

2021 Master Class Course Breast Cancer: Genetics, and Management of ER+ Tumors Harold J. Burstein, MD, PhD

Faculty Disclosure

None

Faculty of this CE activity may include discussions of products or devices that are not currently labeled for use by the FDA. The faculty have been informed of their responsibility to disclose to the audience if they will be discussing off label or investigational uses (any uses not approved by the FDA) of products or devices.

Question 1.

A 64 year old woman has been with ER positive, HER2 negative breast. Her family history is notable for an older brother diagnosed with prostate cancer at age 71, and a maternal aunt who had pancreatic cancer at age 73. Genetic testing suggests a deleterious ATM mutation

Which of the following would you advise?

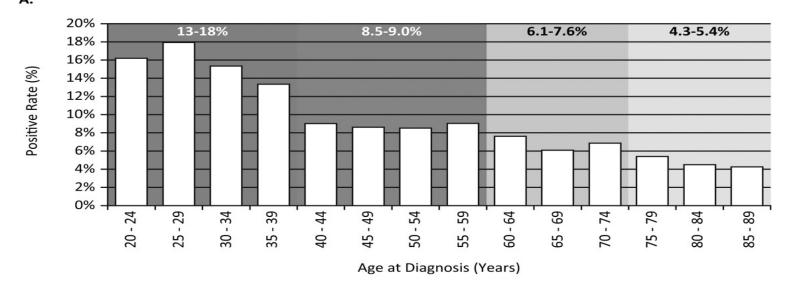
- A. ATM mutation likely accounts for her family history
- B. Because of ATM mutation she needs bilateral mastectomy
- C. Because of ATM mutation she needs unilateral mastectomy and not radiation
- D. If her daughter has an ATM mutation she has a lifetime risk of breast cancer of less than 25%

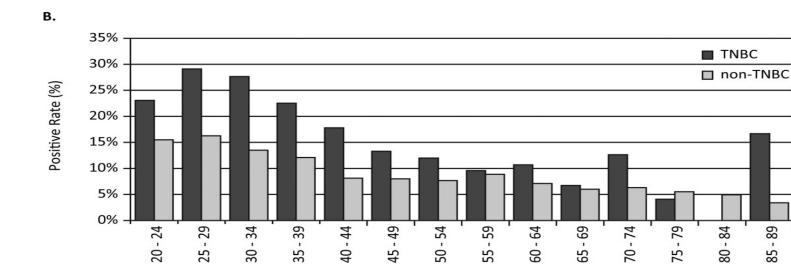
Question 2.

A 46 yo premenopausal woman has been diagnosed with ER positive, HER2 negative breast cancer. Surgery disclosed a 1.3 cm tumor, grade 2, with metastatic cancer in 1 of 3 sentinel lymph nodes. The OncotypeDX recurrence score is 13.

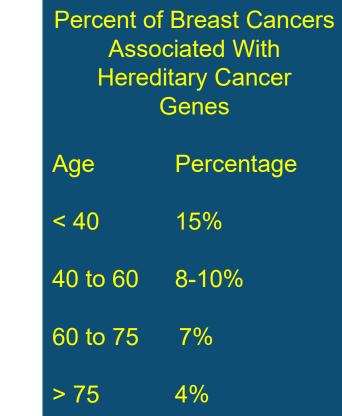
Which of the following would you advise?

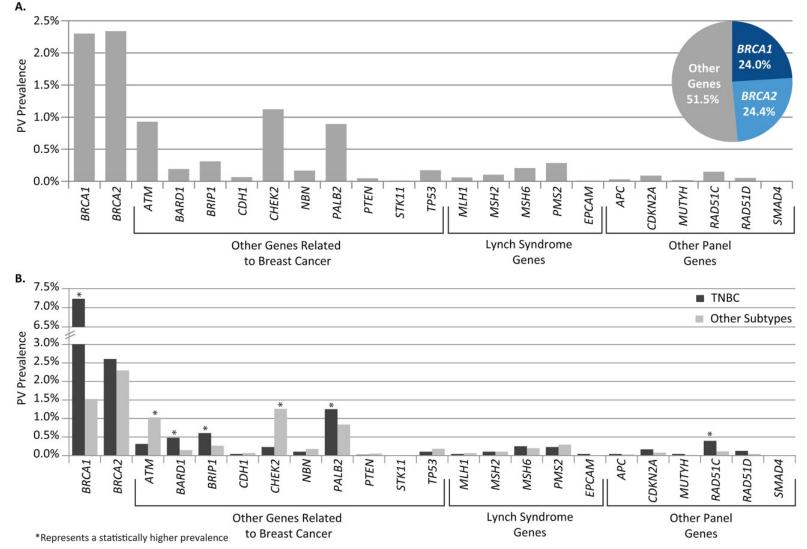
- A. No studies show benefit to chemotherapy
- B. Ovarian suppression and an AI are 'all' that she needs as adjuvant treatment
- C. Studies show benefit to chemotherapy but only if score is 16 to 25 range in premenopausal women with node-positive breast cancer
- D. She should receive adjuvant abemaciclib.




Outline

- Genetic testing and treatment of hereditary cancers
- ER+ breast cancer: metastatic disease management
- ER+ breast cancer: adjuvant/neoadjuvant therapy




A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes

A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes

Buys, et al. Cancer, Volume: 123, Issue: 10, Pages: 1721-1730, First published: 13 January 2017, DOI: (10.1002/cncr.30498)

NCCN Guidelines Version 2.2017 Breast and/or Ovarian Cancer Genetic Assessment

CRITERIA FOR FURTHER GENETIC RISK EVALUATION^a

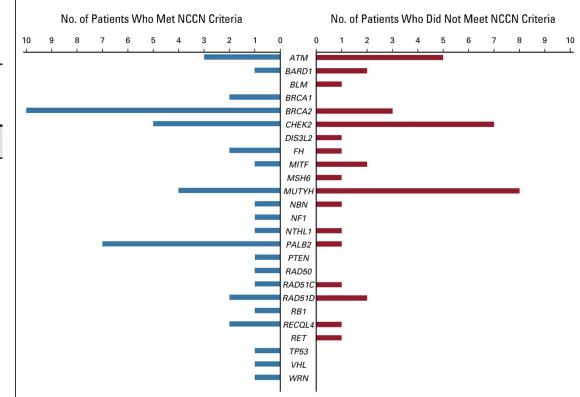
- An individual with an ovarian^e cancer
- An individual with a breast cancer diagnosis meeting any of the following:
- A known mutation in a cancer susceptibility gene within the family
- Early-age-onset breast cancer^b
- ► Triple negative (ER-, PR-, HER2-) breast cancer diagnosed ≤60 y
- Two breast cancer primaries^c in a single individual
- Breast cancer at any age, and
 - \diamond ≥1 close blood relative^d with breast cancer ≤50 y, or
 - ◊ ≥1 close blood relative^d with invasive ovarian^e cancer at any age, or
 - ◊ ≥2 close blood relatives^d with breast cancer and/or pancreatic cancer at any age, or
 - ♦ Pancreatic cancer at any age, or
 - From a population at increased risk^f
- Male breast cancer
- An individual of Ashkenazi Jewish descent with breast, ovarian, or pancreatic cancer at any age
- An individual with a personal and/or family history of three or more of the following (especially if early onset^b and can include multiple primary cancers in same individual): breast, pancreatic cancer, prostate cancer (Gleason score ≥7), melanoma, sarcoma, adrenocortical carcinoma, brain tumors, leukemia, diffuse gastric cancerⁱ, colon cancer, endometrial cancer, thyroid cancer, kidney cancer, dermatologic manifestations^{g,h} and/or macrocephaly, hamartomatous polyps of gastrointestinal (GI) tract^h

- An individual with no personal history of cancer but with
- A close relative with any of the following:^{d,f}
 - A known mutation in a cancer susceptibility gene within the family
 - ◊ ≥2 breast cancer primaries in a single individual
 - ◊ ≥2 individuals with breast cancer primaries on the same side of family with at least one diagnosed ≤50 y
 - ◊ Ovarian^e cancer
 - ♦ Male breast cancer
- First- or second-degree relative with breast cancer ≤45 y
- Family history of three or more of the following (especially if early onset^b and can include multiple primary cancers in same individual): breast, pancreatic cancer, prostate cancer (Gleason score ≥7), melanoma, sarcoma, adrenocortical carcinoma, brain tumors, leukemia, diffuse gastric cancer¹, colon cancer, endometrial cancer, thyroid cancer, kidney cancer, dermatologic manifestations^{g,h} and/or macrocephaly, hamartomatous polyps of GI tract^h

Problem

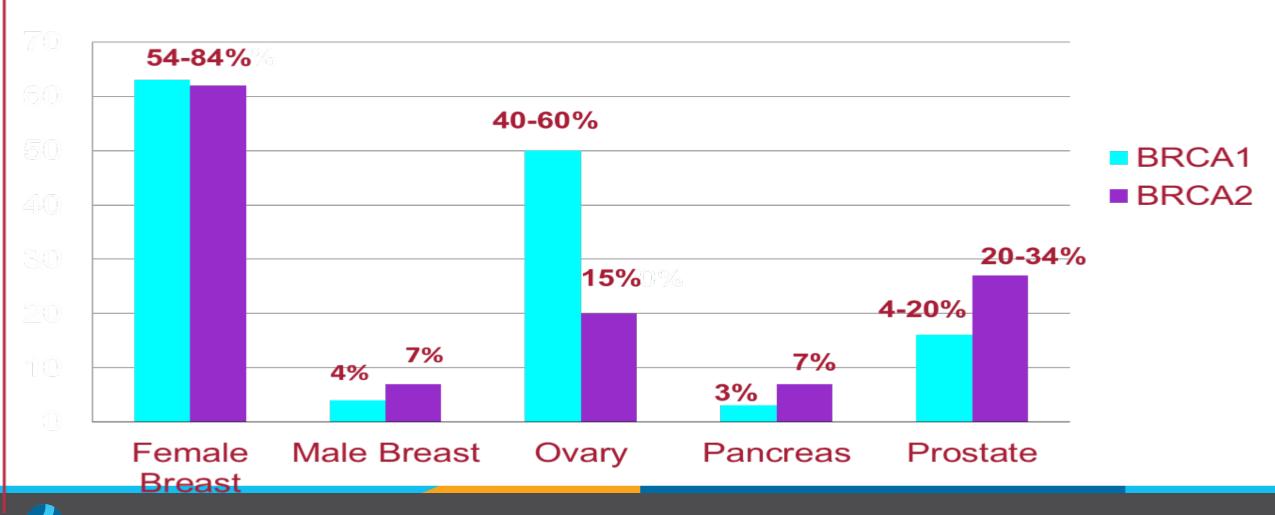
Guideline recommendations are heavily skewed to BRCA1/BRCA2 associated risks and cancers

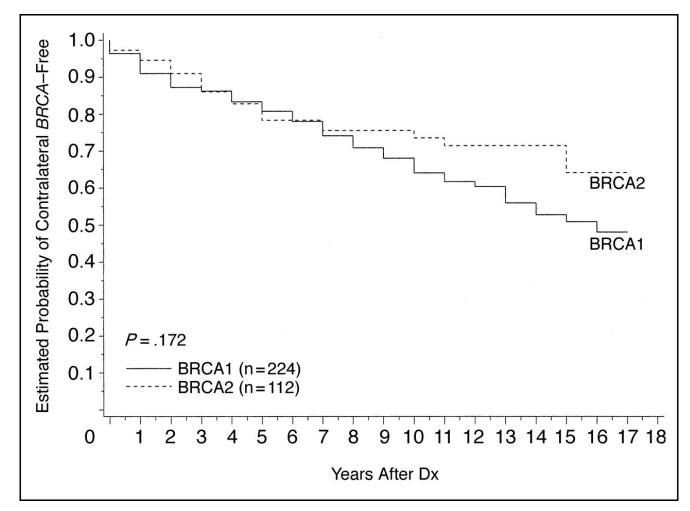
e.g. TNBC; FH of ovarian cancer, prostate cancer, pancreatic cancer


Studies suggest that guideline recommendations miss about half of hereditary cancers that arise from less common genes with lower penetrance and less predictable clinical patterns

	Positive Result (%)				
Group	<i>BRCA 1/</i> Alone	HBOC Guidelines Panel (11 genes)	Large Cancer Panel (80 genes)		
In guideline	2.51	6.26	9.39		
Out of guideline	0.63	3.54	7.92		

Desitive Desult (%)


 TABLE 2.
 Patient Genetic Test Positive Result Rate


Published in: Peter D. Beitsch; Pat W. Whitworth; Kevin Hughes; Rakesh Patel; Barry Rosen; Gia Compagnoni; Paul Baron; Rache Simmons; Linda Ann Smith; Ian Grady; Michael Kinney; Cynara Coomer; Karen Barbosa; Dennis R. Holmes; Eric Brown; Linsey Gold; Patricia Clark; Lee Riley; Samuel Lyons; Antonio Ruiz; Sadia Kahn; Heather MacDonald; Lisa Curcio; Mary Kay Hardwick; Shan Yang; Ed D. Esplin; Robert L. Nussbaum; *Journal of Clinical Oncology* 2019 37453-460.

Lifetime Cancer Risk in BRCA1/2 Carriers

Dana-Farber Cancer Institute

Risks of contralateral breast cancer in carriers of BRCA1 and BRCA2 mutations.

Metcalfe, et al. Journal of Clinical Oncology 2004 222328-2335.

Management Guidelines BRCA1/2 Carriers

Management Option	Screening Interval/Comments
SCREENING	
 Clinical Breast Exam Breast MRI Mammogram 	 Q6-12 mos beginning age 25 Yearly age 25-75 (then individualize) Yearly age 30-75 (then individualize)
 Transvaginal ultrasound* CA-125* 	Q6 mos beginning age 30Q6 mos beginning age 30
PREVENTION	
 Bilateral mastectomy Bilateral salpingo-oophorectomy 	 Discuss option with patient Recommend by age 35-40 and when childbearing complete
Consider oral contraceptiveConsider tamoxifen	

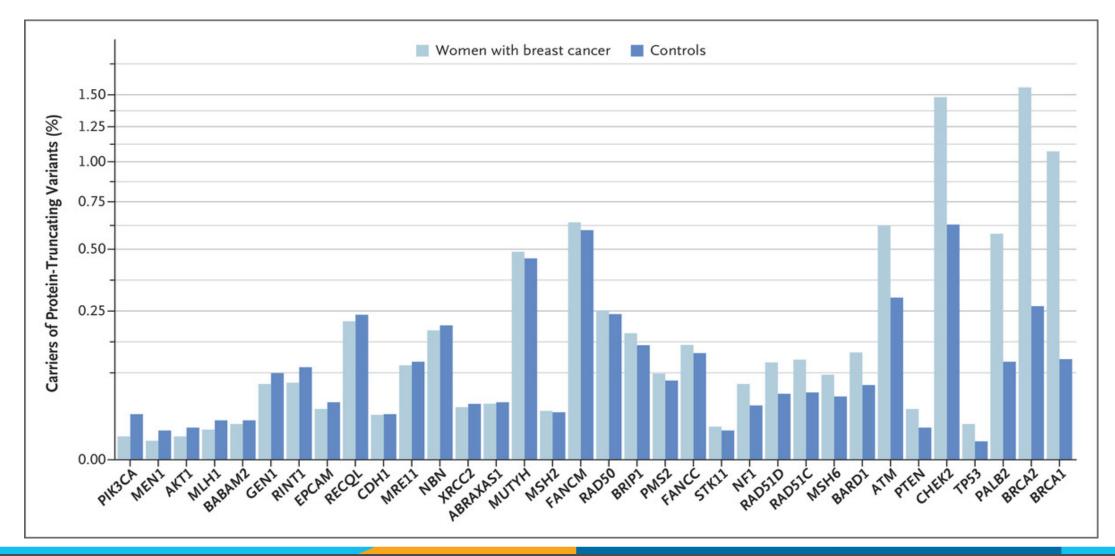
Family History of Breast Cancer and ...

Pancreas: BRCA, PALB2, ATM

Ovarian: BRCA, BRIP1, RAD51cd

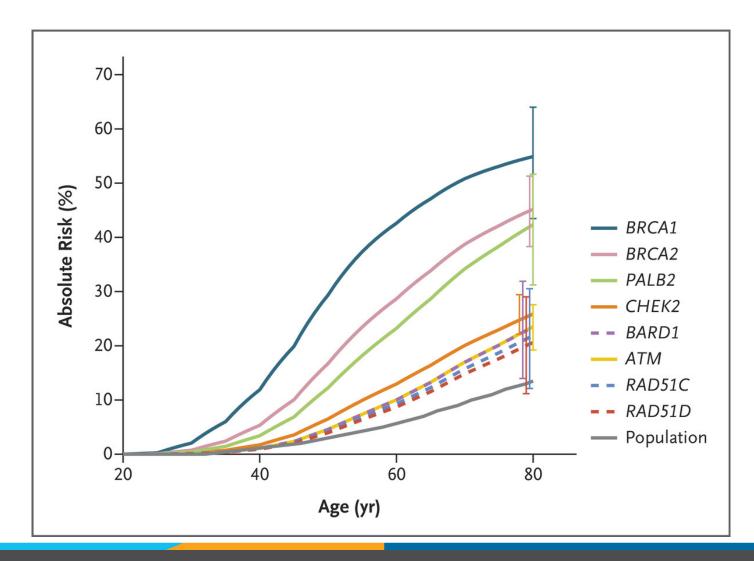
Colon: CHEK2 100delC

Prostate: BRCA2


Male breast cancer: BRCA2

Gastric cancer: CDH1

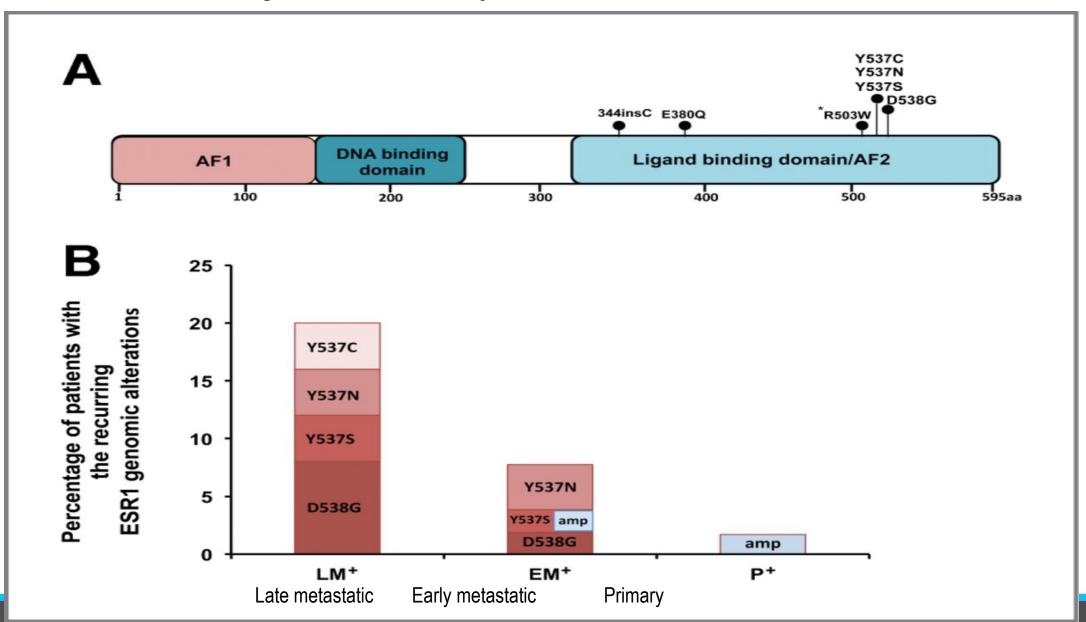
CNS, sarcoma, AML, adrenal cortical, other: TP53



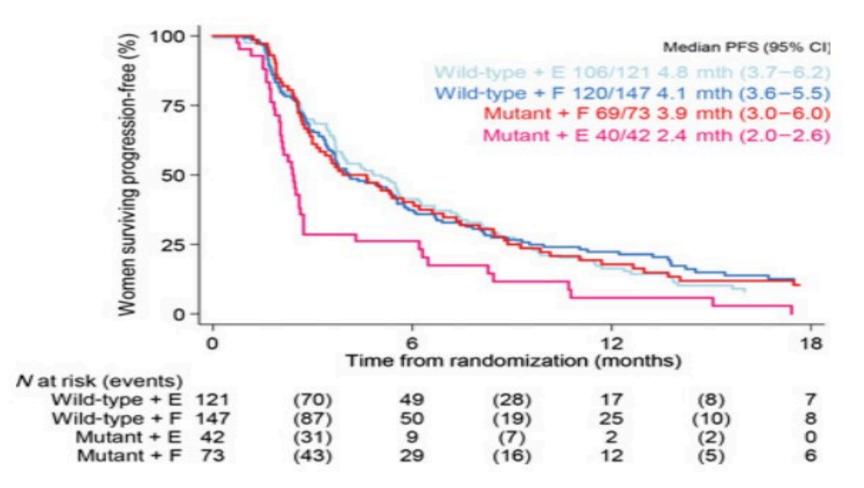
Frequency of Protein-Truncating Variants in 34 Genes in Population-Based Studies. N = 113,000 women

Estimated Absolute Risk of Breast Cancer Associated with Protein-Truncating Variants in 8 Genes.

Genetics: Key Take-aways

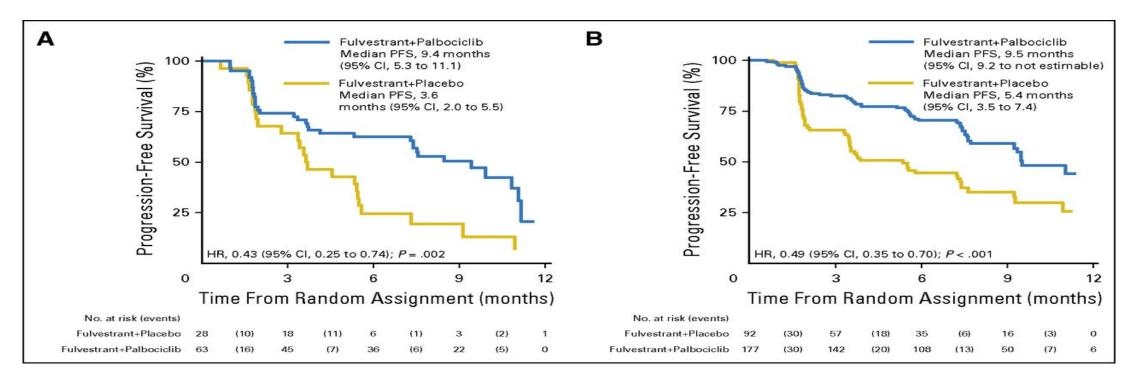

- Panel testing is the "norm"
- Remember to revisit family history in light of shifting guidelines on which patients should be tested and appreciation for links to other kinds of cancer
- Penetrance / risk is NOT uniform for all 'mutant' genes
- Personally, I think we should test nearly all patients

Genomic era reaches breast cancer


INNOVATIONS IN ADVANCED ER+ BREAST CANCER

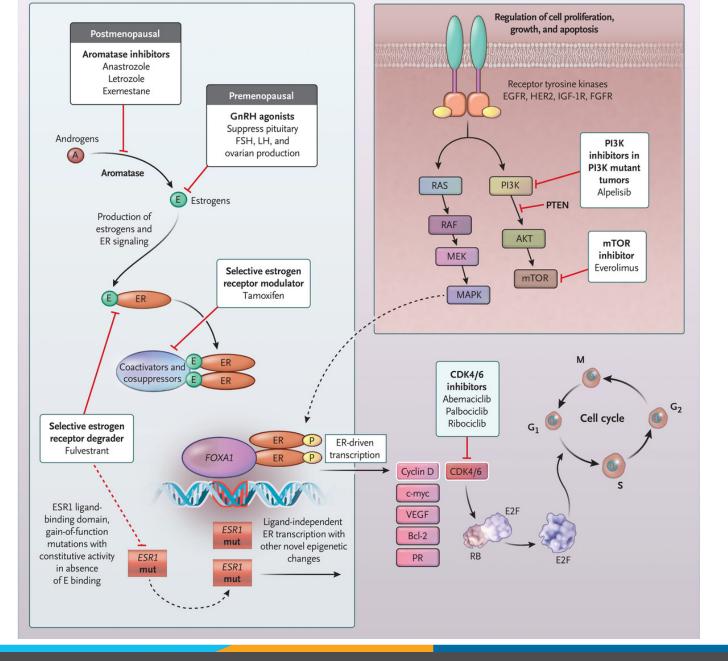
Emergence of constitutively active ER- α mutations in breast cancers

Effect of ESR1 mutations on outcomes in SoFEA and EFECT trials of Exemestane vs Fulvestrant after Prior AI Therapy



Progression-free survival (PFS) in PALOMA3 by ESR1 mutation status.

ESR1 mutation


ESR1 wildtype

ESR1 mutation associated with diminished PFS, but still with benefit from CDk4/6i

Charlotte Fribbens et al. JCO 2016;34:2961-2968

Line	Study Name	Endocrine Agent	CDK4/6i	PFS	HR
	PALOMA1 Lancet 2015	Letrozole	Palbociclib	10.2m → 20.2m	0.49
1 st	PALOMA2 NEJM 2016	Letrozole	Palbociclib	14.5m → 24.8 m	0.58
	MONALEESA2 NEJM 2016	Letrozole	Ribociclib	14.5 → ~26m	0.56
	MONALEESA7* SABCS 2017	Letrozole + OFS	Ribociclib	13.0m → 23.8m	0.55
	MONARCH3 JCO 2017	NSAI	Abemaciclib	14.7m → NR	0.54
2 nd	PALOMA3 NEJM 2015	Fulvestrant	Palbociclib	3.8m → 9.2m	0.42
	MONALEESA3 ASCO 2018	Fulvestrant	Ribociclib	12.8 m → 20.5m	0.59
	MONARCH2 JCO 2017	Fulvestrant	Abemaciclib	9.3m → 16.4m	0.55
	MONARCH2* ASCO 2018		Abemaciclib	10.5 m → NR	0.45

*premenopausal women

Side effects of CDK4/6 inhibitors

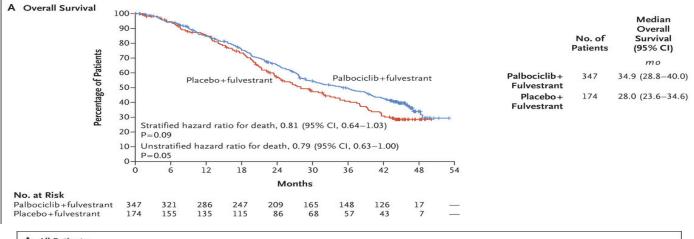
Table 2. Dosing and Toxicity for Cyclin-Dependent Kinase 4/6 Inhibitors							
		125 mg per day on, 1 week off])	Ribociclib (600 mg per day [3 weeks on, 1 week off])		Abemaciclib (200 mg twice per day [continuous])		
Common Adverse Event*	All Grades	Grade 3 and 4	All Grades	Grade 3 and 4	All Grades	Grade 3 and 4	
Neutropenia	74-81	54-67	74	59	46	27	
Thrombocytopenia	16-22	23	NR	NR	16		
Fatigue	37-40	2-4	37	2	40	3	
Diarrhea	21-26	1-4	35	1	86	13	
Nausea	25-35	0-2	52	2	40	3	
QTc prolongation	NR	NR	3	NR	NR	NR	

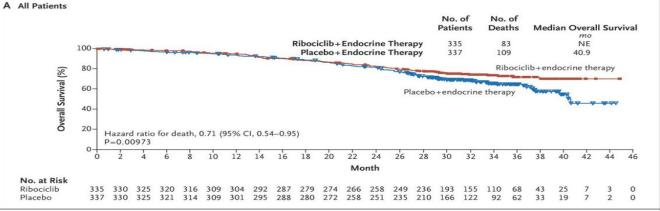
NOTE. Data are given as percent.

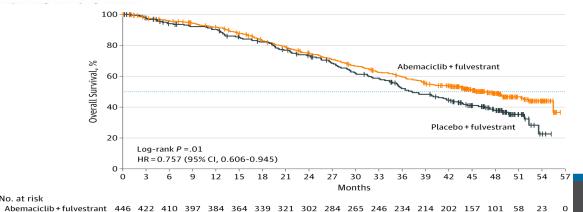
Abbreviation: NR, not reported; QTc, corrected QT interval.

*Common adverse events in phase III trials in the metastatic setting.

Wander S, Mayer EL, Burstein HJ. J Clin Oncol 2017


PALOMA 3: **Overall Survival**


MONALEESA 7: Overall Survival

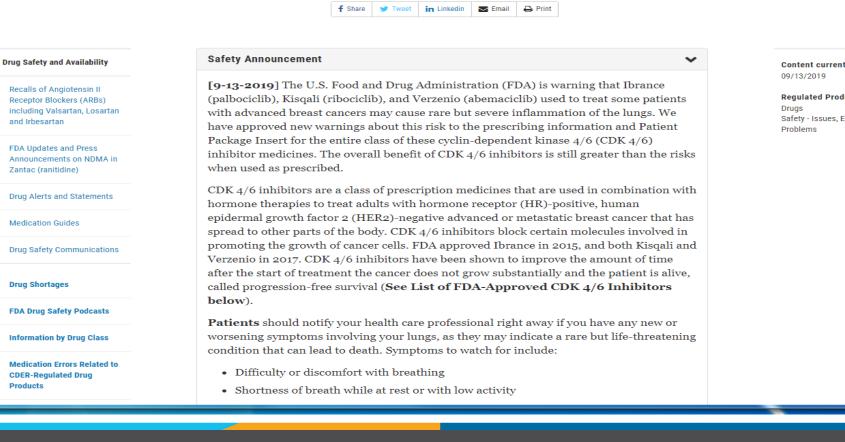


NC Turner et al. N Engl J Med 2018;379:1926-1936. Sledge G, JAMA Oncol 2019

S Im et al. N Engl J Med 2019;381:307-316. Dana-Farber Cancer Institute

223 214 201 195 191 178 170 158 148 135 122 115 99 92 82 62 42 15

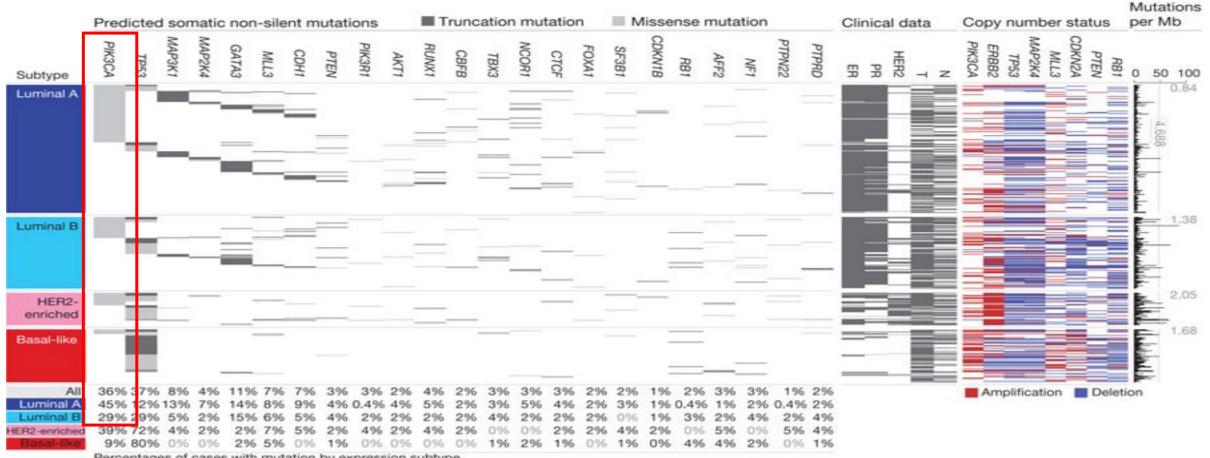
No. at risk


Placebo + fulvestrant

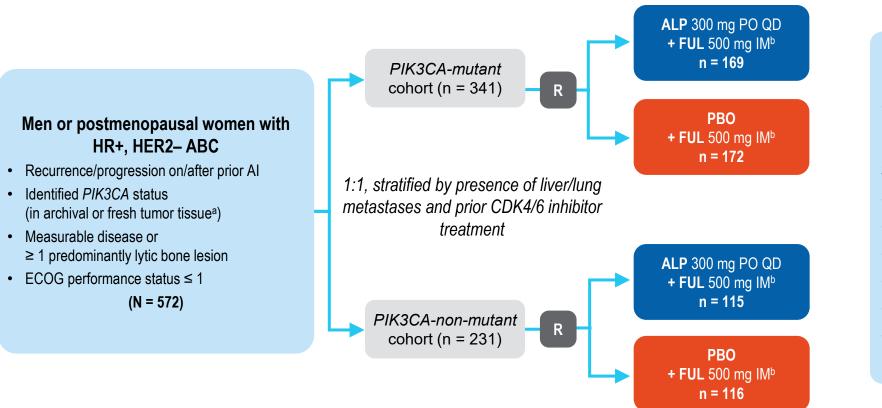
3 0

← Home / Drugs / Drug Safety and Availability / FDA warns about rare but severe lung inflammation with Ibrance, Kisgali, and Verzenio for breast cancer

FDA warns about rare but severe lung inflammation with Ibrance, Kisgali, and Verzenio for breast cancer


FDA Drug Safety Communication

Content current as of:


Regulated Product(s) Safety - Issues, Errors, and

Molecular Portraits of Human Breast Tumors

Percentages of cases with mutation by expression subtype

SOLAR-1

Primary endpoint

 PFS in *PIK3CA*-mutant cohort (locally assessed)

Secondary endpoints include

- OS (PIK3CA-mutant cohort)
- PFS (PIK3CA-non-mutant cohort)
- PFS (PIK3CA mutation in ctDNA)
- PFS (PIK3CA-non-mutant in ctDNA)
- ORR/CBR (both cohorts)
- Safety

- The primary endpoint included all randomized patients in the PIK3CA-mutant cohort; PFS was analyzed in the PIK3CA-non-mutant cohort as a proof of concept
- Safety was analyzed for all patients who received \geq 1 dose of study treatment, in both cohorts

ABC, advanced breast cancer; AI, aromatase inhibitor; ALP, alpelisib; CBR, clinical benefit rate; ctDNA, circulating tumor DNA; ECOG, Eastern Cooperative Oncology Group; FUL, fulvestrant; HER2–, human epidermal growth factor receptor-2–negative; IM, intramuscular; ORR, overall response rate; OS, overall survival; PBO, placebo; PFS, progression-free survival;

PO, oral; QD, once daily; R, randomization.

^a More than 90% of patients had mutational status identified from archival tissue.

Fulvestrant given on Day 1 and Day 15 of the first 28-day cycle, then Day 1 of subsequent 28-day cycles.

Dana-Fai ESMO 2018. Abstract LBA3 [oral]

SOLAR Trial -1

F André et al. N Engl J Med 2019;380:1929-1940.

Alpelisib: Toxicity Management

Table 3. Most Frequent Adverse Events, According to Single Preferred Term and Regardless of Relationship to Intervention, in the Overall Patient Population.*

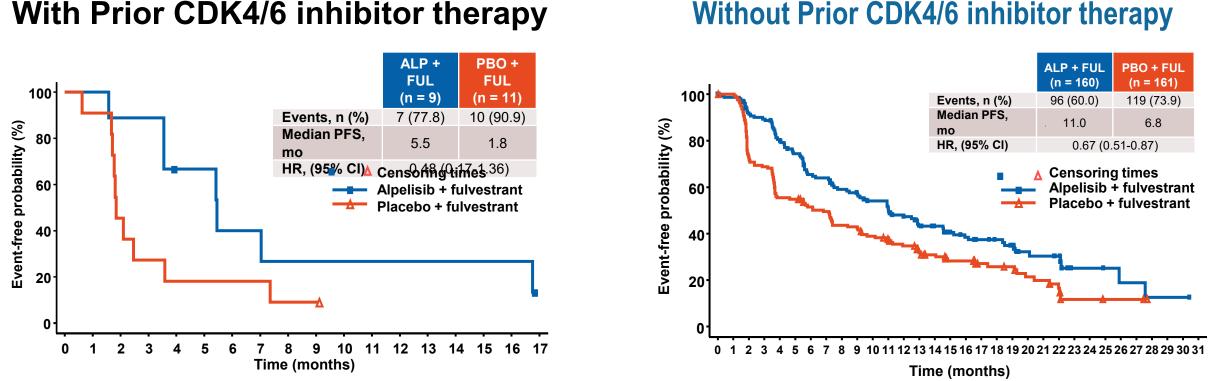
Adverse Event	Alpelisib-	Alpelisib–Fulvestrant Group (N=284) Placebo–Fulvestrant C			Fulvestrant Group	Group (N=287)	
	Any Grade	Grade 3	Grade 4	Any Grade	Grade 3	Grade 4	
			number of pa	tients (percent)			
Any adverse event	282 (99.3)	183 (64.4)	33 (11.6)	264 (92.0)	87 (30.3)	15 (5.2)	
Hyperglycemia†	181 (63.7)	93 (32.7)	11 (3.9)	28 (9.8)	1 (0.3)	1 (0.3)	
Diarrhea‡	164 (57.7)	19 (6.7)	0	45 (15.7)	1 (0.3)	0	
Nausea‡	127 (44 7)	7 (2.5)	0	64 (22.3)	1 (0.3)	0	
Decreased appetite	101 (35.6)	2 (0.7)	0	30 (10.5)	1 (0.3)	0	
Rash§	101 (35.6)	28 (9.9)	0	17 (5.9)	1 (0.3)	0	
Vomiting:	77 (27.1)	2 (0.7)	0	28 (9.8)	1 (0.3)	0	
Weight loss	76 (26.8)	11 (3.9)	0	6 (2.1)	0	0	
Stomatitis	70 (24.6)	7 (2.5)	0	18 (6.3)	0	0	
Fatigue	69 (24.3)	10 (3.5)	0	49 (17.1)	3 (1.0)	0	
Asthenia	58 (20.4)	5 (1.8)	0	37 (12.9)	0	0	
Alopecia	56 (19.7)	0	0	7 (2.4)	0	0	
Mucosal inflammation	52 (18.3)	6 (2.1)	0	3 (1.0)	0	0	
Pruritus	51 (18.0)	2 (0.7)	0	16 (5.6)	0	0	
Headache	50 (17.6)	2 (0.7)	0	38 (13.2)	0	0	
Dysgeusia	47 (16.5)	0	0	10 (3.5)	0	0	
Arthralgia	32 (11.3)	1 (0.4)	0	47 (16.4)	3 (1.0)	0	
-							

* Safety analyses included all the patients who received at least one dose of any trial agent; one patient who was randomly assigned to the placebo-fulvestrant group did not receive either placebo or fulvestrant. The events that are listed were reported as a single term in at least 15% of the patients for any grade in either group. Three adverse events of special interest (pancreatitis, severe cutaneous reactions, and pneumonitis) fell below the reporting threshold listed here. Hypersensitivity, which occurred in 16.5% of the patients in the alpelisib–fulvestrant group (grade ≥3 in 1.8%) and in 4.2% of those in the placebo–fulvestrant group (grade ≥3 in none), was not reported as any single preferred term that reached the reporting threshold listed here.

↑ Adverse events of any grade related to hyperglycemia (including diabetes mellitus, hyperglycemia, insulin resistance, and metabolic syndrome [preferred terms] and others [see the Methods section in the Supplementary Appendix for a complete list]) were reported in 65.8% of the patients in the alpelisib-fulvestrant group (grade ≥3 in 0.7%).

 \ddagger Gastrointestinal toxic effects of any grade (including nausea, vomiting, and diarrhea [preferred terms] and others [see the Methods section in the Supplementary Appendix for a complete list]) were reported in 75.4% of the patients in the alpelisib–fulvestrant group (grade ≥3 in 8.8%) and in 34.8% of those in the placebo–fulvestrant group (grade ≥3 in 1.0%). Diarrhea was assessed at a maximum grade 2 severity in 18.3% of the patients.

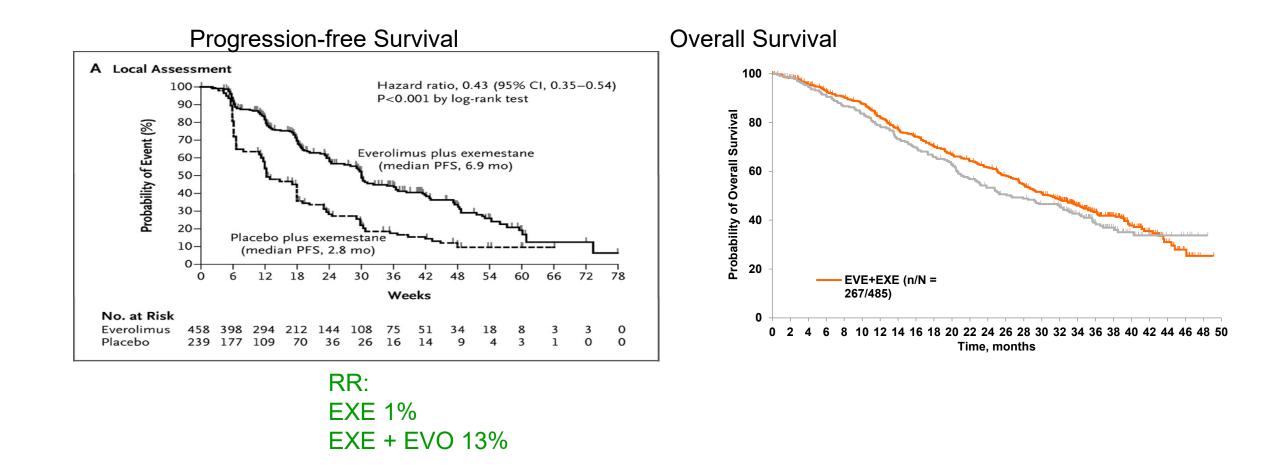
 S Adverse events of any grade related to rash (including rash, rash follicular, rash generalized, and rash maculopapular [preferred terms] and others [see the Methods section in the Supplementary Appendix for a complete list]) were reported in 53.9% of the patients in the alpelisib-fulvestrant group (grade ≥3 in 20.1%) and in 8.4% of those in the placebo-fulvestrant group (grade ≥3 in 0.3%).


Table S7. Protocol Guidance for Treatment of Hyperglycemia in SOLAR-1

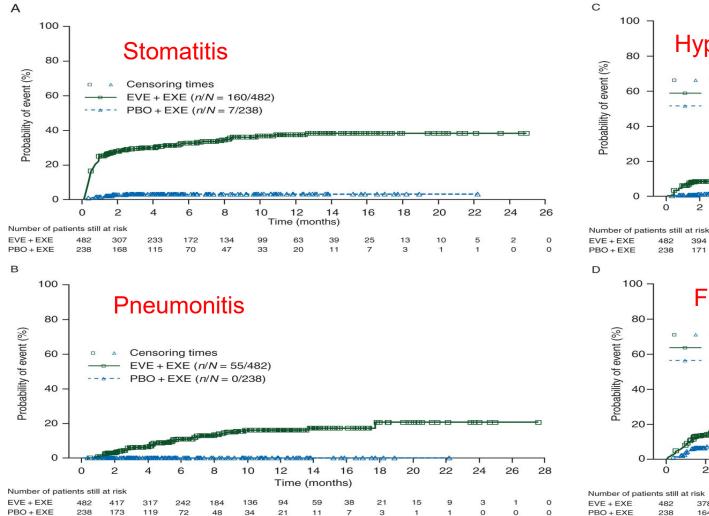
alpelisib/placebo treatment.

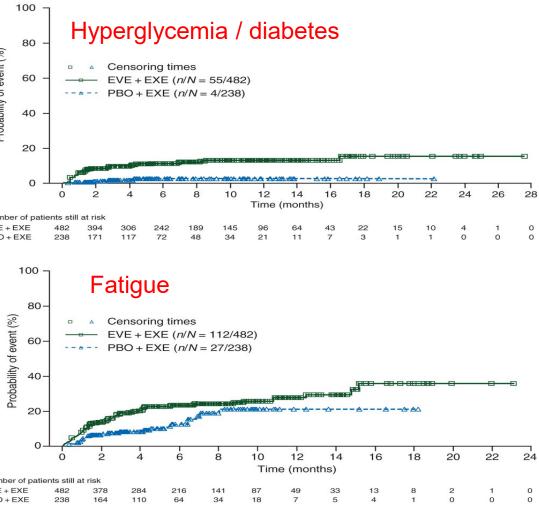
Hyperglyc	emia
Grade 1	 Maintain dose level and remind patient of lifestyle changes. If FPG <140 mg/dL, consider adding metformin* If FPG 140-60 mg/dL, start or intensify metformin* Initiate metformin 500 mg once daily with dinner. If no GI intolerance after several days, increase to 500 mg twice daily with breakfast and dinner If tolerated, 1 g twice daily with breakfast and dinner If not tolerated, reduce to prior tolerated dose Monitor FPG as clinically indicated and at least weekly for 8 weeks, then every 2 weeks until FF is within baseline values.
Grade 2	 Maintain dose level and remind patient of lifestyle changes. Metformin 500 mg twice daily with breakfast and dinner If no Gl intolerance, increase to 500 mg with breakfast, 1000 mg with dinner If tolerated, 1000 mg bid with breakfast and dinner If not tolerance, increase to 500 mg with breakfast, 1000 mg with dinner If tolerated, reduce to prior tolerated dose Titrate to the maximum tolerated dose over a period of 3 weeks Exclude confounding factors such as UTI and consider consultation with a diabetologist. If FPG continues to rise, or is persistently >160 mg/dL (>8.9 mmol/L), on MTD of metformin, add an insulin-sensitizer, e.g. pioglitazone 30 mg. Monitor FPG as clinically indicated, and at least weekly, until FPG resolves to ≤Grade 1. If FPG does not resolve to ≤Grade 1 within 21 days after initiation of appropriate antidiabetic treatment, reduce alpelisib/placebo by one dose level. Continue with antidiabetic treatment and check FPG at least weekly for 8 weeks, then continue checking at least every 2 weeks. Alert treating physician if FPG >250 mg/dL.
Grade 3	 Interrupt treatment with alpelisib/placebo and confirm fasting status of the assessment. If non-fasting, re-check within 24 hours. Exclude confounding factors such as UTI and consider consultation with a diabetologist. Administer IV hydration and intervention for electrolyte/ketoacidosis/hyperosmolar disturbances as clinically appropriate. Start metformin and titrate as outlined for Grade 2, add pioglitazone as outlined for Grade 2. Insulin may be used for 1–2 days until hyperglycemia resolves; however this may not be necessary in the majority of cases of alpelisib-induced hyperglycemia, given the short half-life of alpelisib. Monitor FPG as clinically indicated and at least twice weekly until FPG resolves to ≤Grade 1. If FPG resolves to ≤Grade 1 within 3–5 days, while off study treatment and on metformin, re-start alpelisib/placebo and reduce one dose level, continue with antidiabetic treatment and check FPG at least weekly for 8 weeks, then continue checking at least every 2 weeks, alert treating physician if FPG >250 mg/dL. If FPG does not resolve to ≤Grade 1 within 3–5 days while off study treatment and on metformin, consultation with a diabetologist for management of diabetes is strongly recommended. If FPG does not resolve to ≤Grade 1 within 21 days after initiation of appropriate antidiabetic treatment in cooperation with a diabetologist, and exclusion of

confounding factors e.g. urinary tract infection, permanently discontinue patient from



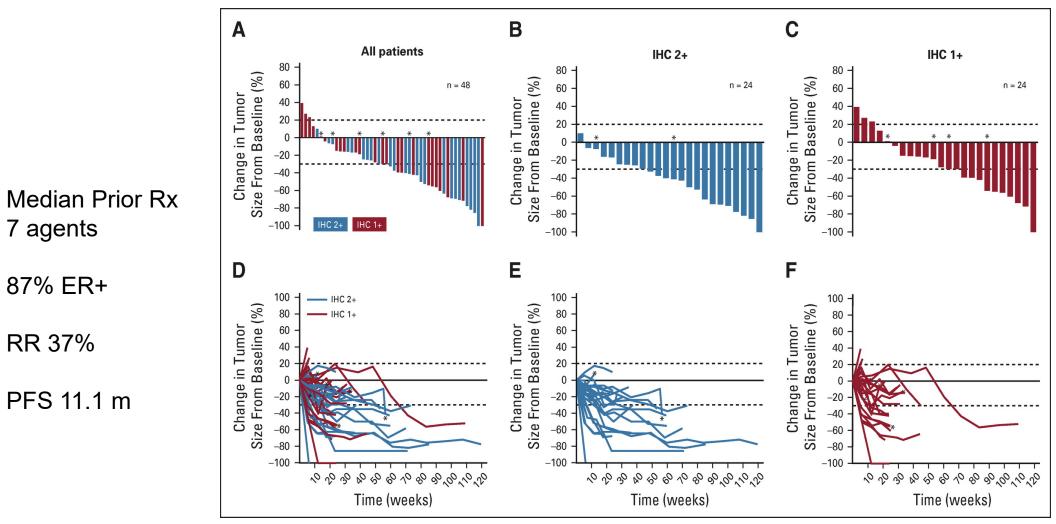
With Prior CDK4/6 inhibitor therapy


- Previous treatment with any CDK4/6 inhibitor was a stratification factor, however the number of patients enrolled who had ۲ received prior CDK4/6 inhibitor therapy was small
- Treatment benefit with alpelisib was observed regardless of prior use with a CDK4/6 inhibitor


BOLERO-2. PFS EXE +/- everolimus after prior AI

BOLERO-2. Cumulative risks for grade > 2 adverse events

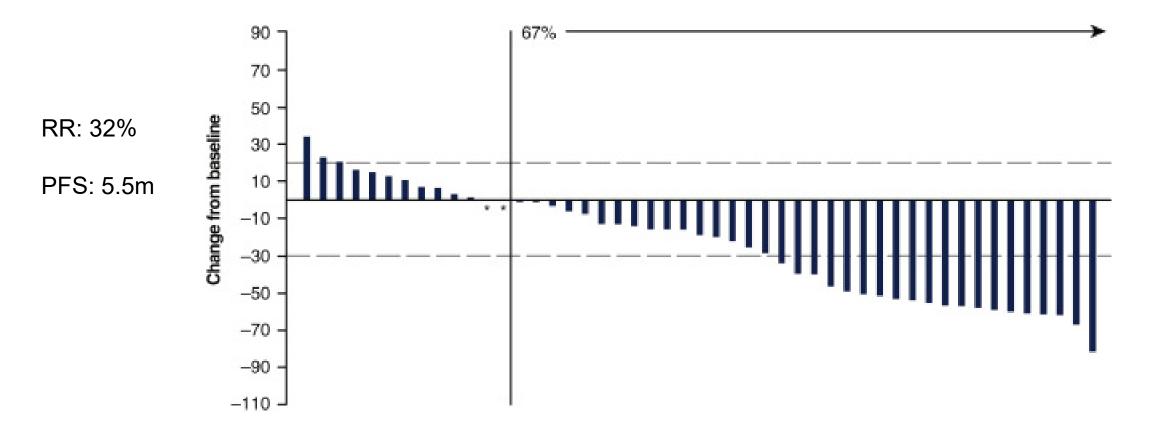
CROSSOVER THERAPEUTICS


Response rates to PARPi in ER+ breast cancers with hereditary mutations contributing to homologous recombination deficiency

	Olaparib Robsor	vs chemo ı, NEJM		o vs chemo NEJM	Olaparib Tung, JCO
Mutation	BRC	A1/2	BRC	PALB2	
Treatment	PARPi	STD	PARPi STD		PARPi
Response rates	65%	36%	63%	38%	81%

Takeaway: all patients with metastatic breast cancer need genetic testing

Trastuzumab deruxtecan in HER2 "low" 1+ or 2+ breast cancers

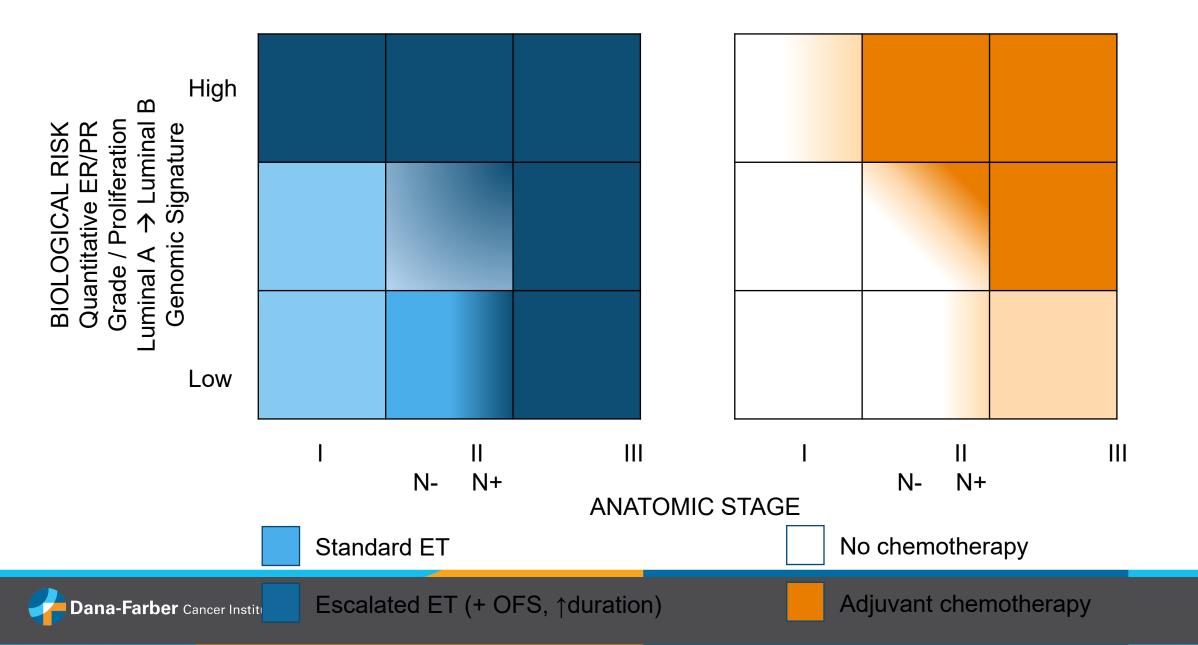


Published in: Shanu Modi; Haeseong Park; Rashmi K. Murthy; Hiroji Iwata; Kenji Tamura; Junji Tsurutani; Alvaro Moreno-Aspitia; Toshihiko Doi; Yasuaki Sagara; Charles Redfern; Ian E. Krop; Caleb Lee; Yoshihiko Fujisaki; Masahiro Sugihara; Lin Zhang; Javad Shahidi; Shunji Takahashi; *Journal of Clinical Oncology* 2020 381887-1896. DOI: 10.1200/JCO.19.02318

Copyright © 2020 American Society of Clinical Oncology

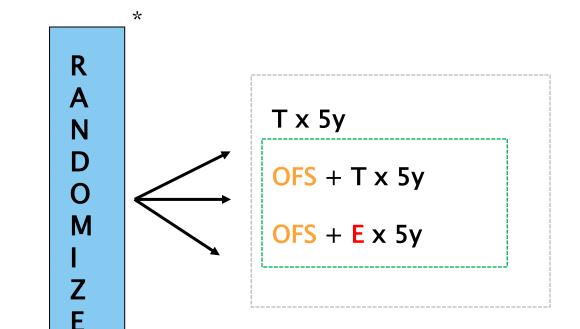
Sacituzimab govitecan in refractory, ER+ breast cancer

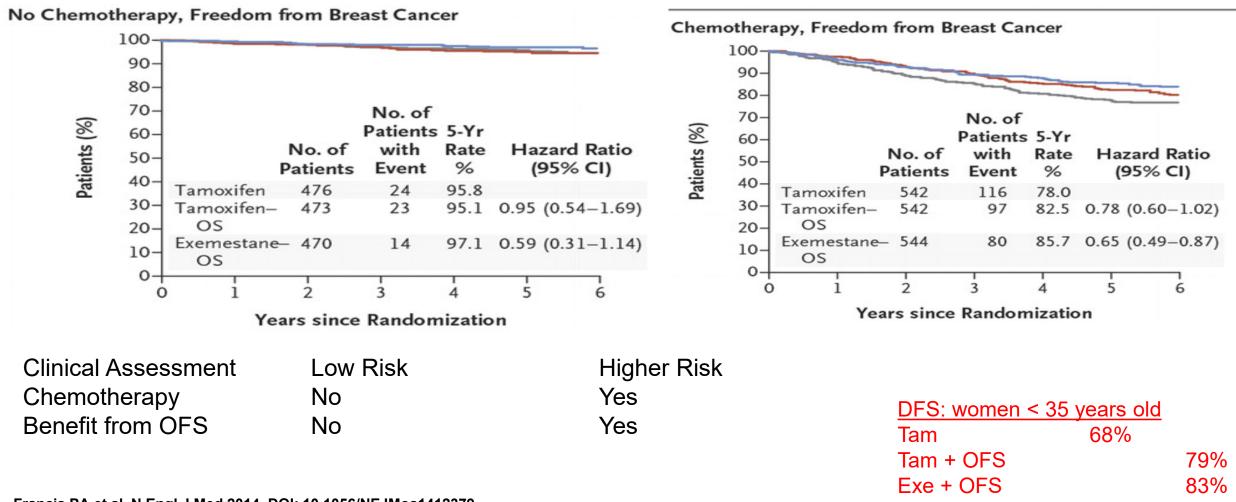
Kalinsky K, et al. Ann Oncol 2020:31:1709-18


EARLY STAGE ER+ BREAST CANCER

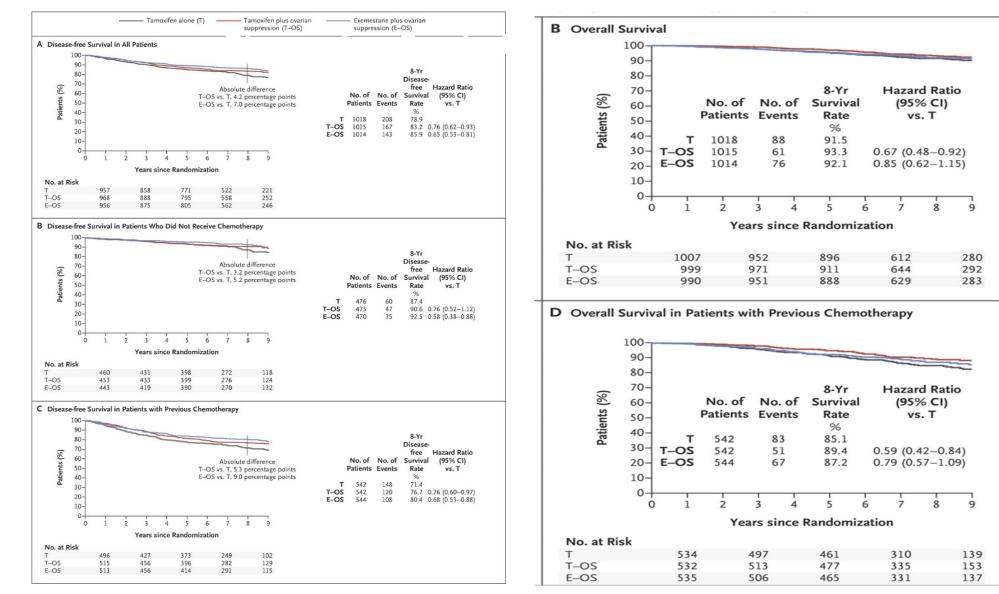
ENDOCRINE THERAPY

CHEMOTHERAPY

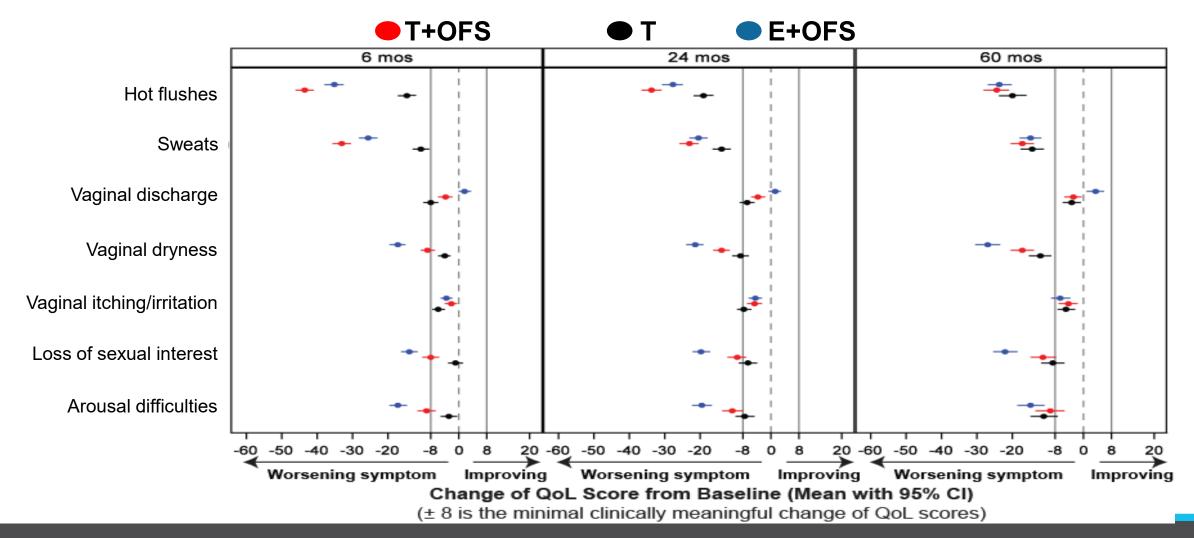

39



<u>Strata</u> Ρ Premeno. R Any CT e Α $ER \ge 10\%$ and/or m Ν $PgR \ge 10\%$ e D n 0 0 Patients with estradiol No CT р Μ (E_2) in the а premenopausal range u Ζ either after CT or without S Ε а CT

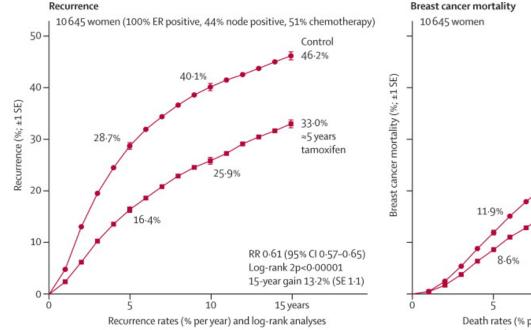

Resolving the Paradox: SOFT / TEXT – a Tale of Two Populations The role of ovarian suppression in premenopausal ER+ breast cancer

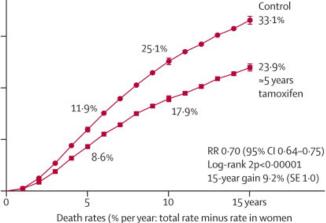
Francis PA et al. N Engl J Med 2014. DOI: 10.1056/NEJMoa1412379



PA Francis et al. N Engl J Med 2018;379:122-137.

Treatment Effect: Symptoms

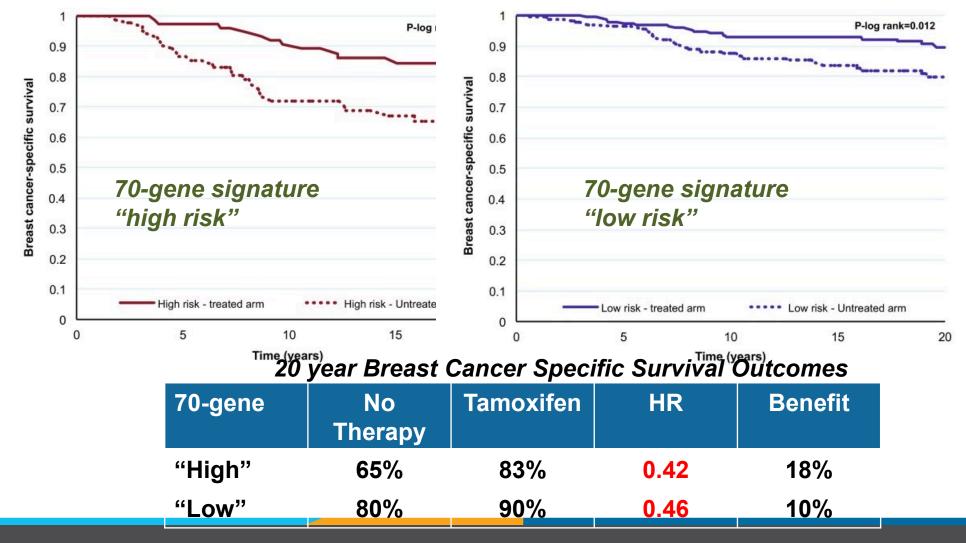

Dana-Farber Cancer Institute



Luo BJ, et al. Lancet Oncol. 2015 Jul;16(7):848-58. 43

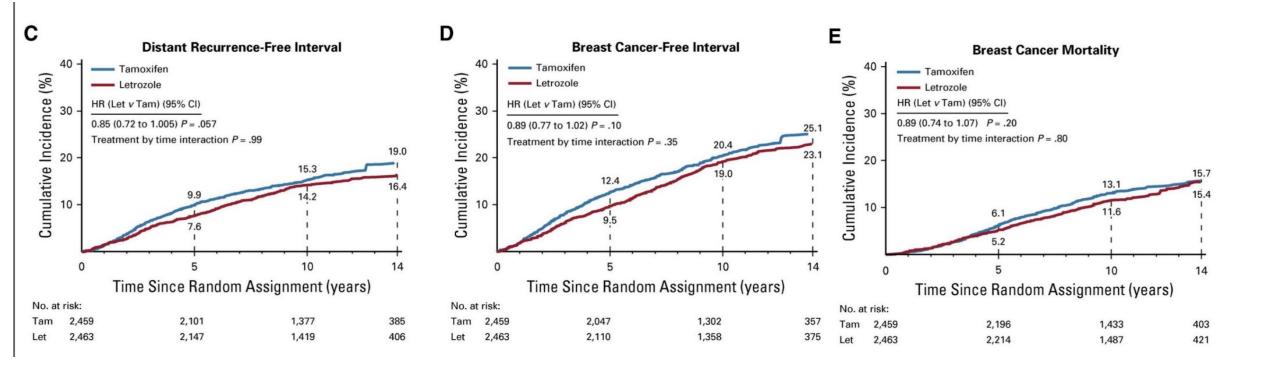
Benefits of Adjuvant Endocrine Therapy

	Allocated tamoxifen	Allocated control	Log-rank O-E	Variance of O-E	Tamoxifen : control		
(a) Dose (trend χ ₁ ² =5·4	; 2p=0·02)						
20 mg per day	1134/40962 (2.8)	1547/36557 (4-2)	-273.8	627-6		0-65 (SE 0-03)	
30 mg per day	250/5710 (4-4)	313/4199 (7.5)	-76.6	118-4		0-52 (SE 0-07)	
40 mg per day	269/10075 (2.7)	358/8120 (4-4)	-83.1	135-4		0-54 (SE 0-06)	
(b) Background chem	otherapy (χ²=7·7; 2p=0·006)				<u> </u>		
Present	837/22900 (3.7)	1057/20528 (5-1)	-170.5	430-1		0-67 (SE 0-04)	
Absent	816/33847 (2.4)	1161/28348 (4-1)	-263-1	451·3		0.56 (SE 0.04)	
(c) Background cheme	otherapy (χ²=2·1; 2p=0·1)						
Concurrent	352/7096 (5.0)	433/5817 (7-4)	-81.8	169-2	<u> </u>	0.62 (SE 0.06)	
Sequential	485/15804 (3.1)	624/14 711 (4-2)	-88.7	260-9		0-71 (SE 0-05)	
	816/33847 (2.4)	1161/28348 (4-1)	-263-1	451-3		0.56 (SE 0.04)	
Absent	010/33047 (2.4)	1101/20340 (4-1)	-203-1	451-3	녝	0.50 (3E 0.04)	
(d) Entry age (years) (trend χ²=5·5; 2p=0·02)						
<45	406/11846 (3.4)	572/10690(5.4)	-105-1	226-9		0-63 (SE 0-05)	
45-54	494/16768 (2-9)	615/15678 (3-9)	-83.8	256-8		0.72 (SE 0.05)	
55-69	712/26610 (2-7)	963/21215 (4-5)	-228.8	374-9		0-54 (SE 0-04)	
≥70	41/1512 (2-7)	68/1293 (5-3)	-15.8	22-8		0.50 (SE 0.15)	
Age unknown	0/11 (0.0)	0/0					
(e) Nodal status (tren	d x2-0.2: 2n-0.7)						
N0/N-	753/37672 (2·0)	1105/33174 (3-3)	-227.6	443-3		0-60 (SE 0-04)	
N0/N= N1-3	348/10126 (3.4)	445/8464 (5-3)	-79.8	445-5 180-1		0.64 (SE 0.06)	
N4+	355/5097 (7.0)	432/3776 (11-4)	-93.2	161-3	=	0-56 (SE 0-06)	
Other/unknown	197/3852 (5.1)	236/3462 (6.8)	-33.0	96-7		0-71 (SE 0-09)	
(f) Tumour differentia	ation (χ ² =1·1; 2p=0·3)						
Poorly differentiated	101/2022 (5.0)	170/1730 (9.8)	-38.5	58-1	_ 	0-52 (SE 0-10)	
Moderately/well	201/4285 (4-7)	251/3513 (7-1)	-48.8	99-3	- i -	0-61 (SE 0-08)	
Grade unknown	1351/50461 (2-7)	1797/43645 (4-1)	-333-2	734·9	[÷]	0-64 (SE 0-03)	
() .							
	(mm) (trend χ ₁ ² =1-2; 2p=0-3)		100 0	265.0	<u> </u>		
1-20 (T1)	647/29188 (2-2)	905/25511 (3.5)	-188-2	365-8		0-60 (SE 0-04)	
21-50 (T2)	771/20 603 (3.7)	1000/17847 (5.6)	-169-0	403-5		0-66 (SE 0-04)	
>50 (T3/T4)	78/1462 (5·3)	110/1337 (8-2)	-17-2	36-9		0-63 (SE 0-03)	
Other/unknown	157/5495 (2.9)	203/4173 (4·9)	-40-5	78-8	-0	0-60 (SE 0-09)	
(h) Site of first recurre	ence (χ ₂ =2·1; p=0·4)						
Isolated local	205/34320 (0.6)	317/29618(1-1)	-74.6	121-7	- 	0-54 (SE 0-07)	
Contralateral	237/54952 (0.4)	327/47539 (0-7)	-65.1	136-8	÷	0-62 (SE 0-07)	
Distant/multiple	1098/54960 (2.0)	1417/47560 (3-0)	-262.4	558-8		0.63 (SE 0.03)	
Unknown	113/56714 (0.2)	157/48827 (0-3)	-31.4	64-1	œ́	0.61 (SE 0.10)	
() The start	testing (second de la						
	isation (years) (trend χ ₁ ² =43·7; 2		170.2	220.2		0.47 (55.0.05)	
0-1	343/10 229 (3.4)	676/9825 (6.9)	-175-3	230-2		0-47 (SE 0-05)	
2-4	548/13 434 (4.1)	790/11894 (6.6)	-168.0	304-9		0-58 (SE 0-04)	
5-9	454/17 258 (2.6)	499/14372 (3-5)	-82.5	217-6	H	0.68 (SE 0.06)	
≥10	308/15 631 (2.0)	253/12610 (2.0)	-7.7	128-8		0-94 (SE 0-09)	
Total	1653/56 747 (2·9% per year)	2218/48876 (4·5% per year)	-433.5	881-4	Ø	0-611 (SE 0-027; 95% Cl 0-57–0-65)	
⊕ 99% or → 95% 0	ls					, , , , , , , , , , , , , , , , , , ,	
					25 0.5 1.0 2.0		
				Tamo	difen better Tamoxi	ifen worse	

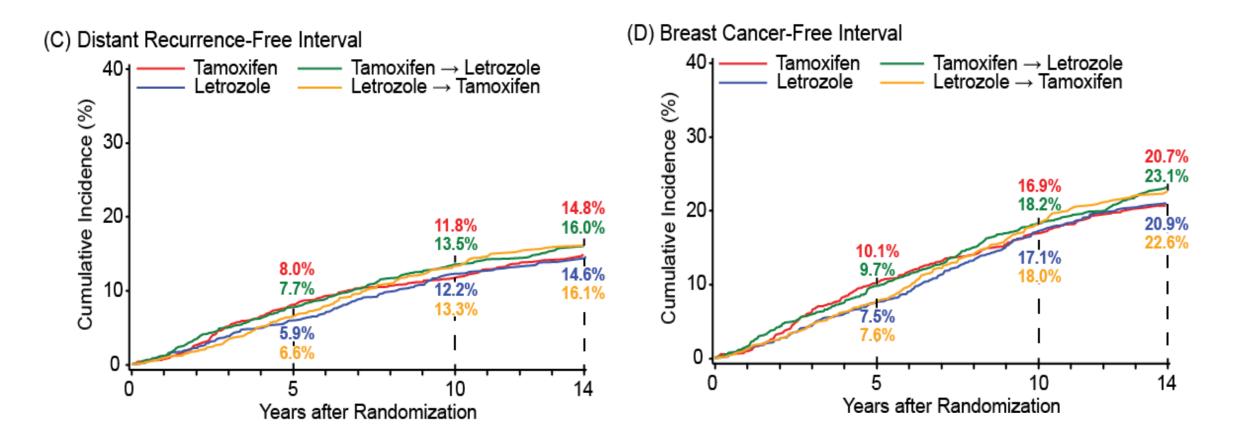

without recurrence) and log-rank analyses

EBCTCG Investigators. Lancet 2011;378:771-84.

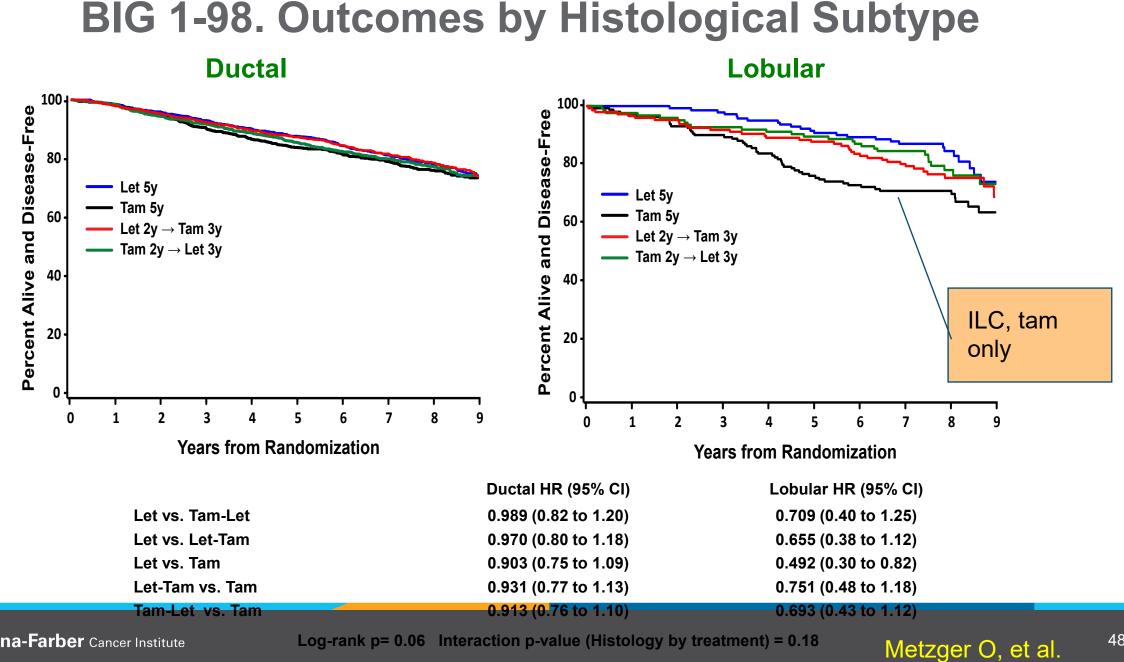
Adjuvant Tamoxifen: Effect by Genomic Subtype STO-3 Trial 1976-1990, T<3 cm, N0, postmenopausal

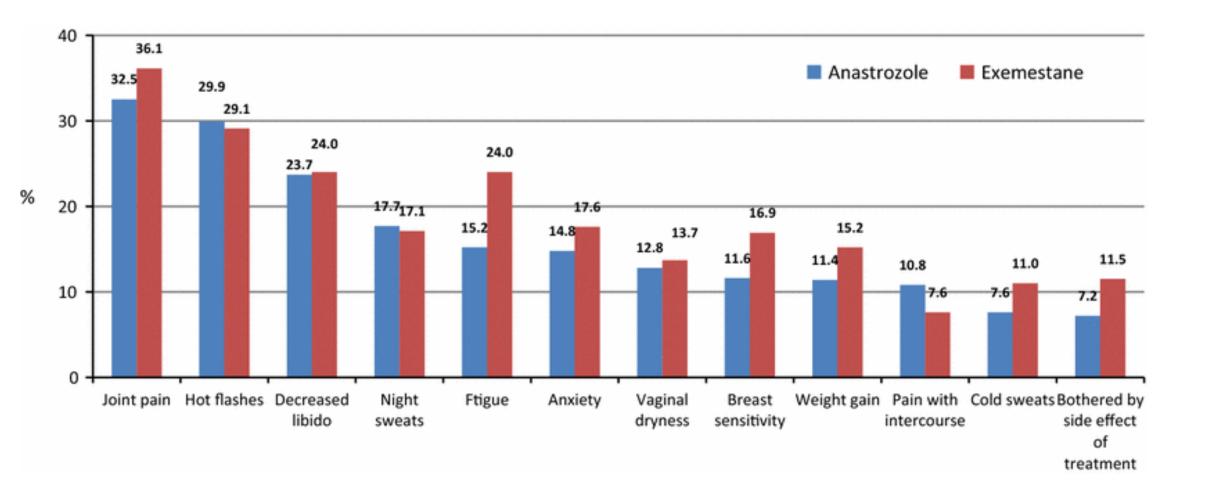

Tamoxifen (2-5 years) vs nil

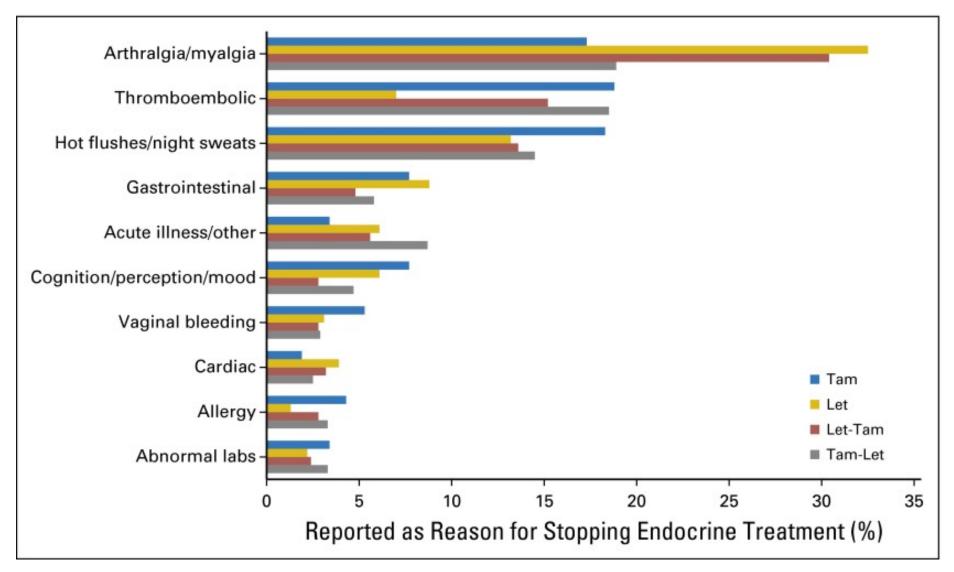
Dana-Farber Cancer Institute


Van't Veer LJ, et al. Breast Cancer Res Treatment 2017;166:593-601 ⁴⁵

BIG 1-98. Long Term Outcomes Al vs Tamoxifen

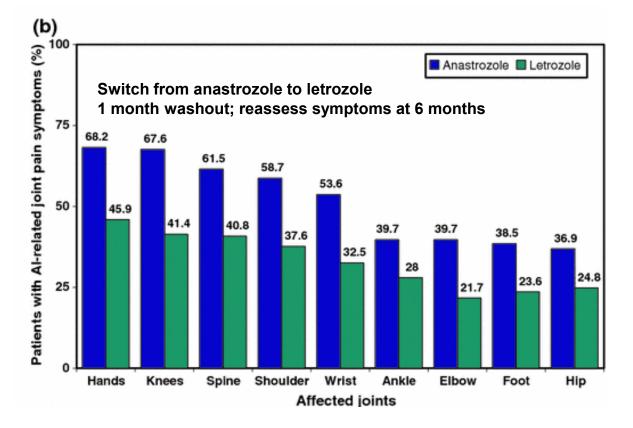



BIG 1-98. Long Term Outcomes AI vs Tamoxifen vs Sequential


New onset of symptoms with adjuvant AI therapy: MA27 study

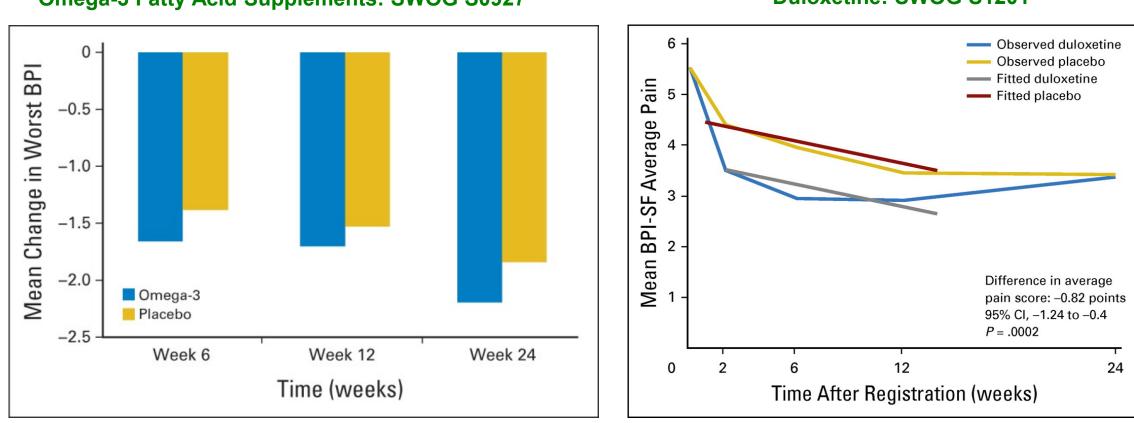
Wagner LI, et al. Breast Cancer Res Treatment 2018;169:537-548

Reasons for Stopping Endocrine Therapy in BIG 1-98



Chirgwin JH et al. J Clin Oncol 2016:34:2452-2459 ⁵⁰

Switching ET may address symptoms affecting persistence/compliance


	Number of switches	% successful switches
Total	82	65.9%
Tamoxifen → Al	36	58.3%
AI → tamoxifen	17	76.5%
AI → AI	29	69.0%

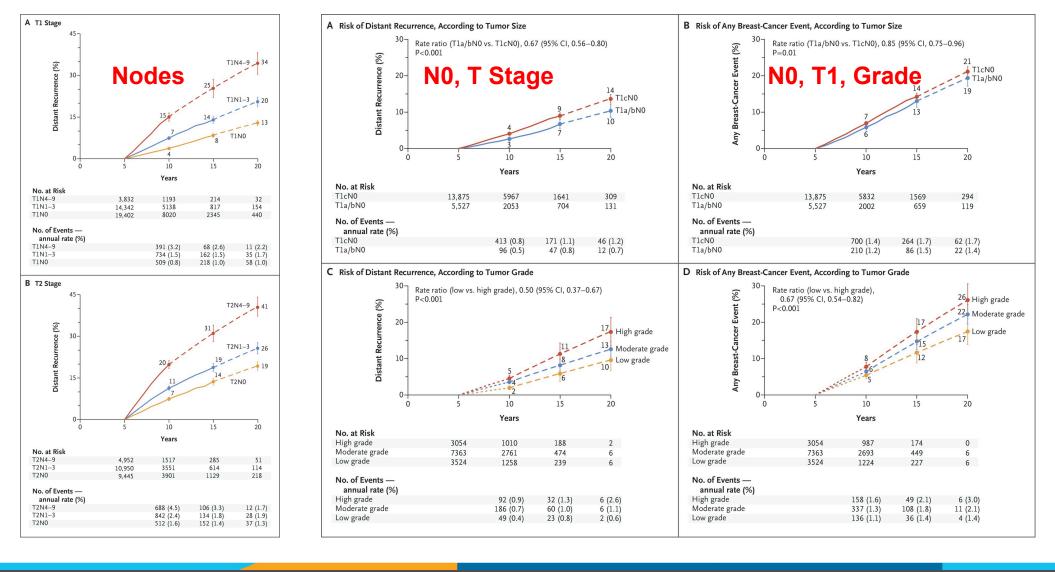
Guth U, et al. Breast Cancer Res Treatment 2011;129:799

Briot K, et al. Breast Cancer Res Treatment 2010;120:127-134.

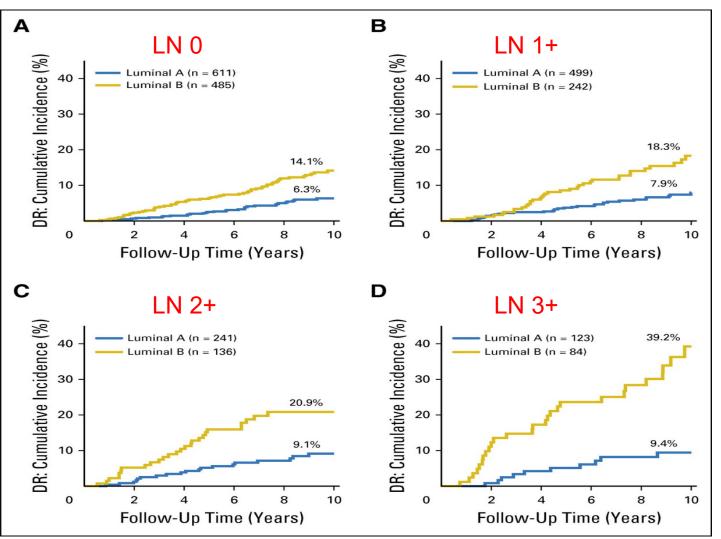
Interventions for AI-associated Arthralgias

Omega-3 Fatty Acid Supplements: SWOG S0927

Hershman DL, et al. J Clin Oncol 2015;33:1910-1917.


Duloxetine: SWOG S1201

Henry NL, et al. J Clin Oncol 2018; 36: 326-332.

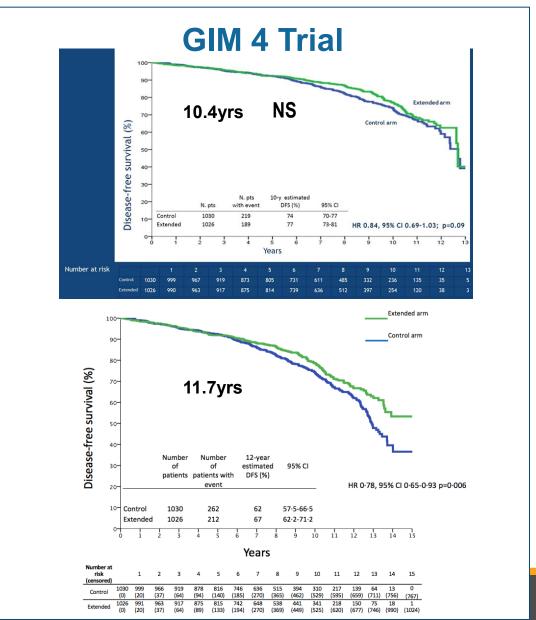

Duration of endocrine therapy

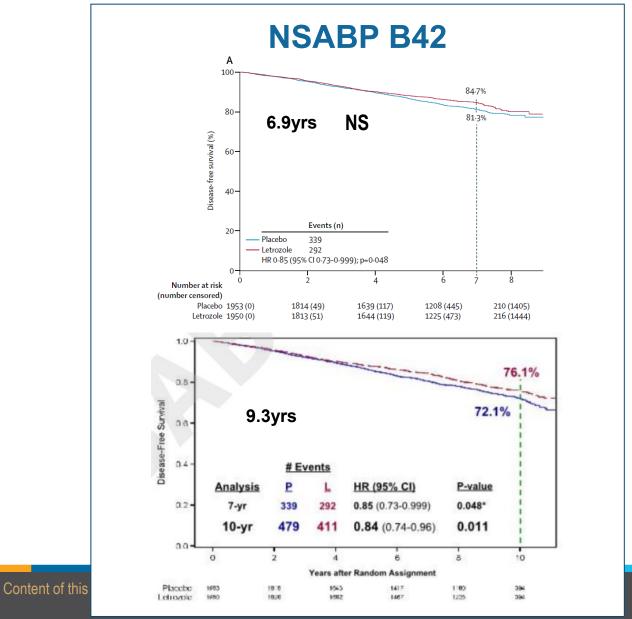
Association of Nodal Status Tumor Diameter and Tumor Grade with the Risk of Distant Recurrence or Any Breast-Cancer Event during Years 5 to 20 of the Study.

LN Status, Genomic Subtype and Recurrence Risk after 5 years of ET: Danish Cohort Study

Lænkholm; et al J Clin Oncol 2018;36:735-740.

Trial	Treatments							De Facto Comparisons (years)	HR for DFS	Exposed to Al Years 0-5, %				
Year after diagnosis	1	2	3	4	5	6	7	8	9	10	15			
Studies of tamoxifen after 5 years of tamoxifen														
ATLAS					*							5 <i>v</i> 10	0.75- 0.99†	0
ATTOM					*							5 <i>v</i> 10	0.75- 0.99†	0
Studies of Al after 5 years of tamoxifen														
MA.17					*							5 v 10	0.57	0
NSAPB B-33					*							5 <i>v</i> 10	0.68	0
ABCSG 6a‡					*							5 v 8	0.62	0
Studies of ex	Studies of extended AI after 5 years therapy that included AI													
DATA			*									6 <i>v</i> 9	0.79	100
NSABP B-42					*							5 v 10	0.85	100
MA.17R										§		10 <i>v</i> 15	0.66	100
Studies of optimal duration or dosing in years 5 to 10														
BOOG 2006-05 IDEAL					*							7.5 <i>v</i> 10	0.92	88
ABCSG 16					*							7 v 10	1.007	49
SOLE					*							Continuous v intermittent	1.08	81


TRIALS of EXTENDED ADJUVANT ENDOCRINE THERAPY


Strategy	DFS HR Ranges	EBCTCG DFS HR
Tam → Tam	0.75	
Tam → AI	0.57- 0.68	0.67
AI \pm Tam \rightarrow AI	0.55 – 0.85	0.82
$AI \rightarrow AI$		0.76
7+ years $→$ 10	0.92 – 1.08	

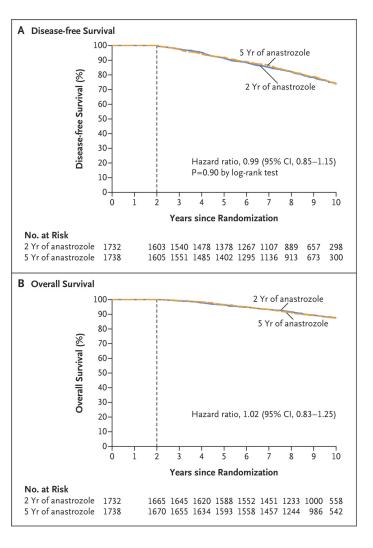
Burstein HJ, Griggs JJ, et al. J Clin Oncol 2019;37:423-438

56

Late benefit of extended Al

Del Mastro ASCO 2019; Del Mastro ESMO 2021; Mamounas Lancet Oncol 2019; Mamounas SABCS 2019

EBCTCG: Extended therapy benefit by N status Node-negative N > 4+

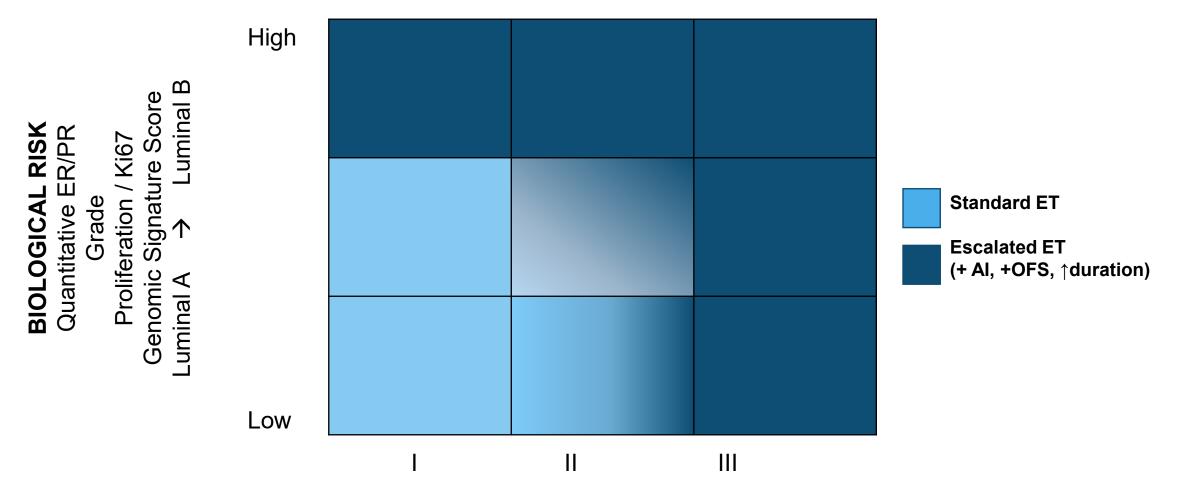

10620 women 1621 women 6919 women 50 50 50 RR 0.82 (0.71–0.95) **RR 0.74 (0.64–0.85) RR 0.71 (0.56–0.89)** Logrank 2p = 0.009Logrank 2p = 0.00003. 5-y gain 3.8% (Cl 2.2 - 5.4) Logrank 2p = 0.00340 40 40 5-y gain 1.1% (Cl 0.1 - 2.0) 5-y gain 7.7% (Cl 3.9 - 11.6) 30 30 30 Δ 0.9% Δ 3.8% Δ7.7% Control 20 **19**·**9**% Control 20 20 Control % 95% CI 6·2% 5·1% % 95% CI % **12**.5% 95% CI **12**·2% **8**·7% 10 ΑΙ 10 10 ΑΙ 0 0 Ω 10 years 8 9 5 6 3 5 years 3 5 years 4 Ω

Dana-Farber Cancer Institute

Gray, et al. SABCS 2018

58

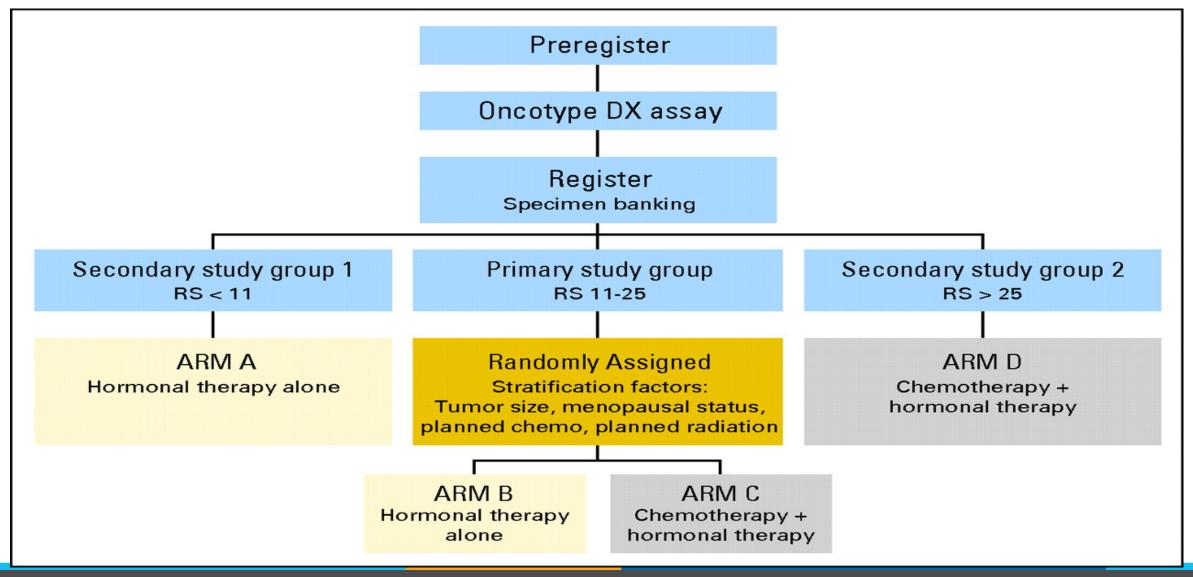
ABCSG-16 "SALSA" Study of 7 vs 10 years AI therapy



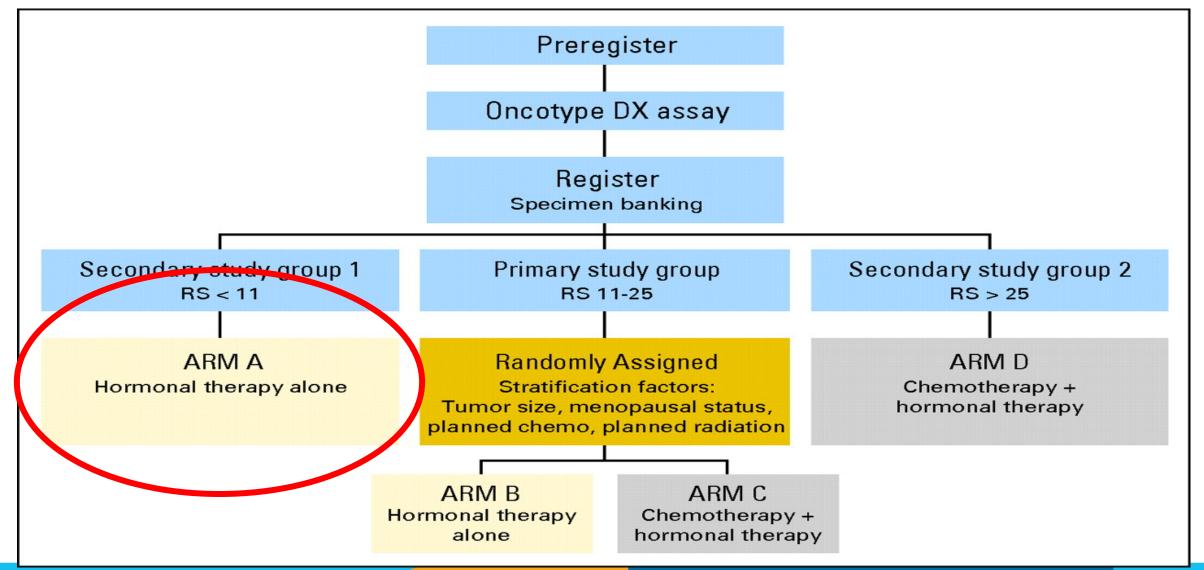
Node-negative: 2/3^{rds}

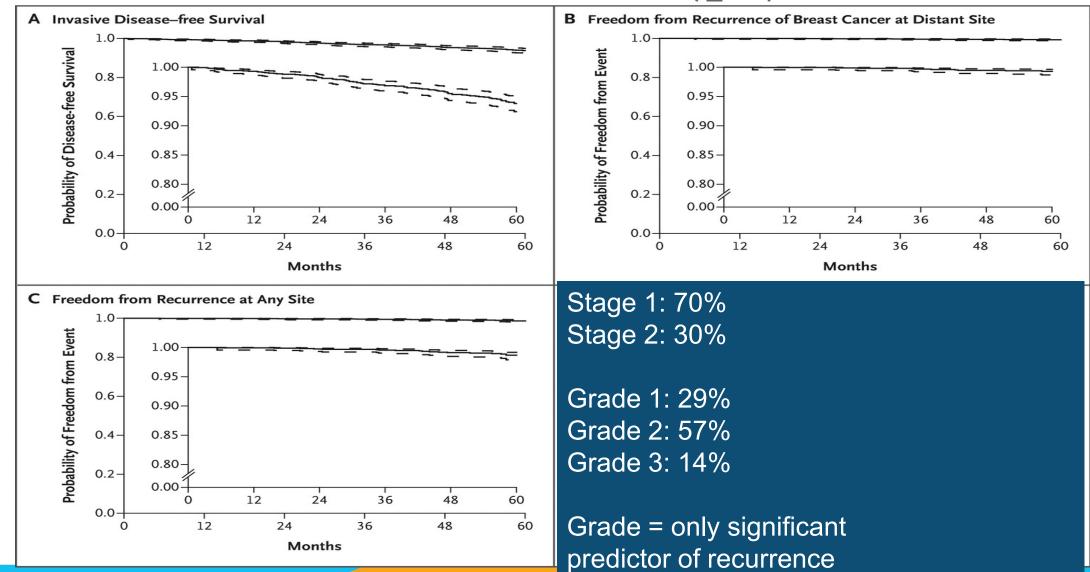
M Gnant et al. N Engl J Med 2021;385:395-405.

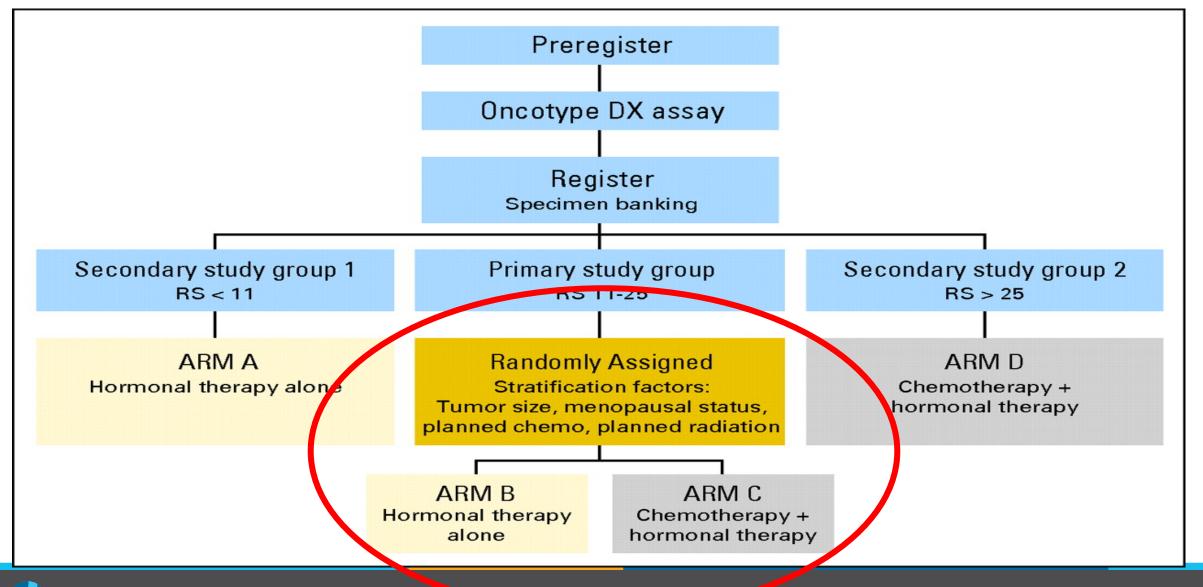
ENDOCRINE THERAPY RECOMMENDATIONS: TAILORED by BIOLOGY and STAGE

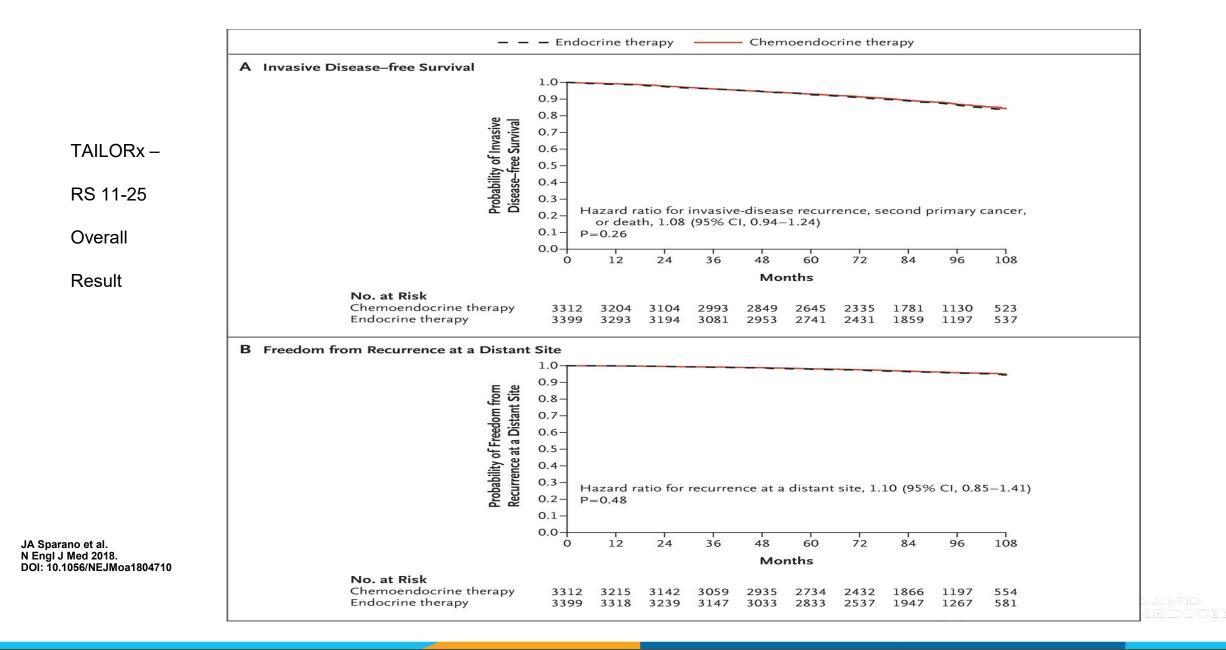


ANATOMIC STAGE

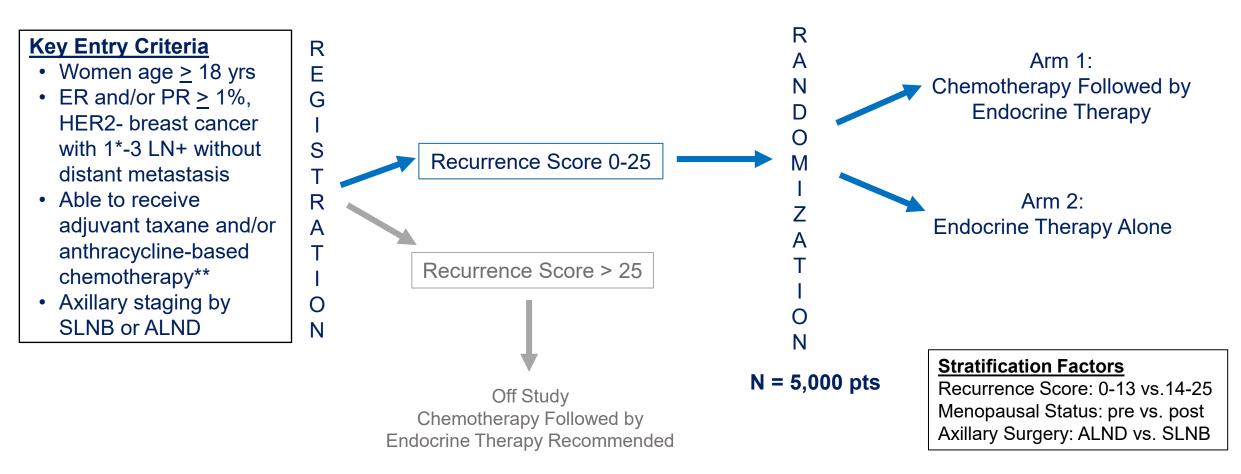

DECISION MAKING: ADJUVANT CHEMOTHERAPY FOR ER+ BREAST CANCER


TAILORx


TAILORx


TAILORx: Outcomes for node-negative, ER positive, HER2 negative cancers with low recurrence score (≤ 10)

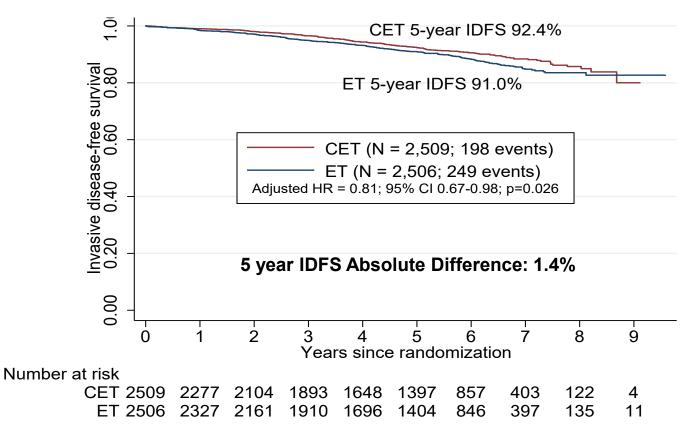
TAILORx



parana, Farber anged and to head to head the paraneters and the parameters and the parame

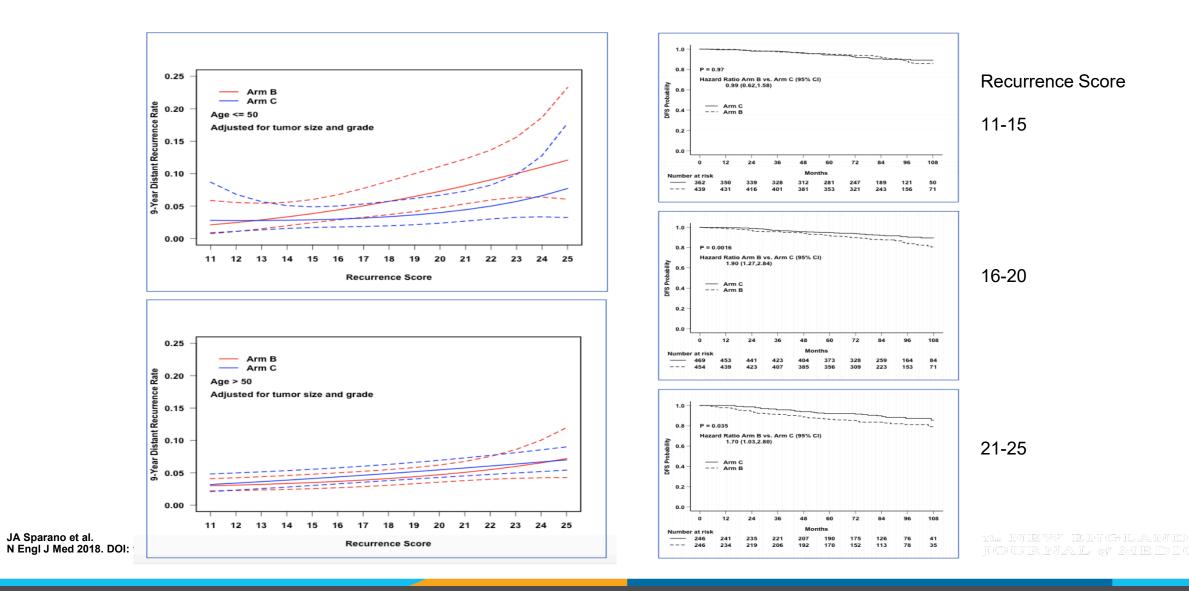
Dana-Farber Cancer Institute

RxPONDER Schema



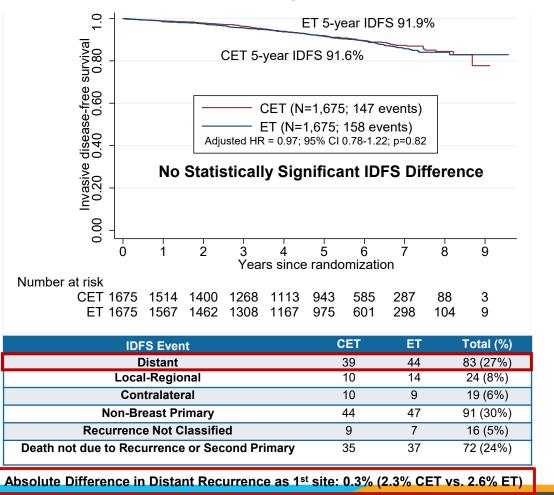
* After randomization of 2,493 pts, the protocol was amended to exclude enrollment of pts with pN1mic as only nodal disease.

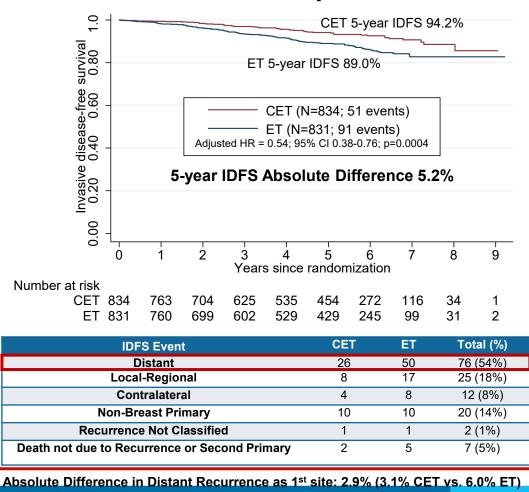
** Approved chemotherapy regimens included TC, FAC (or FEC), AC/T (or EC/T), FAC/T (or FEC/T). AC alone or CMF not allowed.


ALND = Axillary Lymph Node Dissection, SLNB = Sentinel Lymph Node Biopsy

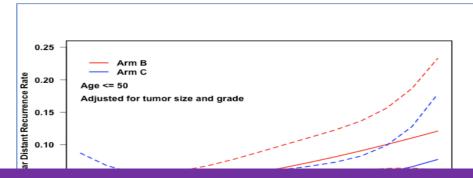
IDFS in Overall Population by Treatment Arm

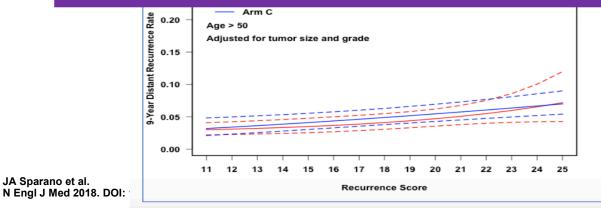
CET = Chemotherapy + Endocrine Therapy; ET = Endocrine Therapy Alone

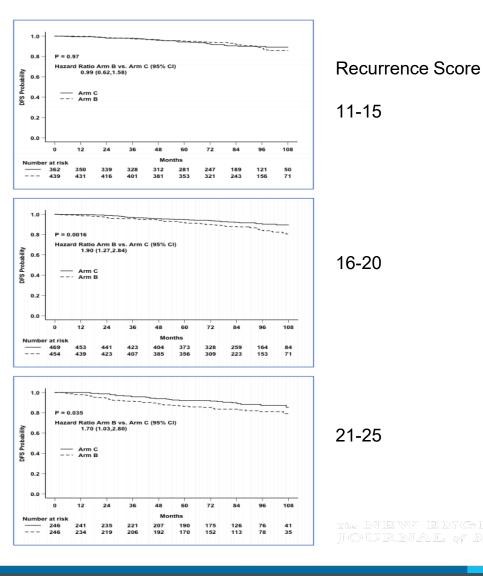

447 observed IDFS events (54% of expected at final analysis) at a median follow-up of 5.1 years



IDFS Stratified by Menopausal Status


Postmenopausal


Premenopausal



Dana-Farber Carhisrplestitutation is the intellectual property of the author/presenter. Contact him at kkalins@emory.edu for permission to reprint and/or distribute.

Q: HOW MUCH IS DUE TO OFS FROM CHEMO? A: A lot. All?

Dana-Farber Cancer Institute

Population	Likelihood of chemotherapy – induced amenorrhea	Predicted benefit from chemotherapy if hypothesis is correct
Premenopausal <u><</u> Age 40	Low	None
Premenopausal Age 41 – 45	Moderate	Yes; moderate
Premenopausal Age 46 – 50	High	Yes; high
Postmenopausal Age < 50	N/A	None

Population	Likelihood of chemotherapy – induced amenorrhea	Predicted benefit from chemotherapy if hypothesis is correct	Hazard Ratio for chemotherapy iDFS / DRFI		
Premenopausal <u><</u> Age 40	Low	None	1.0 / 1.0		
Premenopausal Age 41 – 45	Moderate	Yes; moderate	2.0 / 1.7		
Premenopausal Age 46 – 50	High	Yes; high	3.0 / 3.0		
Postmenopausal Age < 50	N/A	None	0.9 / 0.7		

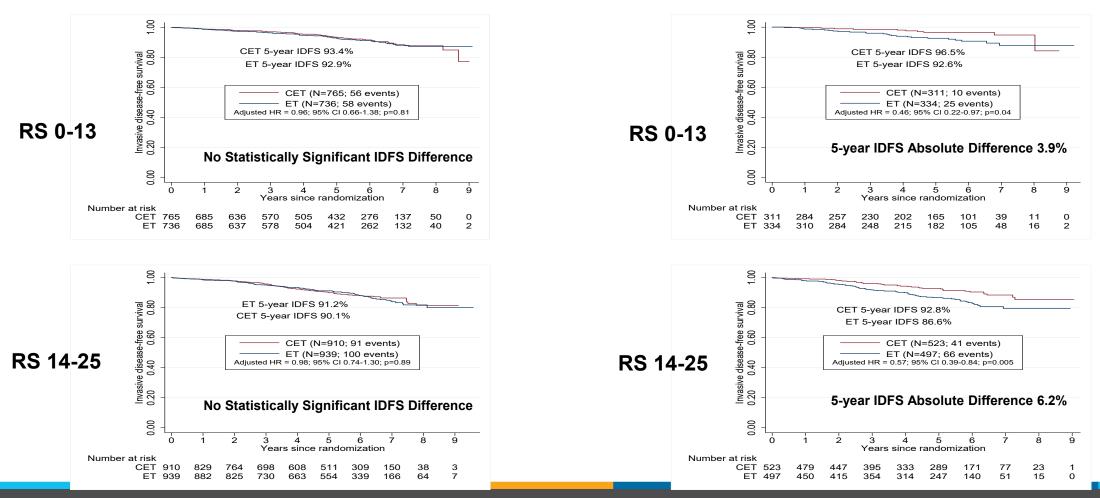
Effect of Age and Menopausal Status on Chemotherapy Benefit.

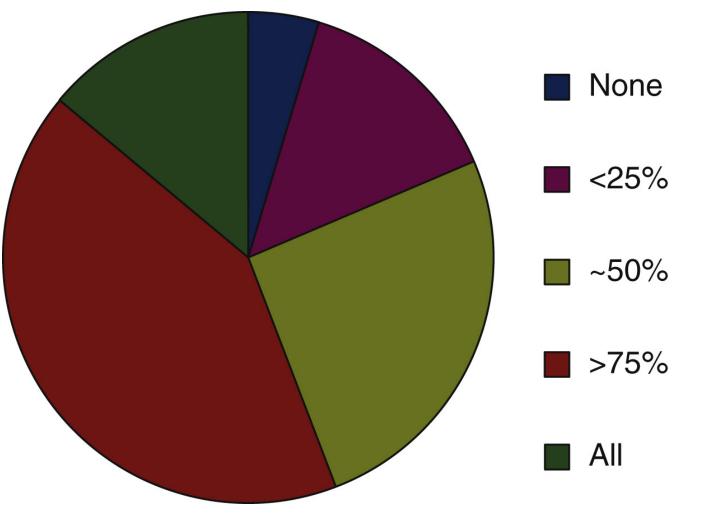
Subgroup	No. of Patients	No. of Events	Hazard Ratio for Recurrence, Second Primary Cancer, or Death (95% CI)	No. of Distant Recurrences	Hazard Ratio for Distant Recurrence (95% CI)
≤40 Yr of age	203	35		12	
41–45 Yr of age	441	51		21	_
46–50 Yr of age					
Before menopause	630	69		33	
After menopause	141	15		5 —	
51–55 Yr of age					
Before menopause	287	34		13 .	
After menopause	472	54		19	
56–60 Yr of age	826	94		28	
61–65 Yr of age	710	109		32	
>65 Yr of age	628	117		31	
			0.25 0.50 1.00 2.00 4.00 Lower Event Lower Event Rate with Rate with Endocrine Chemo- Therapy endocrine Alone Therapy	0.12	5 0.250 0.500 1.000 2.000 4.000 Lower Event Lower Event Rate with Rate with Endocrine Chemo- Therapy endocrine Alone Therapy

JA Sparano et al. N Engl J Med 2019. DOI: 10.1056/NEJMoa1904819

112 NEW ENGLAND JOURNAL of MEDICINE

Hypothesis: benefits of chemotherapy in women <u><</u> age 50 with recurrence scores 16 to 25 *are due to endocrine consequences of chemotherapy*

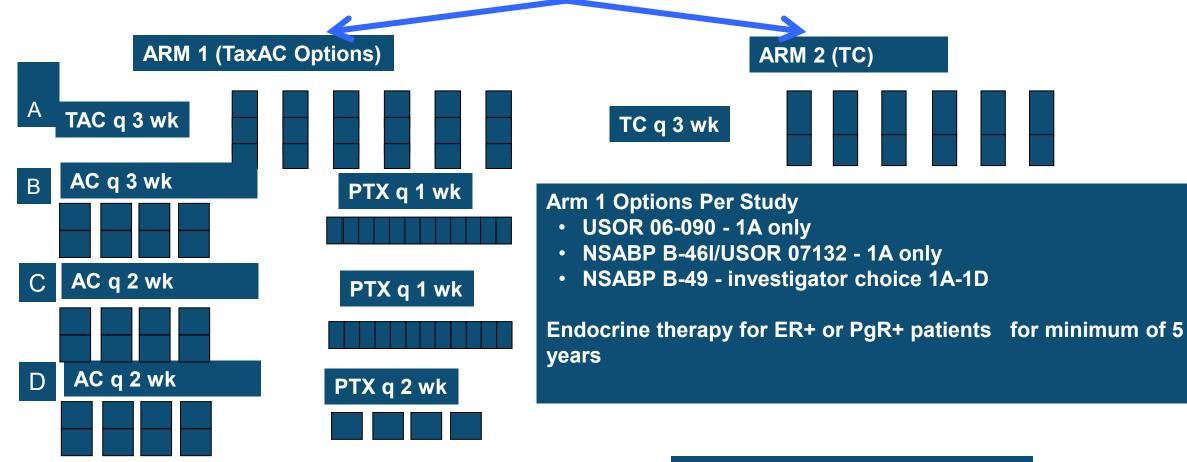

Population	Likelihood of chemotherapy – induced amenorrhea	Predicted benefit from chemotherapy if hypothesis is correct	Hazard Ratio for chemotherap iDFS / DRFI	y
Premenopausal ≤Age 40	Low	None	1.0 / 1.0	No benefit when endocrine effects are neutral
Premenopausal Age 41 – 45	Moderate	Yes; moderate	2.0 / 1.7	Substantial benefit when endocrine
Premenopausal Age 40 – 45	High	Yes; high	3.0 / 3.0	effects are likely
Postmenopausal Age < 50	N/A	None	0.9 / 0.7	No benefit when endocrine effects are neutral


IDFS Stratified by Recurrence Score and Menopausal Status

Premenopausal

Postmenopausal

Survey: Percentage of benefit due to chemotherapy-induced menopause in premenopausal women with recurrence score < 25

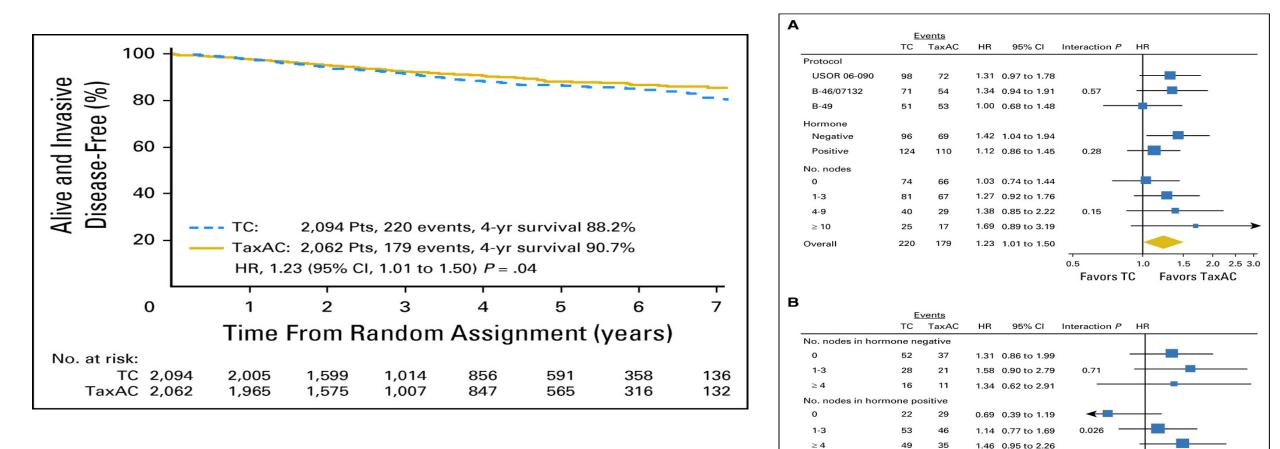

itute Annals of Oncology 2021 321216-1235DOI: (10.1016/j.annonc.2021.06.023) Copyright © 2021 <u>Terms and Conditions</u>

ABC Trials Schema (nee TC/TAC, B-46I, B-49)

Node+ or High Risk Node-Negative

Stratification Variables

(0, 1-3, 4-9, 10+); Hormone Receptor (ER or PgR+, Both Negative)



Designed to prove noninferiority of nonanthracycline arm

Number of + Nodes

Anthracyclines in Early Breast Cancer The ABC Trials—USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49

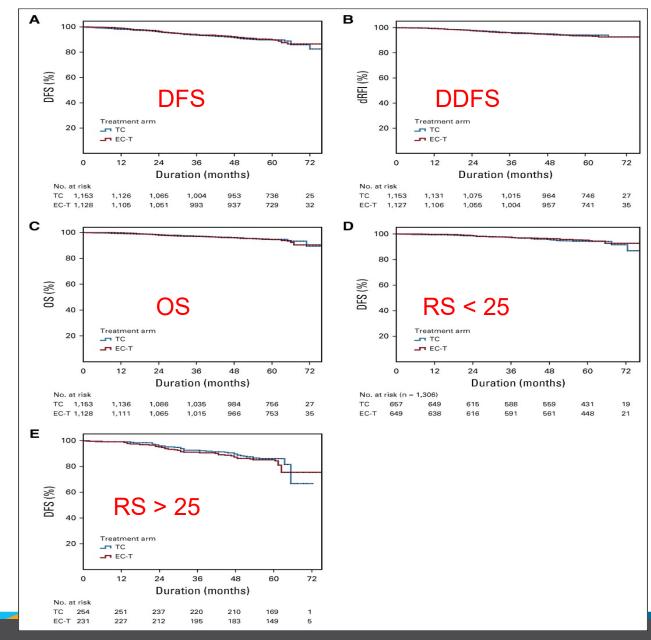
Blum JL, et al. J Clin Oncol 2017;35:2647-55.

220

179

1.23 1.01 to 1.50

0.5 0.6


Favors TC

1.0

Overall

1.5 2.0 2.5 3.0 Favors TaxAC

EC/T vs TC x 6 West German PlanB Trial

Adjuvant Chemotherapy for ER+ breast cancer

- Recurrence score testing is the norm for node-negative tumors and tumors with limited (e.g. 1 or 2 + SLN)
- Data limited for extremes of stage
 - Tumors < 1 cm
 - Tumors > 5 cm
 - Multi LN positive
- Unlikely that there is substantial chemo benefit when genomic tests are in very low range

monarchE Study Design

 $N = 5637^{a}$

Prior chemotherapy

Menopausal status

Stratified for:

Region

HR+, HER2-, high risk early breast cancer

High risk defined as:

- ≥4 positive axillary lymph nodes (ALN) OR
- 1-3 ALN and at least 1 of the below:
 - Tumor size ≥5 cm
 - Histologic grade 3
 - Centrally tested Ki67 ≥20%

Other criteria:

- Women or men
- Pre-/ postmenopausal
- With or without prior adjuvant/neoadjuvant chemotherapy
- No distant metastases

Primary Objective: Invasive disease-free survival (STEEP criteria) **Key Secondary Objectives**: Distant relapse-free survival, Overall survival, Safety, Patient reported outcomes, and Pharmacokinetics

Abemaciclib (150mg twice daily for up to 2 years^b) + Standard of Care Endocrine Therapy (5 to 10 years as clinically indicated)

> Standard of Care Endocrine Therapy^b (5 to 10 years as clinically indicated)

Endocrine therapy of physician's choice

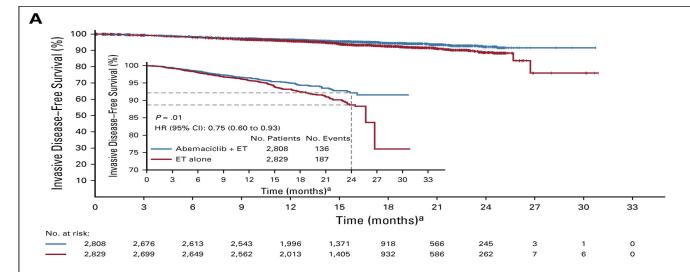
^aRecruitment from July 2017 to August 2019; ^bTreatment period = first 2 years on study treatment after randomization

High Risk Disease Characteristics mono

		Abemaciclib + ET N = 2808, n (%)	ET Alone N = 2829, n (%)
Number of positive	0	7 (0.2)	7 (0.2)
Number of positive	1-3	1119 (39.9)	1143 (40.4)
lymph nodes	≥4 or more	1680 (59.8)	1679 (59.3)
	Grade 1	209 (7.4)	215 (7.6)
Histological grade	Grade 2	1373 (48.9)	1395 (49.3)
	Grade 3	1090 (38.8)	1066 (37.7)
Primary tumor size	<2 cm	780 (27.8)	765 (27.0)
by pathology following definitive	2-5 cm	1369 (48.8)	1419 (50.2)
surgery	≥5 cm	610 (21.7)	612 (21.6)
	<20%	953 (33.9)	973 (34.4)
Central Ki-67	≥20%	1262 (44.9)	1233 (43.6)
	Unavailable	593 (21.1)	623 (22.0)
Progesterone	Positive	2421 (86.2)	2453 (86.7)
receptor status	Negative	298 (10.6)	294 (10.4)

Note: where values do not add up to 100%, remaining data are missing, unavailable or could not be assessed

Additional high risk eligibility criteria for patients with 1-3 nodes	Abemaciclib + ET N = 2808, n (%)	ET Alone N = 2829, n (%)
Tumor size ≥5 cm (pathology) ª	249 (8.9)	236 (8.3)
Tumor size ≥5 cm (imaging) ^{a, b}	152 (5.4)	158 (5.6)
Histologic grade 3 ª	629 (22.4)	618 (21.8)
Central Ki-67 ≥20% only ^c	216 (7.7)	237 (8.4)


^a Patients could be counted in more than one of the sub-categories under 1-3 positive lymph nodes; ^b Patients who received neoadjuvant chemotherapy may have been eligible based on imaging tumor size prior to receiving systemic therapy; ^o Patients not double counted; patients did not have tumor size ≥5 cm (either by pathology or imaging) or histologic grade 3

MONARCHe

iDFS

Johnston S, JCO 2020 DOI: 10.1200/JCO.20.02514

Number of IDFS events						
Abemaciclib + ET	ET Alone					
136	187					
p = 0.0096 (2-sided) HR (95% Cl): 0.747 (0.598, 0.932)						
Risk of invasive reduced by 2						

В					Favors Favors	
	Abema	ciclib + ET	ET	Alone	Abemaciclib + ET ET Alone	
Subgroup Analyzed ^b	No.	Events	No.	Events		HR (95% CI)°
Overall	2,808	136	2,829	187	⊢ ◆− <u></u> ¦	0.75 (0.60 to 0.93)
Region North America/Europe	1,470	62	1,479	89		0.72 (0.52 to 1.00)
Asia	574	28	582	30		0.93 (0.55 to 1.55)
Other	764	46	768	68		0.69 (0.48 to 1.00)
Menopausal status					1 × 1	
Premenopausal	1,221	46	1,232	72	⊢	0.63 (0.44 to 0.92)
Postmenopausal	1,587	90	1,597	115	' <u>⊢</u>	0.82 (0.62 to 1.08)
Prior chemotherapy			.,		1 • 11	,
Neoadjuvant	1,039	76	1.048	111		0.69 (0.52 to 0.93)
Adjuvant	1,642	52	1,647	69		0.77 (0.54 to 1.10)
Age, years						
< 65	2,371	111	2,416	164		0.69 (0.54 to 0.88)
≥ 65	437	25	413	23		1.11 (0.63 to 1.96)
Race						
White	1,947	93	1,978	138		0.69 (0.53 to 0.90)
Asian	675	31	669	37		0.82 (0.51 to 1.33)
All others	146	11	140	11		1.04 (0.45 to 2.40)
Baseline ECOG PS						
0	2,405	110	2,369	159		0.69 (0.54 to 0.88)
1	401	26	455	27		1.14 (0.66 to 1.95)
Primary tumor size, cm						
< 2	780	31	765	48		0.63 (0.40 to 0.99)
2-5	1,369	67	1,419	86	· • • • • • • • • • • • • • • • • • • •	0.83 (0.60 to 1.14)
≥ 5	610	35	612	52	<u> </u>	0.68 (0.44 to 1.04)
No. of positive lymph nodes						
1-3	1,119	42	1,143	60	<u>}</u>	0.71 (0.48 to 1.06)
4-9	1,105	47	1,125	72		0.69 (0.48 to 0.99)
10	575	45	554	55		0.79 (0.53 to 1.17)
Histologic grade						
G1	209	8	215	6		1.35 (0.47 to 3.89)
G2	1,373	55	1,395	81		0.71 (0.50 to 0.99)
G3	1,090	67	1,066	88	→	0.76 (0.55 to 1.04)
Progesterone receptor						
Negative	298	30	294	38		0.81 (0.50 to 1.30)
Positive	2,421	104	2,453	146		0.73 (0.57 to 0.94)
Tumor stage		1.000				to contrast and most in the second
IIA	323	11	353	16		0.73 (0.34 to 1.57)
IIB	389	17	387	19	, ⊢ ● <u>i</u> I	0.92 (0.48 to 1.78)
IIIA	1,027	41	1,024	61		0.68 (0.46 to 1.02)
IIIC	950	59	962	84		0.71 (0.51 to 0.99)

0.5

1

2

з

MONARCHe

Johnston S, JCO 2020 DOI 10.1207/00.2022513 er Cancer Institute

iDFS

Α											

Invasive Disease-Free Survival $\binom{9}{6}$ = 0.06 $\frac{1}{6}$ = 0.06 $\frac{1}{6}$ = 0.06 $\frac{1}{6}$ = 0.06 $\frac{1}{6}$ = 0.01 $\frac{1}{6$								1			
asive Disease - Free Survival $P = 000 \frac{100}{100} + 0000 \frac{100}{100} + 000 \frac{100}{100} + 000 \frac{100}{100} + 000 \frac{100}$								I			
			-								
0 - 3 90											
-1 50 - -1 85 - P = .0	1			į.	L						
HR (9	5% CI): 0.75 (0	.60 to 0.93) No. Patie	nte No	Evente							
	Abemaciclib +			36							
	ET alone	2,829	9 1	87							
	6 9	12 15	18	21 24	27 30	33					
		Time	(month	s) ^a							
0 3	6	9	12	15	18	21	24	27	30	33	
				Time	(months)a					
No. at risk:		- 40		4 074		500	0.45				
2,808 2,676 2,829 2,699			996 013	1,371 1,405	918 932	566 586	245 262	3 7	1 6	0	
В					Fa	ivors	Favors	s			
	Abemad	clib + ET	ET	Alone		ciclib + ET	ET Alo				
Subgroup Analyzed ^b	No.	Events	No.	Events						HR (95% C	I)°
Overall	2,808	136	2,829	187			li -			0.75 (0.60 to (0.93)
Region North America/Europe	1,470	62	1,479	89	H	•	4			0.72 (0.52 to 1	1.00)
Asia Other	574 764	28 46	582 768	30 68				4		0.93 (0.55 to 1 0.69 (0.48 to 1	
Menopausal status					. '		1				
Premenopausal Postmenopausal	1,221 1,587	46 90	1,232 1,597	72 115			4			0.63 (0.44 to 0 0.82 (0.62 to 1	
Prior chemotherapy	1,039	76	1 0 4 9	111			1			0.69 (0.52 to (0.021
Neoadjuvant Adjuvant	1,642	52	1,048 1,647	69	r		÷-			0.77 (0.54 to 1	
Age, years < 65	2,371	111	2,416	164			1			0.69 (0.54 to (1.88)
≥ 65	437	25	413	23		' 	-i •	—		1.11 (0.63 to 1	
Race White	1,947	93	1,978	138			1			0.69 (0.53 to (0.90)
Asian	675	31	669	37	H	• • •				0.82 (0.51 to 1	1.33)
All others Baseline ECOG PS	146	11	140	11				1		1.04 (0.45 to 2	2.40)
0 1	2,405 401	110 26	2,369 455	159 27						0.69 (0.54 to 0 1.14 (0.66 to 2	
Primary tumor size, cm											
< 2 2-5	780 1,369	31 67	765 1,419	48 86			1			0.63 (0.40 to 0 0.83 (0.60 to 1	
≥ 5	610	35	612	52	⊢		÷l'			0.68 (0.44 to 1	
No. of positive lymph nodes 1-3	1,119	42	1,143	60	⊢	_	+			0.71 (0.48 to 1	1.06)
4-9 10	1,105 575	47 45	1,125 554	72 55	í-		ť			0.69 (0.48 to 0 0.79 (0.53 to	0.99)
Histologic grade				55					-		
G1 G2	209 1,373	8 55	215 1,395	6 81	E F	-			—— I	1.35 (0.47 to 3 0.71 (0.50 to 0	
G3	1,090	67	1,066	88	Г	—	÷.			0.76 (0.55 to 1	
Progesterone receptor Negative	298	30	294	38	F					0.81 (0.50 to 1	1.30)
Tumor stage											
IIA	323	11	353	16	⊢ <u> </u>	•		۰.		0.73 (0.34 to	
IIB IIIA	389 1,027	17 41	387 1,024	19 61	Ľ		1			0.92 (0.48 to 7 0.68 (0.46 to 7	1.02)
	950	59	962	84	· F	-	-(0.71 (0.51 to (
					0.5		1	2	3		

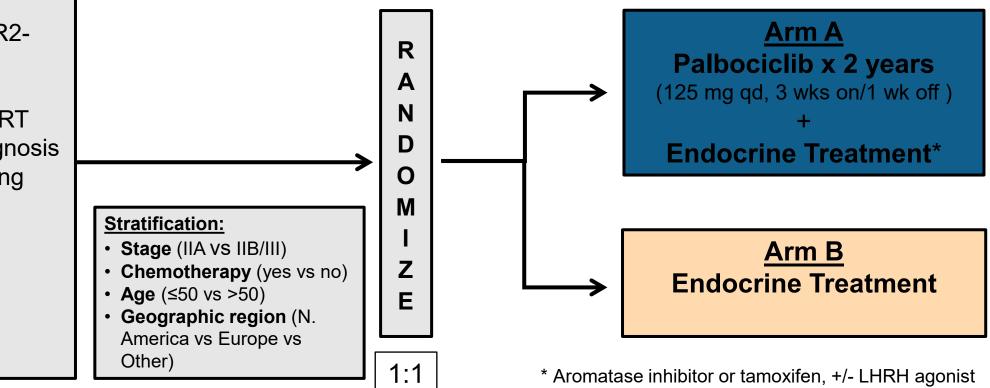
85

TABLE 3. Safety Table						
	Abemaci	clib + ET (n = 2, T)	791)	ET A	lone (n $= 2,800$))
\geq 10% in Either Arm	Any Grade	Grade 3	Grade 4	Any Grade	Grade 3	Grade 4
Any adverse event	2,731 (97.9)	1,200 (43.0)	70 (2.5)	2,410 (86.1)	335 (12.0)	19 (0.7)
Diarrhea	2,294 (82.2)	212 (7.6)	0	199 (7.1)	3 (0.1)	0
Neutropenia	1,246 (44.6)	501 (18.0)	18 (0.6)	141 (5.0)	16 (0.6)	3 (0.1)
Fatigue	1,073 (38.4)	78 (2.8)	0	433 (15.5)	4 (0.1)	0
Leukopenia	1,027 (36.8)	301 (10.8)	4 (0.1)	1/1 (6.1)	10 (0.4)	0
Abdominal pain	948 (34.0)	37 (1.3)	0	227 (8.1)	9 (0.3)	0
Nausea	779 (27.9)	13 (0.5)	0	223 (8.0)	1 (0.0)	0
Anemia	638 (22.9)	47 (1.7)	1 (0.0)	90 (3.2)	9 (0.3)	1 (0.0)
Arthralgia	571 (20.5)	6 (0.2)	0	876 (31.3)	18 (0.6)	0
Hot flush	393 (14.1)	3 (0.1)	0	587 (21.0)	8 (0.3)	0
Lymphopenia	372 (13.3)	140 (5.0)	2 (0.1)	94 (3.4)	13 (0.5)	0
Thrombocytopenia	341 (12.2)	25 (0.9)	6 (0.2)	40 (1.4)	1 (0.0)	2 (0.1)
Vomiting	455 (16.3)	13 (0.5)	0	117 (4.2)	2 (0.1)	0
Constipation	288 (10.3)	1 (0.0)	0	142 (5.1)	0	0
Upper respiratory tract infection	285 (10.2)	6 (0.2)	0	214 (7.6)	0	0
Urinary tract infection	284 (10.2)	13 (0.5)	0	170 (6.1)	6 (0.2)	0
Decreased appetite	312 (11.2)	15 (0.5)	0	54 (1.9)	1 (0.0)	0
Headache	482 (17.3)	6 (0.2)	0	359 (12.8)	3 (0.1)	0
Cough	337 (12.1)	1 (0.0)	0	193 (6.9)	0	0
Lymphedema	285 (10.2)	2 (0.1)	0	208 (7.4)	0	0
Additional adverse events of interest ^a						
Aspartate aminotransferase increase	257 (9.2)	43 (1.5)	3 (0.1)	106 (3.8)	13 (0.5)	0
Alanine aminotransferase increase	265 (9.5)	59 (21)	5 (0 2)	119 (4 3)	16 (0.6)	0
Alopecia	254 (9.1)	0	0	53 (1.9)	0	0
Venous thromboembolic event	63 (2.3)	27 (1.0)	6 (0.2)	14 (0.5)	4 (0.1)	0
Interstitial lung disease ^b	75 (2.7)	9 (0.3)	0	33 (1.2)	1 (0.0)	0

NOTE. Data are presented as No. (%).

^aIncludes events of clinical significance and/or observed in earlier clinical studies of abemaciclib.

^bTerm is based on the Standard MedDRA Query.



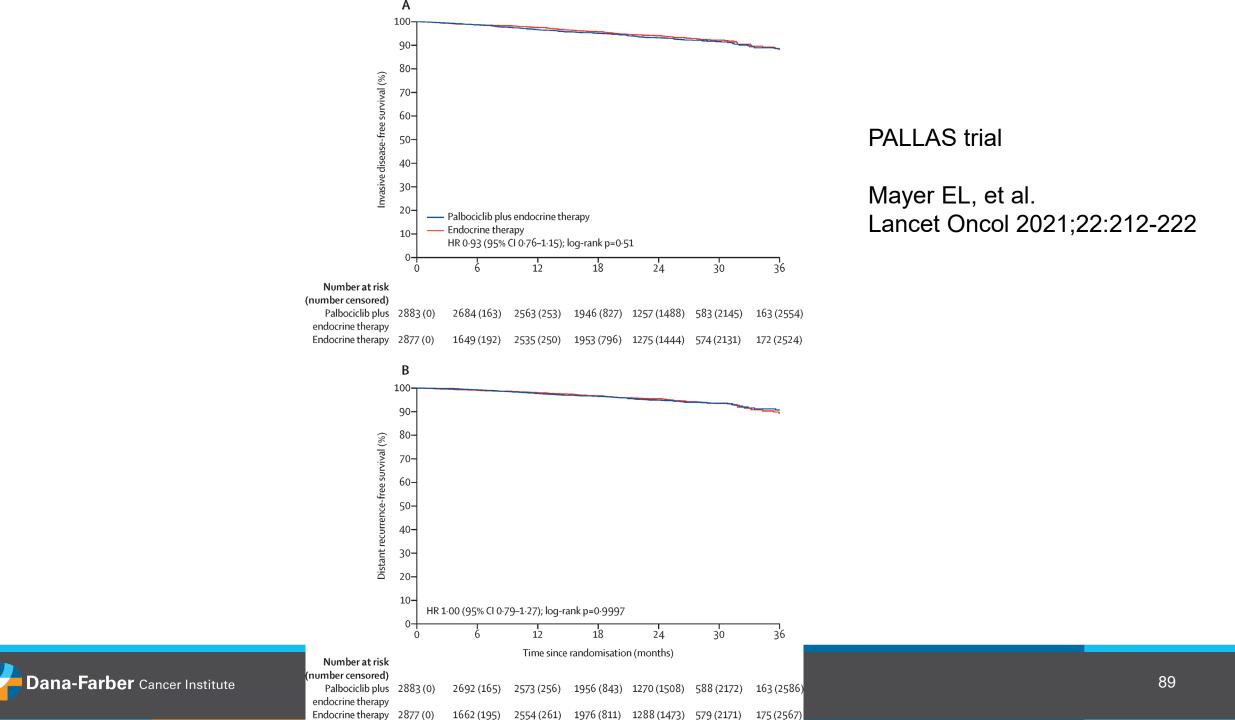
PALLAS: Phase III open-label study of palbociclib and adjuvant endocrine therapy

Eligibility:

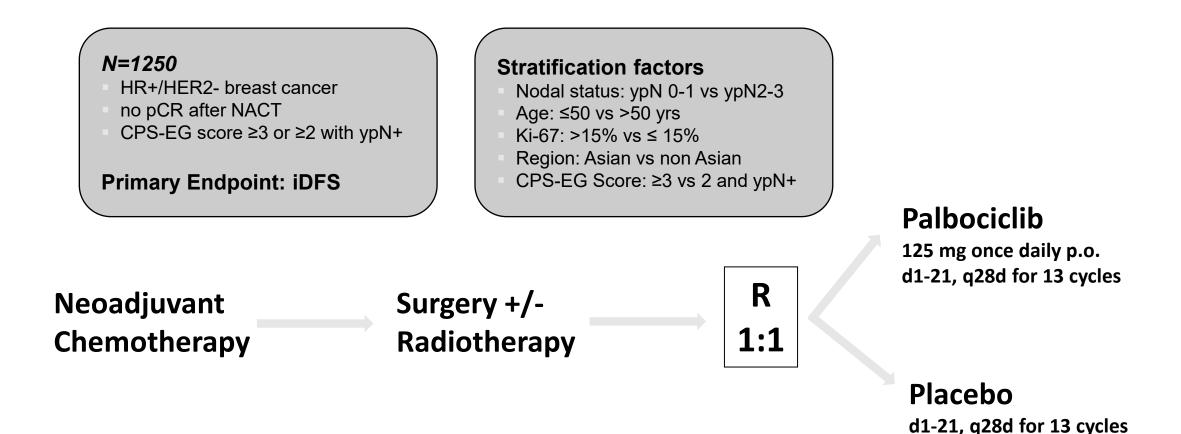
- Stage II-III HR+/HER2breast cancer
- Completion of prior surgery, +/- chemo, RT
- Within 12 mo of diagnosis
- Within 6 mo of starting adjuvant endocrine treatment
- FFPE tumor block submitted

N=5,600

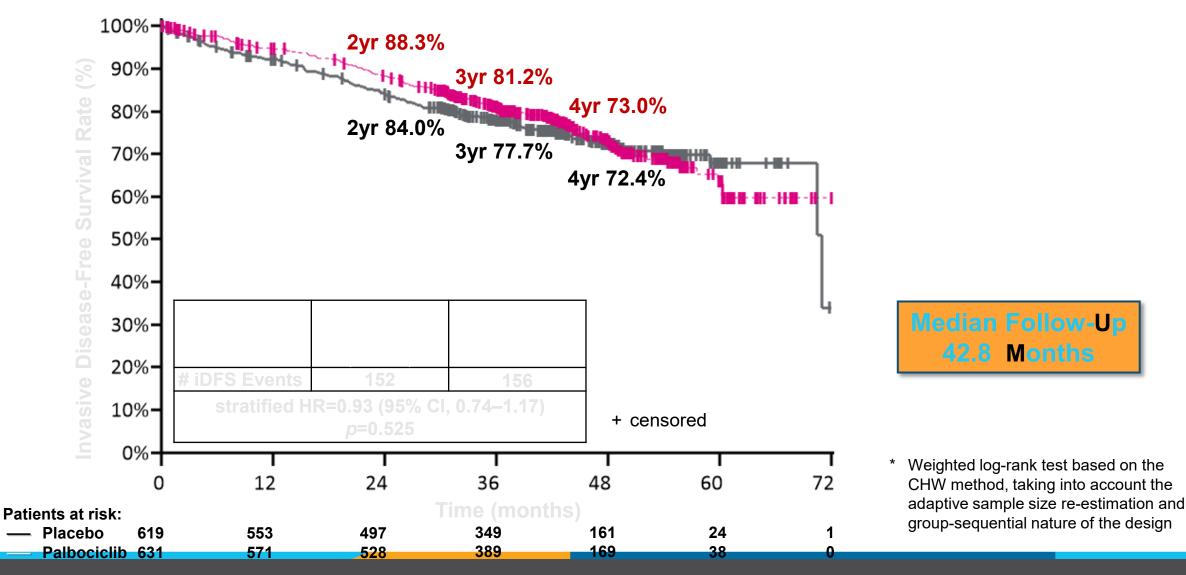
Primary Endpoint: invasive Disease-Free Survival (iDFS)



PALLAS: Patient Characteristics


- Between 9/2015 and 11/2018, 5,760 patients were randomized and included in the ITT set.
- The majority had higher stage disease and had received prior chemotherapy.
- 58.7% had high clinical risk disease, described as:
 - \geq 4 nodes involved (\geq N2), or
 - 1-3 nodes with either T3/T4 and/or G3 disease

Variable	Palbociclib + ET (N=2,883)	ET (N=2,877)
Age (y) – median (range)	52 (25 – 90)	52 (22 – 85)
Stage		· · ·
IIA	504 (17·5%)	509 (17·7%)
IIB	968 (33·6%)	951 (33·1%)
III	1402 (48.6%)	1408 (48·9%)
T-Stage	· · · ·	
T0/T1/Tis/TX	557 (19·3%)	500 (17·4%)
T2	1603 (55·6%)	1636 (56·9%)
T3/T4	722 (25·0%)	741 (25.8%)
N-Stage	ζ γ	· · · ·
NO	367 (12·7%)	383 (13·3%)
N1	1427 (49·5%)	1415 (49·2%)
N2	703 (24·4%)	709 (24.6%)
N3	385 (13·4%)	370 (12.9%)
Histologic Grade	, , , , , , , , , , , , , , , , , , ,	ζ γ
G1	300 (10·4%)	313 (10.9%)
G2	1622 (56·3%)	1658 (57·6%)
<u>G3</u>	<u>836 (29.0%)</u>	767 (26·7%)
Prior Chemotherapy	2384 (82·7%)	2370 (82·4%)
Initial Adjuvant Endocrine Therapy		
Aromatase inhibitor	1954 (67·8%)	1918 (66·7%)
Tamoxifen	923 (32·0%)	949 (33.0%)
Concurrent Adjuvant LHRH Agonist	532 (18·5%)	604 (21.1%)


PENELOPE^B Study Design

All patients will receive concomitantly endocrine therapy according to local standards

Penelope-B: ClinicalTrials.gov NCT01864746

