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Outline
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➢ Steel heat treatment modeling overview

• Requirements for a useful heat treatment model

➢ Diffusion processes: 

• Model data, material data, and process data requirements

• Case studies

➢ Hardening processes:

• Model data, material data, and process data requirements

• Case studies

➢ Specialized processes:

• Induction hardening

• Press/fixture quenching 

• Model data, material data, and process data requirements

• Case studies
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What is Required for an Accurate and Practically Useful 
Steel Heat Treatment Model?
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Phenomena to consider for steel heat treatment process modeling

➢ Solid-state phase transformation models

➢ Multiphase mechanical models

➢ Transformation induced plasticity (TRIP) models

➢ Mixture law

➢ Tempering models

➢ Diffusivity models



Diffusion Processes

• Carburizing

• Nitriding

• Boronizing
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Material Data Needs for Heat Treat Simulation
Diffusion Based Processes
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Diffusivity Properties 

➢ Diffusivity, as a function of

• Temperature

• Species concentration

➢ Carbide, nitride, and boride formation 
and dissolution, as a function of

• Temperature

• Time

• Species concentration

• Size

• Critical for processes which regularly 
exceed saturation limits (LPC, nitriding)

➢ Carbide, nitride, and boride dissolution 
during heating needed for

• High carbon alloys

• Reheat after carburization

Good Process

Bad Process
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Equipment/Process Data Needs for Heat Treat Simulation
Diffusion Based Processes 
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Gas Diffusion Processes

➢ Gas potential

➢ Temperature

➢ Total time

➢ Surface condition 

➢ Process parameters 
translate well to model

Low Pressure Diffusion Processes

➢ Boost-Diffuse schedule (what is programmed into the equipment) 

• “Boost” introduces species carrying gas

• “Diffuse” removes gas to near vacuum condition

➢ Effective boost-diffuse times (what the part experiences)

➢ Temperature

➢ No gas potential control for low pressure diffusion processes

• Saturation limit in austenite/ferrite is the limiting factor

• Saturation limit should be included as a function of temperature

➢ Process parameters more difficult to convert to model parameters 

• Time to reach saturation

• “Gas potential” and boost-diffuse schedule provided by the equipment 
may not actually be what the part experiences

Tale of 2 furnaces: Same boost recipes, different total carbon in case
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Example
Considering Carbides for LPC Recipe Design
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➢ LPC boost-diffuse schedule determined using DANTE’s VCarb for AISI 9310 without considering carbides

• Surface carbon = 0.8%

• ECD = 1.5 mm

➢ Same schedule executed for AISI 9310 considering carbide formation and dissolution

17% Increase

22% Increase

No Carbides
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Case Study
LPC Process Modeling: Baseline Process
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➢ Material: Ferrium C64

➢ ECD originally designed for 0.75 mm 

• ~0.35 mm deeper than required

• Surface carbon also higher than required to meet hardness

➢ Carbides to depth of 0.25 mm 

• Carbides formed during the first boost step continue to grow

Location 
of plots

Carbide Growth
Carbide Depth
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➢ New schedule developed to reduce carbides and surface carbon

➢ 3 boost-diffuse steps removed & diffuse times increased

Location 
of plots

Case Study
LPC Process Modeling: Improved Process

Carbides 
Dissolved No Surface Carbides



Hardening Processes

• Liquid quenching

• Gas quenching

• Martempering

• Austempering

• Any thermal process 
involving phase changes, 
including tempering 
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Material Data Needs for Heat Treat Simulation
Quench Hardening Processes
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Thermal Material Properties

➢ Thermal properties should be a function 
of temperature, phase, and carbon 

• Thermal conductivity

• Specific heat

• Latent heat

• Coefficient of thermal expansion 
(technical a mechanical property)

Bainite transformation

Martensite transformation

MS
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Elastic Material Properties

➢ Elastic properties should be a function of 
temperature, phase, and carbon

• Young’s modulus

• Poisson’s ratio

Plastic Material Properties

➢ Plastic properties should be a function of 
temperature, phase, carbon, strain, and strain rate

➢ Hardening and softening

➢ Stress reversals 

➢ Transformation induced plasticity (TRIP)

➢ Transformation strain

Material Data Needs for Heat Treat Simulation, cont’d
Quench Hardening Processes

Test of AISI 304L SS



Copyright © 2021 DANTE Solutions. All rights reserved. 13

Phase Transformation Kinetics

➢ Ferrite, Pearlite, Bainite, Martensite, 
Tempered Martensite → Austenite

• Carbon

• Heating rate

• Grain size

Material Data Needs for Heat Treat Simulation, cont’d
Quench Hardening Processes

Heating

Austenite 
Transformation
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Heating

Cooling

Martensite 
Transformation

Phase Transformation Kinetics

➢ Austenite → Martensite, 
Ferrite, Pearlite, and Bainite

• Martensitic transformation 
should be a function of carbon 
and cooling rate

• Diffusive phase transformation 
kinetics should be a function 
of carbon and time

▪ Carbon rejected during 
ferrite formation 

• Grain size

➢ Martensite → Tempered 
Martensite (low and high 
temperature)

• Dimensional change

• Stress relaxation

With Carbon SeparationNo Carbon Separation

Material Data Needs for Heat Treat Simulation, cont’d
Quench Hardening Processes
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Furnace Heating

➢ Heat transfer coefficient (HTC) as a function of part surface temperature

• Influenced by equipment operation and loading configuration

➢ Ambient temperature (constant)

➢ Total time

Transfer

➢ HTC (constant)

➢ Ambient temperature (constant)

• Dependent on mass, surface area, and racking orientation of the load

• Generally, not room temperature

➢ Total time

Equipment Data Needs for Heat Treat Simulation
Quench Hardening Processes
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Liquid Quenching

➢ HTC as a function of part surface temperature

• 3 stages of liquid quenching

• Dependent on part geometry, load geometry, and 
equipment design and operation

➢ Ambient temperature (constant)

➢ Total time; immersion should be considered for long 
parts

Gas Quenching

➢ Ambient temperature as a function of time

• Significantly influenced by hot load and dependent on: 

▪ Equipment type

▪ Load mass and surface area

▪ Equipment’s heat exchanger capabilities

➢ HTC (constant)

➢ Total time

Boiling 
Phase

Equipment Data Needs for Heat Treat Simulation, cont’d
Quench Hardening Processes
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Significance of Phase Transformation on Distortion
Model Comparison with and without Phase Transformations
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➢ Phase transformation has significant effect on final distortion 

• With phase transformations: 160 µm radial shrinkage

• Without phase transformations: 900 µm radial shrinkage

This difference is 
significant!

-160 µm

-900 µm

Assuming material is in F/P phase without phase transformation
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Significance of Phase Transformation on Distortion, cont’d
Model Comparison with and without Phase Transformations
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Model with Phase 
Transformations

Model without Phase 
Transformations

Assuming material is in F/P phase 
without phase transformation
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Stress Reversals during Quenching of Carburized Part
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Location of Points

➢ Surface

➢ ECD: 0.8 mm

➢ Base Carbon: 1.5 mm

➢ Core: 6 mm

A

B

C

D

E

F
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Stress Reversals during Quenching of Non-Carburized Part
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A

B

C D

Location of Points

➢ Surface

➢ ECD: 0.8 mm

➢ Base Carbon: 1.5 mm

➢ Core: 6 mm



Specialized Processes

• Induction hardening

• Press quenching
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Induction Hardening (Induction Heating + Spray Quenching)

➢ Joule heating is used as the input to drive the thermal model

• Electromagnetic (EM) software

• Based on actual or projected case depth and surface temperature requirements

• Frequency and power of inductor(s) should be known

➢ HTC and ambient temperature (constant)

• Fresh fluid ensures vapor is immediately removed

• Fluid does not remain in contact with surface long 

➢ Scanning processes, including dwells and scan rate changes

Equipment Data Needs for Heat Treat Simulation
Specialized Hardening Processes

EM Model

Induction heating with rotation
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Scanning Induction Hardening of Axle Shaft Animation
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Scanning Induction Hardening of Steel Coupler
Model & Process Description
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➢ Material: AISI 4340 

➢ Case depth: 4 mm

➢ Estimated power distribution

➢ Width of inductor: 100 mm

➢ Inductor travel speed: 3 mm/sec

➢ Dwell between inductor and spray modeled

➢ Cost to manufacture part: $20,000.00
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➢ Maximum principal stress (top-left) and martensite (top-
right) at end of quenching shown

• High stress at the location of cracking

➢ Maximum principal stress is in hoop direction 

• Matches cracking mode observed

➢ Strength of martensite with 0.4% carbon is ~1300 MPa  

• Surface may crack below material strength

➢ Surface cracking possible if maximum surface stress 
exceeds 900 MPa  

➢ Surface cracking not likely at stress levels below 650 MPa
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Alternative Processes
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Two alternative processing routes evaluated:

1. Shallower hardened case

• 0.120 inch (original: 0.160 inch)

• Reduce bending effect

2. Preheat before hardening

• Preheat to 500° F

• Thermal shrinkage helps relieve surface tension 

• Furnace or low frequency/low power induction
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➢ Predicted stress is approximately the same as the 
original process

➢ Reducing the case depth was not a solution 

➢ Significant finding, saving time and money
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➢ Preheat temperature: 500° F

• Can be optimized using simulation

➢ Highest in-process stress: 550 MPa 

• Residual surface compressive stress

➢ Estimated that cracking should not occur 
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Press/Fixture Quenching

➢ HTC as a function of part surface temperature

• Depending on oil flow around the part, can behave more like spray quench than liquid 
(immersion) quench (constant HTC and ambient temperature)

• Dependent on part geometry, equipment design, and equipment operation

➢ Loads exerted on part from tooling

• Force exerted on the part is required, not the load applied to the press ram

• Simulation of the press equipment can be helpful

• Press equipment design, operation, and loading scheme should be well understood

➢ Thermal effects between the part and the tooling can be considered

• For high hardenable steels, this is insignificant

• For lower hardenable steels, this can be significant

▪ Can act as a thermal sink, allowing diffusive transformations under the tooling and 
martensitic transformations elsewhere

Equipment Data Needs for Heat Treat Simulation
Specialized Hardening Processes, cont’d
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Material Data Needs for Heat Treat Simulation
Challenges
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Challenges in Collecting Heat Treatment Simulation Data

➢ Range of temperatures (all properties)

• 20 ° C to 1100° C; this is in contrast to other industrial processes using simulation, which all have mature simulation tools

• structural loading (~ room temperature or working temperature)

• casting (~ solidification temperature)

• forging (~650 - 1000° C)

• Temperature range may need to be higher for welding and AM simulation and lower if cryogenic treatments are used

➢ Isolating single phases for mechanical and thermal testing

• Ferrite and pearlite can be difficult to separate from each other for certain alloys and carbon levels

• Austenite between AC1 and AC3

• Different bainite morphologies
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Challenges in Collecting Heat Treatment Simulation Data

➢ Ensuring uniform carbon in dilatometry specimen used for transformation kinetics

• Lab melts with higher carbon may not be representative of carburized, base carbon production melts

• Through carburization may be problematic given the alloy; long furnace times and/or significant carbide formation 
and/or grain growth

➢ Ensuring uniform temperature in dilatometry specimen used for transformation kinetics

• Critical for accurate strain information; thermal and transformation strain must be separated during data analysis

➢ Process/Equipment data accuracy and consistency

• Many variables affect HTC and ambient temperature

▪ Vary day-to-day and batch-to-batch

• Sensitivity analysis is a powerful simulation tool

▪ Determine important process parameters

Material Data Needs for Heat Treat Simulation, cont’d
Challenges
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