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» Steel heat treatment modeling overview

* Requirements for a useful heat treatment model
» Diffusion processes:
* Model data, material data, and process data requirements
* Case studies
» Hardening processes:
* Model data, material data, and process data requirements
* Case studies
» Specialized processes:
* Induction hardening
* Press/fixture quenching
* Model data, material data, and process data requirements

e (Case studies
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onte What is Required for an Accurate and Practically Useful
ante Steel Heat Treatment Model?

Phenomena to consider for steel heat treatment process modeling

Solid-state phase transformation models
Multiphase mechanical models

Transformation induced plasticity (TRIP) models

Heat transfer

Mixture law Heat generated by

plastic deformation

Tempering models

YV V.V YV V V

Diffusivity models

Phase transformation
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Material Data Needs for Heat Treat Simulation
Diffusion Based Processes

Good Boost-Diffuse Schedule

dante’
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Gas Diffusion Processes

» Gas potential
Temperature
Total time

Surface condition

YV V V VY

Process parameters
translate well to model

1.40

0,80

0,60

Carbon, wit%

0.a0

0.0 010 0.3 0,30 (KRS 0,50 DEd 0,70

Depth from Surface, mm

Copyright © 2021 DANTE Solutions. All rights reserved.

Equipment/Process Data Needs for Heat Treat Simulation

Diffusion Based Processes

Low Pressure Diffusion Processes

» Boost-Diffuse schedule (what is programmed into the equipment)
* “Boost” introduces species carrying gas
* “Diffuse” removes gas to near vacuum condition

» Effective boost-diffuse times (what the part experiences)

» Temperature

» No gas potential control for low pressure diffusion processes
» Saturation limit in austenite/ferrite is the limiting factor
e Saturation limit should be included as a function of temperature

» Process parameters more difficult to convert to model parameters
e Time to reach saturation

* “Gas potential” and boost-diffuse schedule provided by the equipment
may not actually be what the part experiences

HE ] 0an 1.00

Tale of 2 furnaces: Same boost recipes, different total carbon in case
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Example

Considering Carbides for LPC Recipe Design

» LPC boost-diffuse schedule determined using DANTE’s VCarb for AlISI 9310 without considering carbides

Surface carbon = 0.8
ECD=1.5 mm

%

» Same schedule executed for AISI 9310 considering carbide formation and dissolution
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> Material: Ferrium C64

Case Study

LPC Process Modeling: Baseline Process

» ECD originally designed for 0.75 mm

 ~0.35 mm deeper than required

e Surface carbon also higher than required to meet hardness

» Carbides to depth of 0.25 mm

e Carbides formed during the first boost step continue to grow
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Case Study

O
dante _
LPC Process Modeling: Improved Process
» New schedule developed to reduce carbides and surface carbon o0 Location
» 3 boost-diffuse steps removed & diffuse times increased 8852 of plots
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Hardening Processes

* Liquid quenching
* Gas quenching
* Martempering
* Austempering

* Any thermal process
involving phase changes,
including tempering
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Quench Hardening Processes

Thermal Material Properties

» Thermal properties should be a function
of temperature, phase, and carbon

Thermal conductivity
Specific heat
Latent heat

Coefficient of thermal expansion
(technical a mechanical property)
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Material Data Needs for Heat Treat Simulation

Temperature, °C
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Material Data Needs for Heat Treat Simulation, cont’d

Quench Hardening Processes

Elastic Material Properties

» Elastic properties should be a function of
temperature, phase, and carbon

*  Young’s modulus

* Poisson’s ratio

Plastic Material Properties

» Plastic properties should be a function of
temperature, phase, carbon, strain, and strain

» Hardening and softening
» Stress reversals

» Transformation induced plasticity (TRIP)

> Transformation strain Y

rate

Test of AISI 304L SS
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Figure 2. Model prediction of compression tests and
compression reload demonstrating temperature history effects
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Martensite
Development of a Carburizing and Quenching Simulation Tool:
A Material Model for
Carburizing Steels Undergoing Phase Transformations
Bainite D. Bammann, V. Prantil, A. Kumar T. Lowe
J. Lathrop, D. Mosher, M. Callabresi Los Alamos National Laboratory
Sandia National Laboratory, Livermore, California Albuquerque, New Mexico
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FerritelPearlite Colorado School of Mines, Golden, Colorado Ford Motor Co., Dearborn, Michigan
Austenite B. Elliott, Jr., G. Ludtka D. Shick
Oak Ridge National Laboratory The Torrington Company, Torrington, Connecticut
Oak Ridge, Tennessee
D. Nikkel
Lawrence Livrmore National Laboratory
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Material Data Needs for Heat Treat Simulation, cont’d

dante’ :
Quench Hardening Processes
Phase TranSformatlon KlﬂEthS AISI 4300 Series: Heating Rate Effect on Austenite Transformation
> Ferrite, Pearlite, Bainite, Martensite, 0.013 .
Tempered Martensite = Austenite | /
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 Carbon /
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. . 50 C/sec '
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£
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0007 Heating
0.006
0.005
400 450 500 550 600 650 700 750 800 850 900 950 1000
Temperature, °C
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Quench Hardening Processes

Material Data Needs for Heat Treat Simulation, cont’d

No Carbon Separation

AlSI4320_NoCarbSep.OUT, S43XX, 0.2
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Equipment Data Needs for Heat Treat Simulation

dante’ _
Quench Hardening Processes

Furnace Heating

» Heat transfer coefficient (HTC) as a function of part surface temperature

* Influenced by equipment operation and loading configuration
» Ambient temperature (constant)
» Total time

Transfer
» HTC (constant)

» Ambient temperature (constant)
 Dependent on mass, surface area, and racking orientation of the load

* Generally, not room temperature

> Total time
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Janter EQUipment Data Needs for Heat Treat Simulation, cont’d
Quench Hardening Processes

Liguid Quenching

0.006
» HTC as a function of part surface temperature 0.005 eoommomeodot #Phas@ L
* 3 stages of liquid quenching E:U" 0.004 | g X L
* Dependent on part geometry, load geometry, and E 0003 b S NN,
equipment design and operation s
. J 0.002 o g AT
» Ambient temperature (constant) = - . . | :
. . . . 0.001 - ~ i/ i ___ —e—Stagnantoil flow | __
> Total time; immersion should be considered for long : —+—Regular ol flow
parts 0.000 . B T e
] 0 200 400 600 800 1,000
GaS QuenChlng Temperature, C
» Ambient temperature as a function of time -
* Significantly influenced by hot load and dependent on: 300 Gas is heated
by hot part
= i 250
Equipment type p Gas is cooled by
5 200
= Load mass and surface area g / heat exchanger
S 150 I
= Equipment’s heat exchanger capabilities ks - Initial gas
temperature
» HTC (constant) 50
> TOtaI tlme ’ 0 20 40 60 80 100
time, s
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Significance of Phase Transformation on Distortion

dante’ Model Comparison with and without Phase Transformations

» Phase transformation has significant effect on final distortion
e With phase transformations: 160 um radial shrinkage

e Without phase transformations: 900 um radial shrinkage
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dante’ Model Comparison with and without Phase Transformations

Assuming material is in F/P phase
without phase transformation

Raidal Disp. mm
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Location of Points
> Surface
> ECD: 0.8 mm

> Base Carbon: 1.5 mm

> Core: 6 mm
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Hoop Stress, MPa
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dante: Stress Reversals during Quenching of Non-Carburized Part

Location of Points

» Surface

» ECD: 0.8 mm

» Base Carbon: 1.5 mm

> Core: 6 mm
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Hoop Stress, MPa
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Equipment Data Needs for Heat Treat Simulation
Specialized Hardening Processes

dante’

Induction Hardening (Induction Heating + Spray Quenching) K

» Joule heating is used as the input to drive the thermal model

* Electromagnetic (EM) software

* Based on actual or projected case depth and surface temperature requirements

* Frequency and power of inductor(s) should be known

» HTC and ambient temperature (constant)

* Fresh fluid ensures vapor is immediately removed

* Fluid does not remain in contact with surface lon § o
| e ; EM Model
» Scanning processes, including dwells and scan rate changes

1000 = Surf_Point

= Point_depth: 3.3mm

Core Point
800

600

re, C

Temperatu:

400

Induction heating with rotation .

0.0 5.0 10.0 15.0 20.0 25.0 30.
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Scanning Induction Hardening of Axle Shaft Animation
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@;nteo Scanning Induction Hardening of Steel Coupler

Model & Process Description

Material: AlSI 4340
Case depth: 4 mm

Estimated power distribution

Maximum
Width of inductor: 100 mm : : e T ko
. 900
821
742
663
583

Inductor travel speed: 3 mm/sec
Dwell between inductor and spray modeled
Cost to manufacture part: $20,000.00

= 504
- 425
- 346

VvV V V V V VYV V
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Scanning Induction Hardening of Steel Coupler
Original Process Results

dante’

3, Max, Principal SOY_MARTEMSITE
(&wg: 75%) (Avg: 75%0)

» Maximum principal stress (top-left) and martensite (top-
right) at end of quenching shown

* High stress at the location of cracking

» Maximum principal stress is in hoop direction

* Matches cracking mode observed
» Strength of martensite with 0.4% carbon is ~1300 MPa

* Surface may crack below material strength

» Surface cracking possible if maximum surface stress 1000 : 1000
exceeds 900 MPa 900 | ’ " 800
» Surface cracking not likely at stress levels below 650 MPa 800 + 600
700 + 400
O - 1 o
= 600 1 200 =
S 500 to 2
© Q
o 400 —e—Temperature -200 %
o
——H St
GE) 300 oop ress ] -400 8_
— 1 @)
200 + -600 T
100 + -800
0 — % 1000
1500 2000
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Two alternative processing routes evaluated:

1. Shallower hardened case
* 0.120 inch (original: 0.160 inch)
* Reduce bending effect
2. Preheat before hardening
* Preheat to 500° F
 Thermal shrinkage helps relieve surface tension

* Furnace or low frequency/low power induction
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Scanning Induction Hardening of Steel Coupler

dante’
Reduced Case Depth Process Results

» Predicted stress is approximately the same as the
original process

» Reducing the case depth was not a solution 1200

+ 1000
+ 800
+ 600
+ 400
+ 200

» Significant finding, saving time and money

S, Max. Principa SOV_MARTENSITE

—e—Temperature

T -200
—e—Hoop Stress .

+ -400
+ -600
+ -800

— -1000
2000 4000 6000 8000

Time, s

Temperature, C
o
Hoop Stress, MPa

Copyright © 2021 DANTE Solutions. All rights reserved.

27



dante’

» Preheat temperature: 500° F

* Can be optimized using simulation

» Highest in-process stress: 550 MPa

* Residual surface compressive stress

» Estimated that cracking should not occur

5, Max. Principal
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Scanning Induction Hardening of Steel Coupler
Preheat Process Results
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Equipment Data Needs for Heat Treat Simulation

Specialized Hardening Processes, cont’d

Press/Fixture Quenching

» HTC as a function of part surface temperature

* Depending on oil flow around the part, can behave more like spray quench than liquid
(immersion) quench (constant HTC and ambient temperature)

 Dependent on part geometry, equipment design, and equipment operation
» Loads exerted on part from tooling

* Force exerted on the part is required, not the load applied to the press ram

* Simulation of the press equipment can be helpful

* Press equipment design, operation, and loading scheme should be well understood
» Thermal effects between the part and the tooling can be considered

* For high hardenable steels, this is insignificant

* For lower hardenable steels, this can be significant

= Can act as a thermal sink, allowing diffusive transformations under the tooling and
martensitic transformations elsewhere
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Material Data Needs for Heat Treat Simulation
Challenges

dante’

Challenges in Collecting Heat Treatment Simulation Data

» Range of temperatures (all properties)
e 20°Cto1100° C; thisis in contrast to other industrial processes using simulation, which all have mature simulation tools
* structural loading (~ room temperature or working temperature)
» casting (™~ solidification temperature)
« forging (~650 - 1000° C)
* Temperature range may need to be higher for welding and AM simulation and lower if cryogenic treatments are used
» l|solating single phases for mechanical and thermal testing
* Ferrite and pearlite can be difficult to separate from each other for certain alloys and carbon levels
* Austenite between A, and A

* Different bainite morphologies
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dante: Material Data Needs for Heat Treat Simulation, cont’d
Challenges

Challenges in Collecting Heat Treatment Simulation Data

» Ensuring uniform carbon in dilatometry specimen used for transformation kinetics
* Lab melts with higher carbon may not be representative of carburized, base carbon production melts

* Through carburization may be problematic given the alloy; long furnace times and/or significant carbide formation
and/or grain growth

» Ensuring uniform temperature in dilatometry specimen used for transformation kinetics
e Critical for accurate strain information; thermal and transformation strain must be separated during data analysis
» Process/Equipment data accuracy and consistency
* Many variables affect HTC and ambient temperature
»= Vary day-to-day and batch-to-batch
» Sensitivity analysis is a powerful simulation tool

= Determine important process parameters
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