sub>2</sub> S)                                 | <1,000 ppm | ≤4 ppm                        | <4 ppm                                                            | < 4 ppmv<br>Total sulfur <320 ppm         |
| Water Content                                                       |            | 3–7 lb/MMcf                   | 6 lb/MMcf                                                         | < 7 lb/MMcf                               |
| Siloxanes and VOCs                                                  | <2,000 ppm | ND to 1 ppm                   | Siloxanes 4 mg Si/m <sup>3</sup><br>Specific Compounds Identified |                                           |
| Ammonia                                                             |            |                               | 10 ppmv                                                           |                                           |
| Mercury                                                             |            |                               | 80 ug Hg/m <sup>3</sup>                                           |                                           |
| Biologicals                                                         |            |                               | 4x10 <sup>4</sup> /Scf                                            |                                           |
| Pressure                                                            | 0–2 psig   | 50–900+ psig                  |                                                                   | 600–975 psig                              |



\*Varies depending on the utility & tariff agreement

#### Sample Pipeline located in the Western U.S.

| Constituents/Properties                  | Limit                | Units             |
|------------------------------------------|----------------------|-------------------|
| Higher Heating Value                     | 965 - 1100           | Btu/scf           |
| Wobbe (based on HHV)                     | 1185 - 1285          |                   |
| Carbon Dioxide (mol %)                   | 3.0                  | mol %             |
| Oxygen                                   | 2.0                  | mol %             |
| Total Inerts                             | 14.3                 | mol %             |
| Hydrogen Sulfide H₂S<br>Total Sulfur     | 0.25 (4)<br>5.0 (85) | gr/Cscf<br>(ppmv) |
| Hydrocarbon Dew Point,<br>Cricondentherm | 15                   | °F                |
| Water Vapor Content                      | 3                    | lb/ MMscf         |
| Dust, dirt, gum and other solids         | Free of              |                   |
| Water & hydrocarbons in<br>liquid form   | Free of              |                   |
| Temperature                              | 32 – 110             | °F                |

| Hazardous Substances/<br>Objectionable Matter*                                         |                   |                   |  |
|----------------------------------------------------------------------------------------|-------------------|-------------------|--|
| Constituents/Properties                                                                | Proposed<br>Limit | Units             |  |
| Volatile Organic Compounds (V                                                          | OCs)              |                   |  |
| Siloxanes (Total Si)                                                                   | 0.1               | mg/m <sup>3</sup> |  |
| Vinyl Chloride                                                                         | 1170              | ppbv              |  |
| Chorinated/Halogenated<br>Hydrocarbons: Chlorobenzene,<br>trichlorofluoromethane, etc. | 100               | ppbv              |  |
| Organic Sulfur: Carbonyl sulfide,<br>Carbon Disulfide, Dimethyl Sulfide, etc.          | 1                 | ppmv              |  |
| BTEX and other aromatics                                                               | 50                | ppmv              |  |
| Hexanes+ Alkanes                                                                       | 100               | ppmv              |  |
| Formaldehyde/Aldehydes and<br>Ketones                                                  | 100               | ppbv              |  |
| Other VOCs                                                                             | 100               | ppbv              |  |
| Semi-Volatile Organic Compounds                                                        | 100               | ppbv              |  |
| Polycyclic Aromatic Hydrocarbons                                                       | 100               | ppbv              |  |
| Volatile Fatty Acids                                                                   | 10                | ppbv              |  |
| Polychlorinated Biphenyls                                                              | 0.1               | ppbv              |  |
| Pesticides                                                                             | 1                 | ppbv              |  |
| Products                                                                               | 1                 | ppbv              |  |
| Inorganic Compounds/Metals                                                             |                   |                   |  |
| Mercury                                                                                | 0.01              | μg/m <sup>3</sup> |  |
| Hydrogen                                                                               | 0.1               | mol %             |  |
| Arsenic, Zinc, Antimony                                                                | 0.01              | μg/m <sup>3</sup> |  |
| Ammonia                                                                                | 10                | ppmv              |  |
| Biologicals                                                                            | 0.2               | micron            |  |



#### Requirements to Deliver RNG: Natural Gas Pipeline

- Final product gas quality is dependent on utility's specific requirements
- Required equipment varies
- Monitoring of gas quality varies
- Work with the utility at the beginning of a project



West Texas Pipeline Injection Monitoring

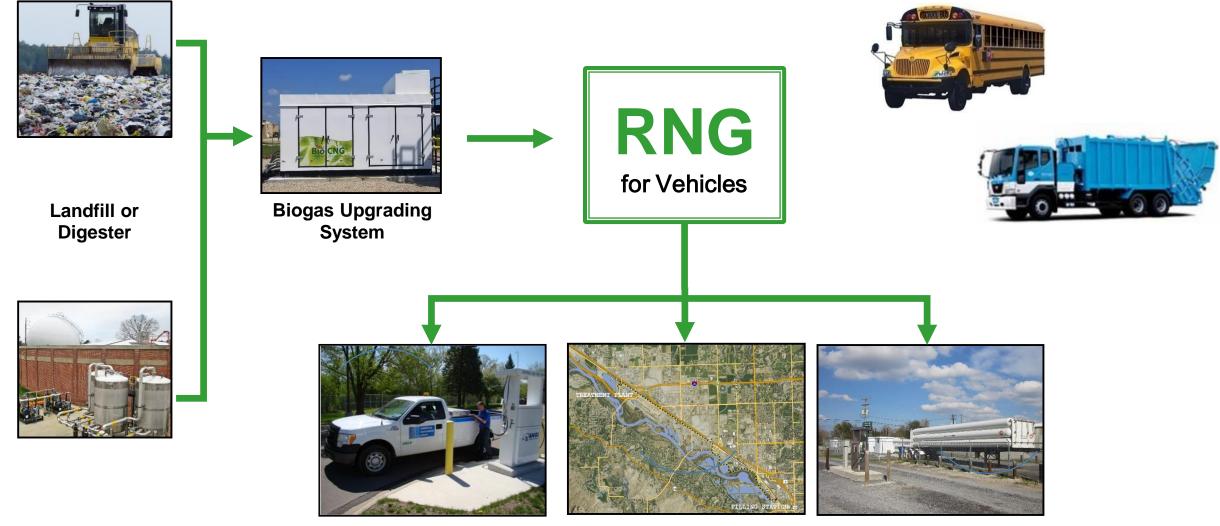


**Optima KV equipment** 



#### Know Your Vehicle Fuel Requirements

- Gas quality requirements: SAE J1616
  - > Wobbe Index
    - Methane
    - Carbon dioxide
  - > Oxygen
  - > Nitrogen
  - Hydrogen sulfide
  - Siloxane and VOCs
- Location for dispensing
  - Near the upgrading system
  - Dedicated pipeline
  - Virtual pipeline


- Dispensing requirements
  - ▹ Fast-fill
    - Storage requirements
  - > Time-fill
    - Location for fueling vehicles



| Biogas Constituents                                                 | Raw Biogas | SAE J1616 CNG Fuel<br>Quality Specification | Natural Gas Pipeline<br>Fuel Quality* |
|---------------------------------------------------------------------|------------|---------------------------------------------|---------------------------------------|
| Methane                                                             | 50–80%     | 88% or greater                              |                                       |
| Wobbe Index                                                         |            | 1,250–1,420 BTU/ft <sup>3</sup>             | 1,400 BTU/ft <sup>3</sup> max         |
| Higher Heating Value (HHV)                                          |            |                                             | 950–990 BTU/ft <sup>3</sup>           |
| Carbon Dioxide (CO <sub>2</sub> ) and<br>Nitrogen (N <sub>2</sub> ) | 20–50%     |                                             | <2%                                   |
| Oxygen (O <sub>2</sub> )                                            | 0–1%       |                                             | 0.0005% to 0.2%                       |
| Hydrogen Sulfide (H <sub>2</sub> S)                                 | <1,000 ppm | ≤4 ppm                                      | ≤4 ppm                                |
| Water Content                                                       |            | PWDP 10°F below lowest<br>recorded temp     | 3–7 lb/MMcf                           |
| Siloxanes and Volatile Organic<br>Compounds                         | <2,000 ppm | ND (Silicon)                                | ND to 1 ppm                           |
| Pressure                                                            | 0–2 psig   | 3,000–3,600 psig                            | 50–900+ psig                          |



#### Methods to Deliver RNG: Direct Vehicle Use

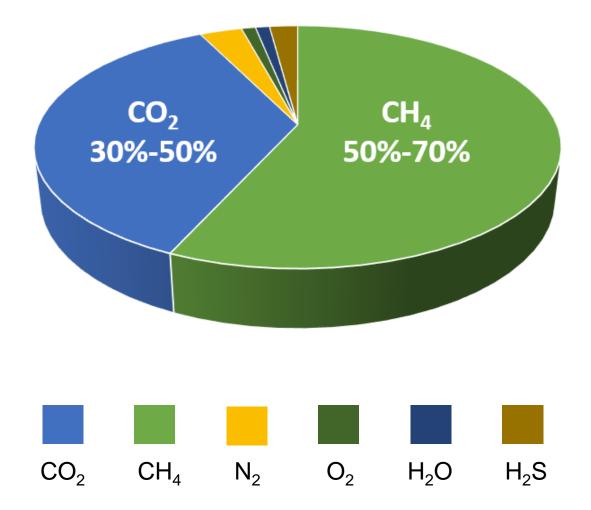


On-site Fueling Fast-fill & Time-fill **Dedicated Pipeline** 

Virtual Pipeline



## Know Your Biogas Quality

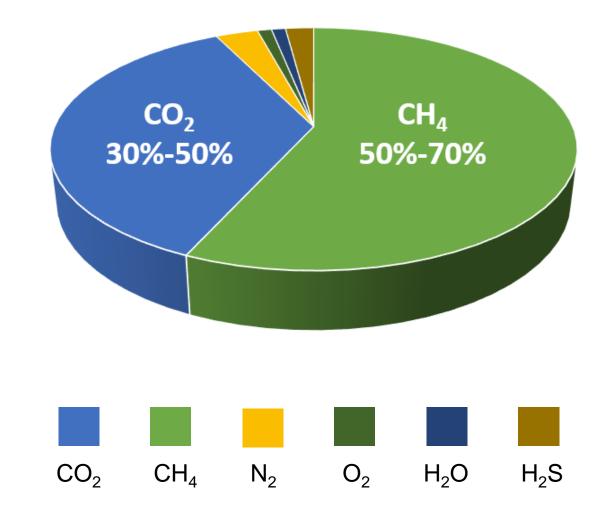







UNISON SOLUTIONS bi o gas, bīō gas/, *noun,* gaseous fuel, especially methane, produced by the fermentation of organic matter.

- Methane ( $CH_4$ )
- Carbon dioxide (CO<sub>2</sub>)
- Nitrogen (N<sub>2</sub>)
- Oxygen (O<sub>2</sub>)
- Hydrogen sulfide (H<sub>2</sub>S)
- Moisture
- Particulates
- Siloxanes
- Volatile organic compounds (VOCs)




### Know Your Raw Biogas Quality

- Methane (CH<sub>4</sub>)
  - > 50-70%
- Carbon dioxide (CO<sub>2</sub>)
  - > 30–50%
- Nitrogen (N<sub>2</sub>)
  - > 1–5%
- Oxygen (O<sub>2</sub>)
  - ▶ 0–2%
- Hydrogen sulfide (H<sub>2</sub>S)
  - > 0−10,000 ppm
- Moisture
  - > 30–100% R.H.
- Siloxanes

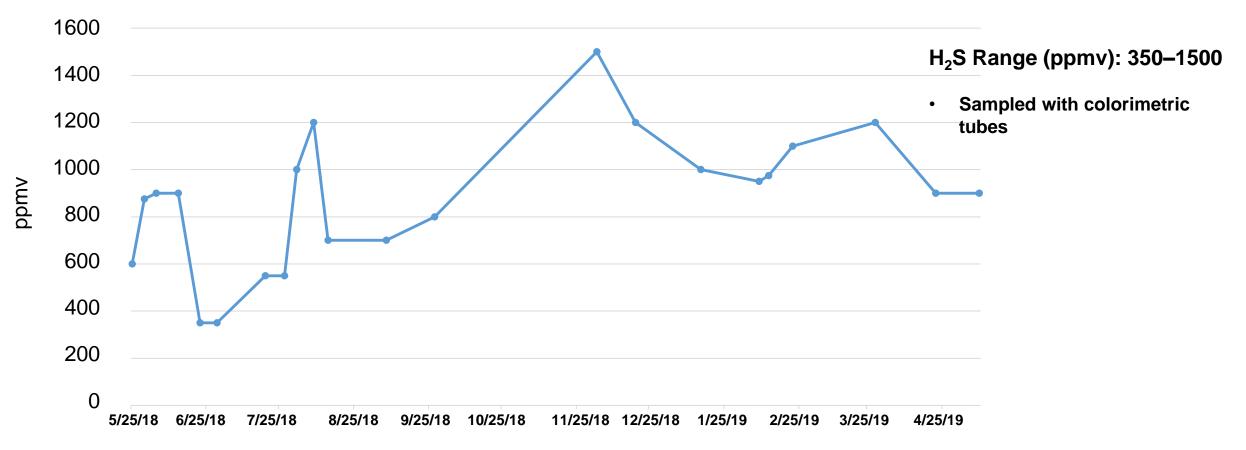
UNISON SOLUTIONS

• Volatile organic compounds (VOCs)



# Hydrogen Sulfide (H<sub>2</sub>S)

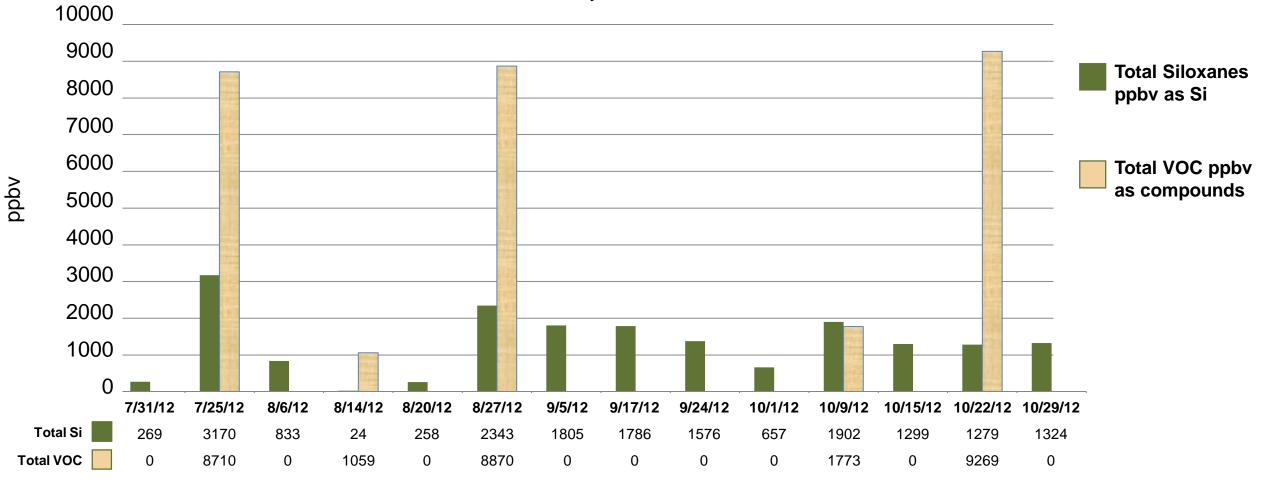
- Where does H<sub>2</sub>S come from?
  - Landfills: the breakdown of calcium sulfate used in building materials
  - Digesters: sulfate-reducing bacteria (SRBs) convert the sulfate ion to sulfide
- Equipment damage from corrosion (hydrosulfuric acid)
- SO<sub>x</sub> emissions
- Health and safety issues
- Odor control
- Causes fouling of siloxane/VOC removal media
- Measure levels with either lab testing, colorimetric tubes, or on-site meter






#### H<sub>2</sub>S Levels: Raw Gas Testing

Gas Test Results from a WWTP in the Midwest

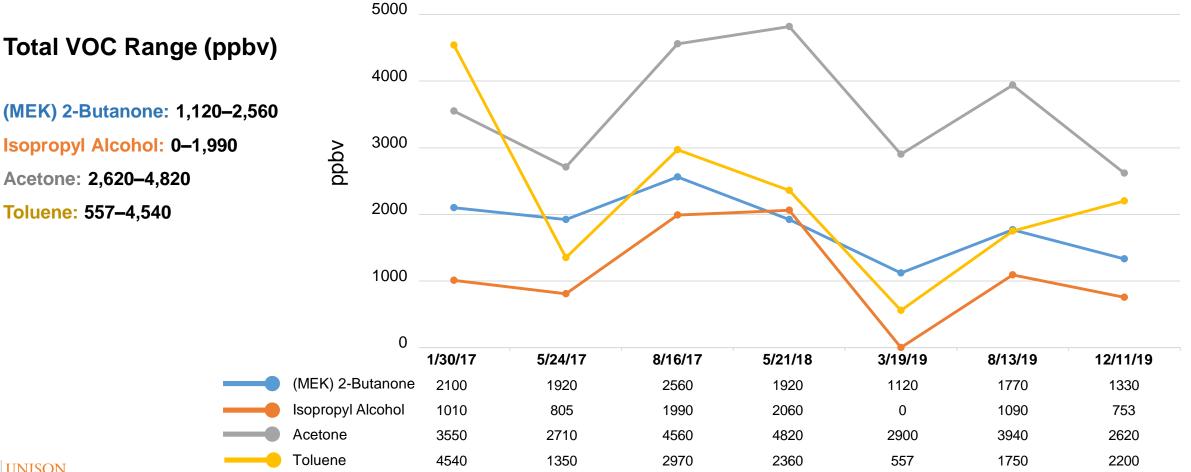

Tested May 2018–May 2019



#### Siloxane and VOC Levels: Raw Gas Testing

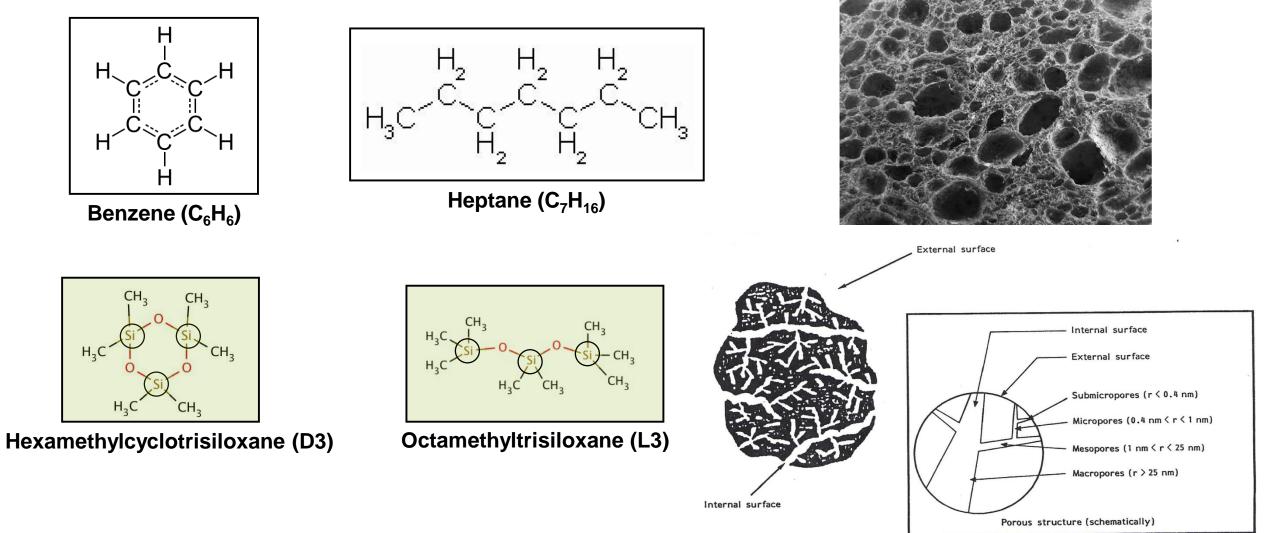
Gas Test Results from a WWTP in Central Texas

Tested July–October 2012






#### Siloxane and VOC Levels: Raw Gas Testing


Gas Test Results from a WWTP with Multiple Industrial Clients

Tested January 2017–December 2019





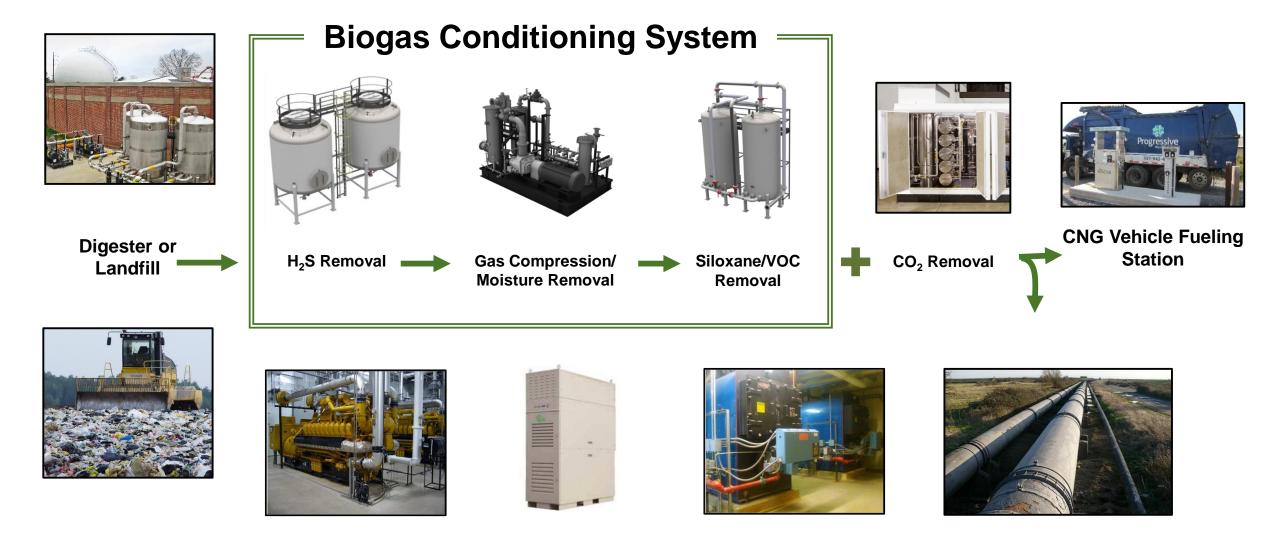
#### Suitability Factors for Media Systems: Siloxanes, Hydrocarbons, and VOCs



#### **Biogas Testing**

Before starting a project, we recommend the following biogas tests be performed:

- Major Components
  - Methane
  - Nitrogen
  - > Oxygen
  - Carbon dioxide
  - BTU calculation
- Siloxanes, by speciation
  - Up to 8 compounds common to biogas


- Sulfur Compounds, by speciation
  - Hydrogen sulfide
  - Mercaptans
  - Other sulfide compounds
- Volatile Organic Compounds (VOCs), by speciation
  - Follows EPA TO-15 protocol



These compounds will also need to be tested on a regular basis to determine media change out intervals



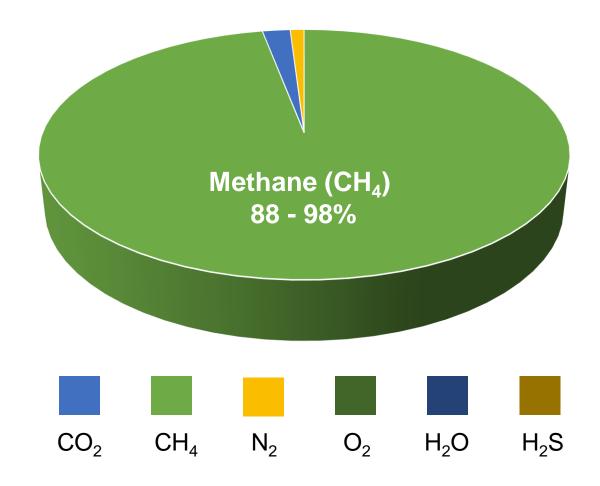
#### **Equipment Needed**



IC Engines

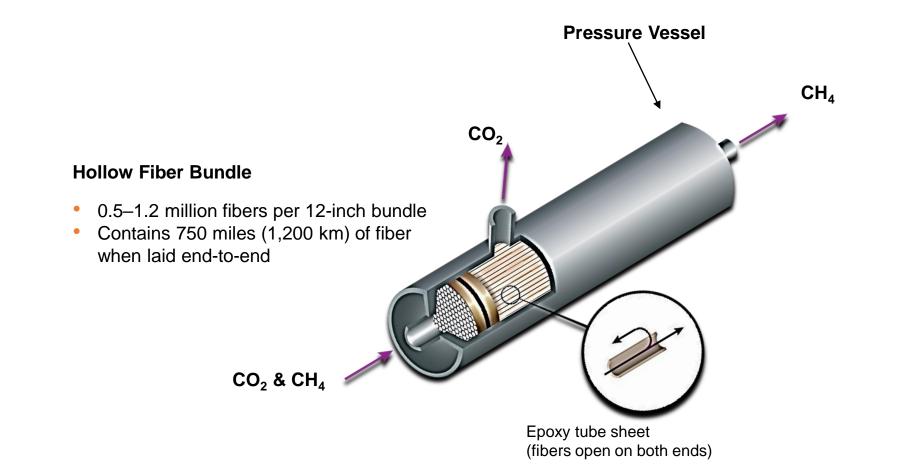
MicroTurbines

**Boilers** 


Vehicle Fuel/Pipelines

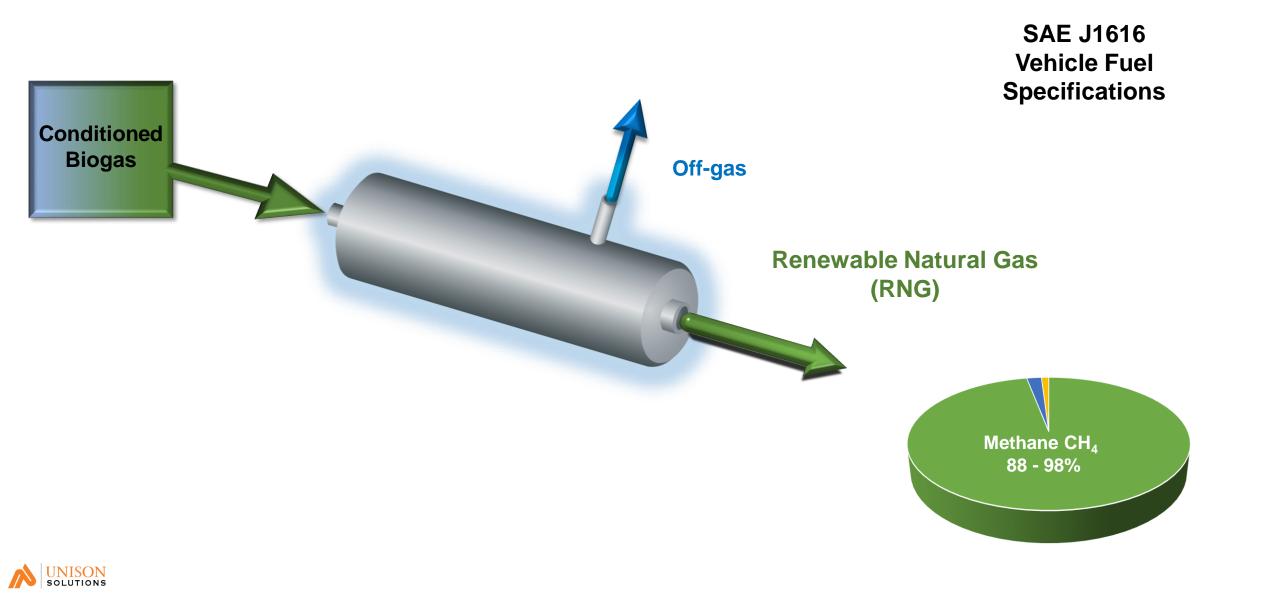


#### Biogas to RNG

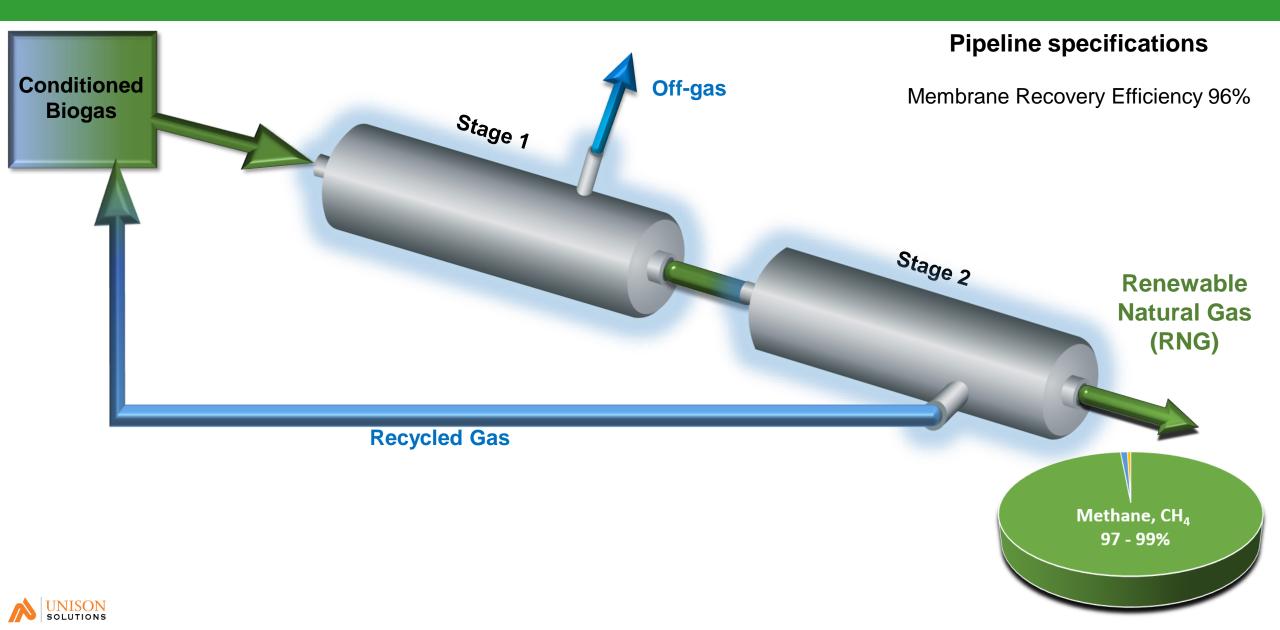

bi o gas, 'bīō gas/, *noun,* gaseous fuel, especially methane, produced by the fermentation of organic matter.

- Methane (CH<sub>4</sub>)
  Carbon dioxide (CO<sub>2</sub>)
- Nitrogen (N<sub>2</sub>)
- Oxygen (O<sub>2</sub>)
- Hydrogen sulfide (H<sub>2</sub>S)
- Moisture
- Particulates
- Siloxanes
- Volatile organic compounds (VOCs)

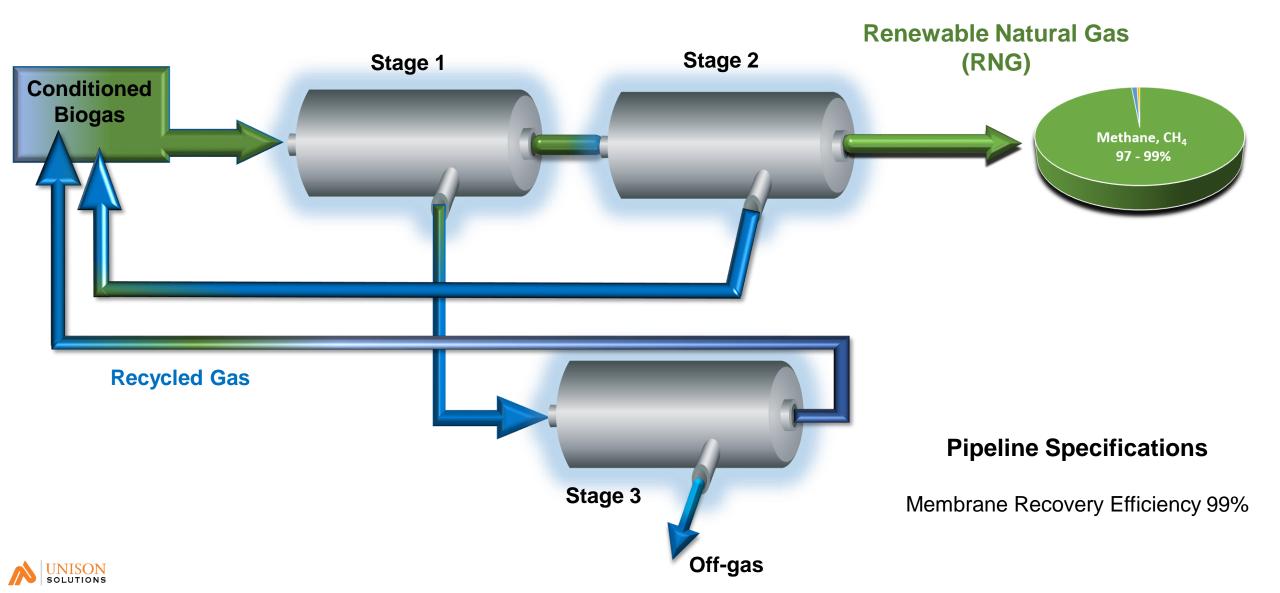





#### Membrane Separation Schematic







#### Single-Stage Membrane Process



#### Dual/Two-Stage Membrane Process



## Three-Stage Membrane Process



## Pipeline Injection Project Highlights



#### South Platte WRP, Colorado

- Plant capacity: 24 MGD
- Upgrading to pipeline injection
- 400 scfm
- H<sub>2</sub>S, moisture, siloxanes, CO<sub>2</sub> and bacteria removal
- Dual-stage membrane technology





| Major Gases<br>by EPA Method 3C | Raw Gas | RNG  | Pipeline<br>Specs |
|---------------------------------|---------|------|-------------------|
| Carbon Dioxide %                | 36.5    | 0.8  | 3                 |
| Carbon Monoxide %               | ND      | ND   |                   |
| Methane %                       | 61.9    | 98.4 |                   |
| Nitrogen %                      | 0.943   | 0.62 |                   |
| Oxygen %                        | 0.591   | 0.1  | 2                 |
| BTU (BTU/ft <sup>3</sup> ) HHV  | 626     | 1000 | 956–1100          |

| Siloxanes<br>by EPA Method TO-15  | Raw Gas | RNG    | Pipeline<br>Specs |
|-----------------------------------|---------|--------|-------------------|
| Decamethylcyclopentasiloxane (D5) | 0.0844  | ND     |                   |
| Decamethyltetrasiloxane-L4 (MD2M) | 0.0436  | ND     |                   |
| Hexamethylcyclotrisiloxane (D3)   | 0.0265  | ND     |                   |
| Hexamethyldisiloxane-L2 (MM)      | ND      | ND     |                   |
| Octamethylcyclotetrasiloxane (D4) | 1.8244  | ND     |                   |
| Octamethyltrisiloxane-L3 (MDM)    | 0.0222  | 0.062  |                   |
| Pentamethyldisiloxane             | ND      | ND     |                   |
| Trimethyl silanol                 | ND      | 0.0115 |                   |
| Total (mg Si/m3)                  | 2.001   | 0.074  | 0.2               |



| Sulfur Compounds<br>by EPA Method TO-15 (ppmv) | Raw Gas | RNG | Pipeline<br>Specs |
|------------------------------------------------|---------|-----|-------------------|
| Carbon Disulfide                               | ND      | ND  |                   |
| Carbonyl Sulfide                               | 0.011   | ND  |                   |
| Dimethyl Sulfide                               | ND      | ND  |                   |
| Ethyl Mercaptan                                | 0.091   | ND  |                   |
| Hydrogen Sulfide                               | 279     | ND  | 4                 |
| Isobutyl Mercaptan                             | 0.011   | ND  |                   |
| Isopropyl Mercaptan                            | 0.093   | ND  |                   |
| Methyl Mercaptan                               | 0.516   | ND  |                   |
| Total Sulfur (ppmv)                            | 279.7   | ND  | 85                |

| Volatile Organic Compounds<br>by EPA Method TO-15 (ppmv) | Raw Gas | RNG   | Pipeline<br>Specs |
|----------------------------------------------------------|---------|-------|-------------------|
| BTEX Compounds Total                                     | 1.057   | 0.029 | 50                |
| Other VOC Total                                          | 6.43    | ND    | 0.1               |
| Chlorinated/Halogenated Total                            | 0.039   | ND    | 0.1               |
| Hexanes & Alkanes Total                                  | 0.037   | 0.004 | 100               |
| Semi-Volatile Total                                      | 0.001   | ND    | 0.1               |
| Formaldehydes/Aldehydes & Ketones                        | 0.106   | ND    | 0.1               |
| Vinyl Chloride                                           | 0.005   | ND    | 1.17              |

Pipeline specifications were met at commissioning of the system



#### Theresa Street WRRF, Nebraska



## Theresa Street WRRF, Nebraska

- Plant capacity: 27 MGD
- Upgrading to pipeline injection
- 400 scfm
- H<sub>2</sub>S, moisture, siloxanes, CO<sub>2</sub>, and bacteria removal
- Dual-stage membrane technology





## Methods to Deliver RNG: On-site Fueling and Storage



#### Fast-fill

- Final product gas is stored onsite in storage spheres
- Dispensing is done at high pressure, one vehicle at a time



#### Time-fill

- Vehicle fuel tanks act as storage
- Hose post assemblies for multiple vehicles to fill slowly



## Manteca WWTP, California



- Plant capacity: 7 MGD
- 100 scfm
- Fast-fill vehicle fueling
- H<sub>2</sub>S removal
- Gas compression/moisture removal
- Siloxane & VOC removal
- CO<sub>2</sub> removal

## Manteca WWTP, California



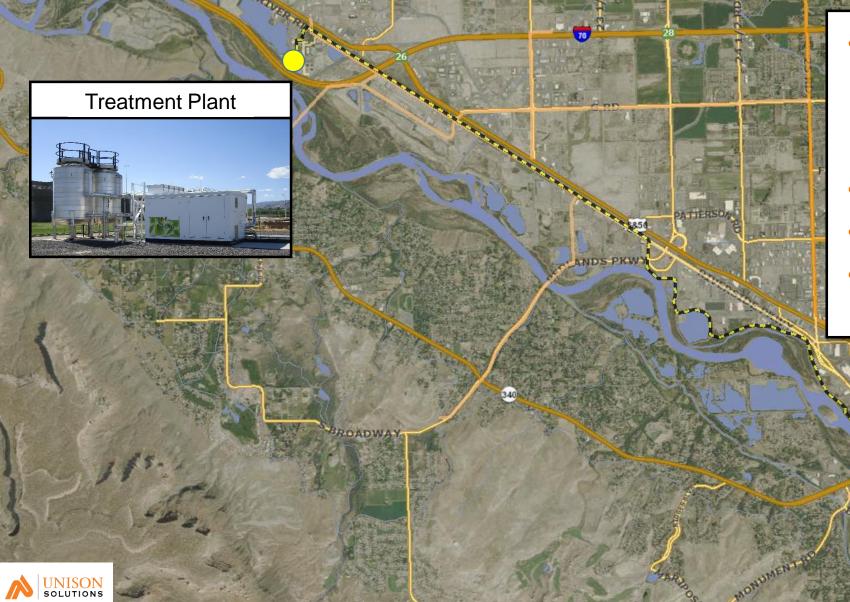


## Randolph Farms Landfill, Indiana

- Startup: spring 2018
- 200 scfm
- Fast-fill: vehicle fueling
- H<sub>2</sub>S removal
- Gas compression/moisture removal
- Siloxane & VOC removal
- Carbon dioxide removal






## Janesville WWTP, Wisconsin

- Gas flow: 140 scfm
  - BioCNG 50
- Fast-fill: vehicle fueling
- Four 65 kW Capstone turbines
- One 200 kW Capstone turbine





## Methods to Deliver RNG: Dedicated Pipeline



- Startup: April 2015
- H<sub>2</sub>S, gas compression/moisture, siloxane and carbon dioxide removal
- Dedicated 5.8-mile pipeline
- Located on the Colorado River
- Extends from WWTP to existing filling stations

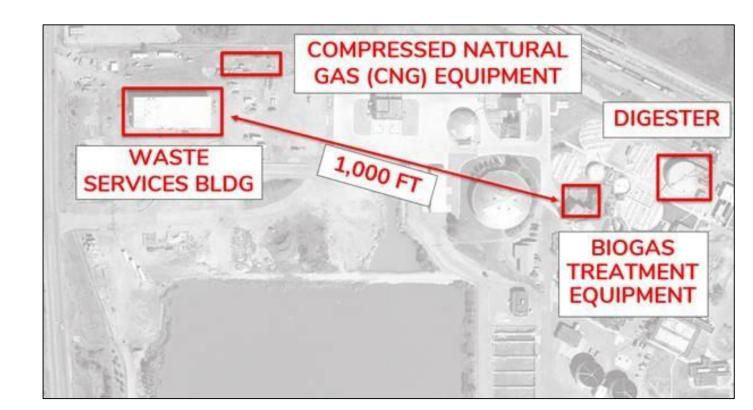


## Time-Fill and Fast-Fill Fueling Stations

nonument clean

- Time-fill for CNG-fueled waste haulers and city buses
- Dedicated 5.8-mile pipeline
- 142,000 gallons of gasoline diverted
- CO<sub>2</sub> reduction of 3 million pounds/year




## Longmont WWTP, Colorado



- Startup: February 2020
- Plant capacity: 13 MGD
- 100 scfm
- H<sub>2</sub>S removal
- Gas compression/moisture removal
- Siloxane removal
- Carbon dioxide removal

## Longmont WWTP, Colorado

- ≈1,000 ft dedicated pipeline on plant property
- On-site fueling building
- Time-fill and one fast-fill dispenser for daytime fueling
- City waste haulers
  - Offsetting 100,000 gallons diesel fuel/year
  - Reducing 1000 metric tons CO<sub>2</sub>







# Longmont WWTP, Colorado



https://www.longmontcolorado.gov/departments/departments-n-z/water/wastewater-treatment/biogas-renewable-natural-gas

## St. Landry Parish Landfill, Louisiana—Virtual Pipeline

- Startup: March 2012
- Gas flow: 150 scfm
- BioCNG 50 & 100

BIOCNG

- Low-pressure fuel storage vessel (120 psi)
- Fast-fill: vehicle fueling

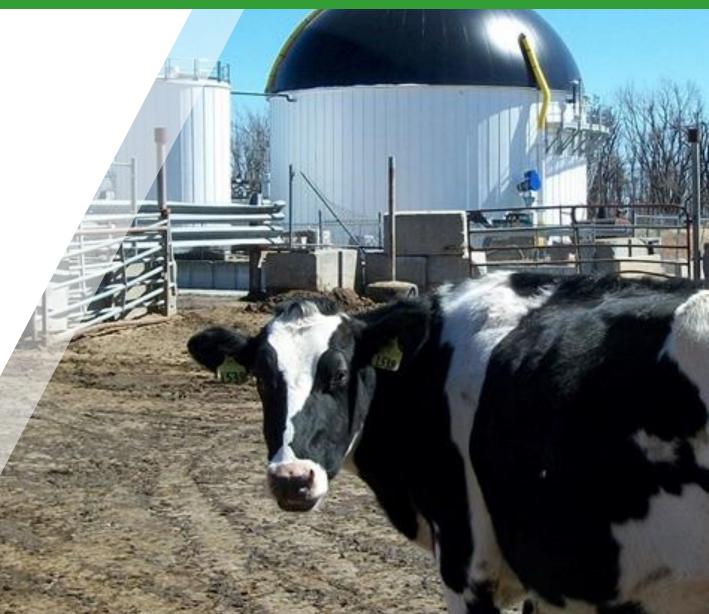


Low-Pressure Storage

High-Pressure Storage



### St. Landry Parish, Louisiana




- Virtual pipeline
- Trailer with nine low-pressure storage tubes (2,580 psi)
- Fast-fill: vehicle fueling

## Manure - Biogas - Energy

- Biogas upgraded to RNG or electricity production
- Estimated opportunities of 8,100 farms (dairy & swine) suitable for a renewable energy project
- Potential of over 171 million MMBTU/year

https://www.epa.gov/agstar/agstar-market-opportunities-report

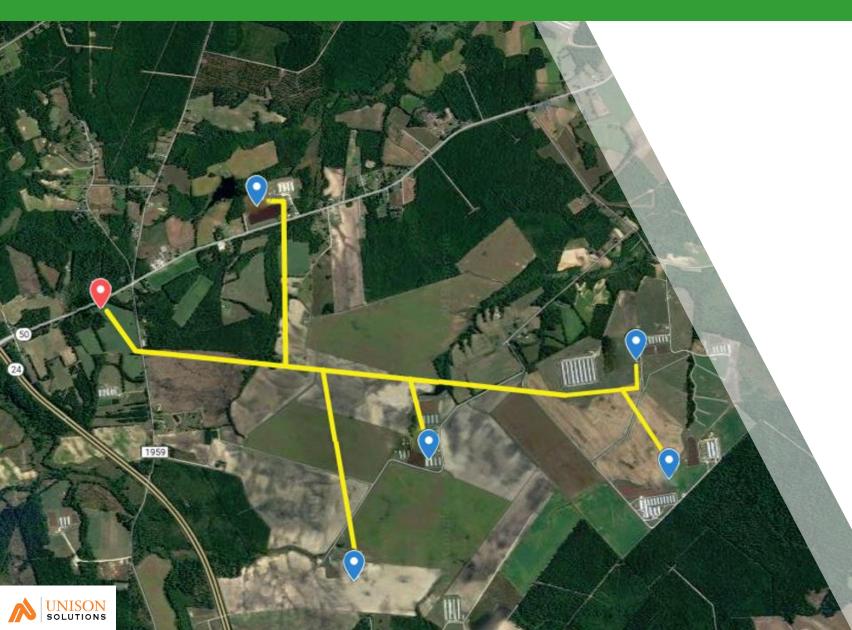




## Loyd Ray Farms, North Carolina



- Swine-to-waste energy system
- 8,600 head, feeder-to-finish operation
- 50 scfm compressor system feeds a 65 kW Capstone turbine for electricity production


## Optima KV—Key Points

- 80,000 MMBTU/year (11,000 MWh)
- 15-year agreement with Duke Energy
- Biogas upgraded to natural gas
- Injected into Piedmont Gas pipeline
- Supplies fuel to:
  - > H.F. Lee Power Plant near Goldsboro
  - Sutton Power Plant in Wilmington
    - <1% of total fuel





## **Dedicated Pipeline to Central Processing**



- Five in-ground digesters ≈
  60,000 hogs
- Gas compression/moisture removal
  - Four 60 scfm compressor systems
  - One 140 scfm compressor system
- Two injection compressors (1,050 psig)

## **Biogas Testing**

Before starting a project, we recommend the following biogas tests be performed:

۲

- Major Components
  - Methane
  - > Nitrogen
  - > Oxygen
  - Carbon dioxide
  - BTU calculation
- Siloxanes, by speciation
  - Up to 8 compounds common to biogas

- Sulfur Compounds, by speciation
  - Hydrogen sulfide
  - Mercaptans
  - > Other sulfide compounds
- Volatile Organic Compounds (VOCs), by speciation
  - Follows EPA TO-15 protocol

These compounds will also need to be tested on a regular basis to determine media change out intervals



# Biogas Upgrading Summary

#### BIOGAS









#### **PIPELINE INJECTION**

- Equipment to meet pipeline spec/tariff
- Interconnect fees for utility
- Fuel testing to pipeline requirements

#### **VEHICLE FUELING**

- Less stringent fuel specification
- Fueling infrastructure on site
- Vehicles committed to using fuel



#### Thank You!

Please contact us directly to discuss your biogas upgrading requirements.

sales@unisonsolutions.com www.unisonsolutions.com

