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Development of a Carburizing and Quenching Simulation Tool:
A Material Model for
Carburizing Steels Undergoing Phase Transformations

D. Bammann, V. Prantil, A. Kumar
J. Lathrop, D. Mosher, M. Callabresi
Sandia National Laboratory, Livermore, California

H.-J. Jou, M. Lusk, G. Krauss
Colorado School of Mines, Golden, Colorado

B. Elliott, Jr., G. Ludtka
Oak Ridge National Laboratory
QOak Ridge, Tennessee

Abstract

Properly accounting for the coupling between the thermal,
mechanical, and microstructural aspects of the heat treatment
and quenching of metal alloys is crucial in developing an
accurate material characterization. In the austenitic, low carbon
steels of interest in this work, the phase transformations often
induce additional macroscopic plasticity which can have
substantial effects on both residual stresses and distortions.

The modeling strategy adopted here couples differential
equations for phase evolution with a multiphase macroscopic
state variable material model. The Kinetic rate equations for
each product phase are derived using a thermodynamic
formulation and fit to experimental data. Contrary to classical
modeling of transformation plasticity, the material model used
is based on mixture theory wherein we track the behavior of
individual phases. Phase interactions are accounted for by
introducing an internal stress that models both the macroscopic
multiphase behavior and effects driven by the transformation.
The form of the internal stress is based on discrete,
micromechanical simulations of the response of a transforming
representative volume.

The kinetics model is fit and tested using time
temperature transformation (TTT) and continuous cooling
transformation (CCT) data, and by studying the influence of
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stress on the kinetics through compression and tension
experiments. The transformation plasticity and multiphase
composite behavior predicted by the material model is
validated by dilatometry and fixed volume fraction mechanical
tests performed on a representative low carbon steel alloy.
Finally, the model is exercised in large scale finite element
simulations to capture the stress response and predict
distortions during quenching of disks and long, annular
cylinders.

FOR MANY APPLICATIONS IN MATERIALS
PROCESSING, the thermal and mechanical response are
coupled with evolution of the underlying material
microstructure. This coupling is evident in heat treatment,
quenching and welding of a large class of metal alloys which
undergo phase transformations that alter the constitutive
response of the material. When modeling this coupled
material response, calculation of the residual stresses and
subsequent distortion are often of primary importance.
Microstructural phase transformations often have substantial
effects on these global facets of the material behavior. In



particular, two features at the microscopic level have direct
effects on the macroscopic response. The volume difference
associated with the phase change imparts a purely dilatational
deformation. In addition, deviatoric straining will accompany
the phase change in the presence of any macroscopic deviatoric
stress field. This additional strain can have substantial effects
on residual stresses and distortions.

Previous attempts to model the effects of phase
transformations have met with mixed success. Empirical
methods of incorporating a temperature dependent yield
strength to simulate a phase change does not account for the
volume change or any additional plasticity [1,2]. Mimicking
the phase change with large changes in the thermal expansion
coefficient can capture the effects of the spherical volume
change, but not the microplasticity that accompanies them
[1,3,4]. Calculations which account for the dilatational
volume change explicitly, but not the microscopic deviatoric
strains exhibit discrepancies with measured residual stresses
[5,6]. For problems that are predominantly deformation driven
or exhibit large kinematic constraints, the predicted stresses
can be substantially in error. Simulations both with and
without account for this augmented plasticity indicate that
neglecting this effect can result in residual stresses that are
incorrect in sign and magnitude [1,7,8]. Because
transformation strains are accounted for locally, their effect on
modeling global distortions and residual stresses will, in
general, be problem dependent [3,7]. The severity of
constraints on the global level or inhomogeneity of the
transformation locally may determine, in part, the effect of the
transformation phenomenon in any particular application. The
thermal and mechanical boundary conditions can, therefore,
play a significant role in determining the relative importance of
incorporating transformation plasticity in the analysis of a
global boundary value problem.

We begin with a brief description of phase transformation
plasticity and the phenomenology of its dependence on stress
and transformation kinetics. Based on the form of these
previous descriptions, we motivate a formalism for
incorporating these effects by explicitly defining the
microscopic stress field that drives this additional plastic
straining. To illustrate this approach, we extend a previously
developed two-phase system [9] to account for five phases. We
review how this multiphase state variable constitutive
formulation naturally accounts for the stress dependent
microstraining by considering discrete micromechanical
simulations of the phase transformation by Saeedvafa and Asaro
[10]. Comparisons with the discrete model indicate that the
volume fraction dependence can be captured well by the
multiphase state variable framework. We then address the
details of extending this model to account for more than two
phases.

The state variable model is joined with a new approach to
simulating phase transformation kinetics recently proposed by
Lusk, Krauss and Jou [11]. Here an earlier version of the model
is extended to track multiple phases. Finally, we use this
model to analyze the stress response during quenching of an
idealized, long annular cylinder and a hollow dilatometer
specimen, commenting on the effects of incorporating the phase
transformation phenomenon for global boundary value
problems.
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Transformation Plasticity

When alloys undergo a solid state phase change, the
volume difference between the crystal structures causes
microscopic plastic flow as the transformation proceeds. In the
absence of a far field stress, this strain field has no deviatoric
part on average. There is, thus, no net contribution to the
macroscopic plastic flow. In the presence of a deviatoric stress
field, however, the straining from the volume misfit exhibits a
deviatoric part proportional to the surrounding stress. This
effect was described by Greenwood and Johnson [12] for
applied stresses well below the yield strength of the weaker
phase. There is evidence to indicate that under extreme
cooling rates where a purely martensitic structure forms, the
resulting platelet microstructure induces an additional shear
deformation in the presence of an applied stress [13]. This
imparts an inherent directionality to the response. For
simplicity, we consider only the Greenwood-Johnson
mechanism here.  An extensive theoretical treatment of
transformation plasticity has been described by Leblond,
Mottet and Devaux [14,15]. Leblond, Devaux and Devaux
[16,17] provide a mathematical overview wherein the
transformation plastic strain rate is given by

" K (%]'P(a))dbo' (1)

¥y

The transformation plastic strain rate is proportional to the
applied stress deviator, O', the rate of change of volume

fraction, @, the volume misfit, AV/V | and is inversely
proportional to the yield strength of the weaker phase, X

¥
While variations on equation (1) have met with some success,
recent discrete micromechanical simulations of the
transformation under applied stress indicate that the
proportionality of this strain rate on stress is not strictly linear
over a broad range of stresses [10]. In addition, the dependence
on volume fraction reported by Saeedvafa and Asaro [10] has
shed light on the particular form of the function ¥ ().

As described by Leblond, Mottet, Devaux and Devaux
[18], the additional macroscopic straining might not seem to
be of the same nature as ordinary plasticity owing to its
dependence on the transformation rate. However, assuming
ordinary plasticity operates on the microscopic level of
individual phases and consistently averaging to the macrolevel,
the continuum behavior exhibits an additional plastic straining
whose rate is proportional to the rate of evolution of the
product phase. Therefore, macroscopic transformation plasticity
is a manifestation of microscopic ordinary plasticity [18]. What
is interesting is that the transformation plastic strain rate is
proportional to the deviatoric stress, not the deviatoric stress
rate [1]. As such, it closely resembles the phenomenological
form of flow laws for state variable descriptions of
viscoplasticity. This dependence has interesting implications
because it indicates that the additional plasticity can be
modeled by a state variable formulation. We do this by
defining a macroscopic stress which is a local average of the



microscopic stress field acting between particles of different
phases. To motivate this interaction stress, we appeal to the
notion of an internal stress as a measure of material structure.

An Internal State Variable Model. Internal state
variable models have been utilized previously to describe the
response of single phase metals over large temperature and
strain rate ranges and have been formulated in a manner
consistent with the kinematics of large deformation elastic-
plastic response [19]. In these types of models the free energy
and the stress are assumed to depend on the elastic strain, the
temperature, the strain rate, and the current values of internal
variables that are introduced to describe the state of the
material. Generally, the state variables are associated with
underlying micro-mechanisms that are assumed to dominate
the macroscopic response for a range of temperatures and strain
rates.  [sotropic mechanisms are characterized by scalar
variables while directional effects are modeled with tensorial
variables. For example, scalar variables could be introduced to
represent dislocation substructures such as subgrain diameter,
dislocation density for high temperature creep, or porosity for
plastic deformation controlled growth of voids.  Tensor
variables could be identified with texture or grain orientation
for problems involving large strain and moderate temperature,
or may be required to adequately describe the high temperature
response of a material in which diffusional controlled growth of
voids along grain boundaries is the dominant mechanism. At
the macroscopic level, the introduction of these variables
results in the prediction of strain rate history and temperature
history dependent material response. This type of response
cannot be predicted with classic equation of state type models
in which the stress is assumed to be a unique function of the
plastic strain, the temperature and the strain rate independent of
the history of loading.

An example of this type of model has been proposed by
Bammann [19] and utilized in the finite element analysis of
several types of boundary value problems, including welding
and quenching analyses. In this particular model, a tensor
variable, @, and a scalar variable, K, were introduced and
evolution equations proposed for each. The evolution of both
state variables is cast into a familiar hardening minus recovery
format. Both dynamic and thermal recovery terms were
proposed for the variables. The dynamic recovery was
motivated from dislocation cross slip that operates on the same
time scale as dislocation glide. For this reason, no additional
rate dependence results from this recovery term. The thermal
recovery term is related to the diffusional process of vacancy
assisted climb. Because this process operates on a much
slower time scale, a strong rate dependence is predicted at
higher temperatures where this term becomes dominant.

The tensor variable, @, often referred to as the backstress
or the kinematic hardening variable, represents a short transient
and results in a smoother "knee" in the transition from elastic
to elastic-plastic response in a uniaxial stress-strain curve.
What is more important, this variable controls the unloading
response and is critical in welding or quenching problems
during the cooling cycle of the problem. It is termed a short
transient in that the variable hardens rapidly and saturates to a
constant steady state value over a very short period of time
during a monotonic loading at constant temperature and strain
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rate. This saturation value is maintained until the rate,
temperature or loading path changes and the process repeats.
This variable is responsible for the apparent material softening
upon unloading termed the Bauschinger effect. The importance
of the variable @ in the prediction of residual stresses in
welding problems was detailed in [20]. The scalar variable,
K, is an isotropic hardening variable that predicts no change
in flow stress upon reverse loading. This variable captures
long transients and is responsible for the prediction of
continued hardening at large strains. Unlike &, once steady
state has been reached under constant conditions, this variable
is not affected by a change in loading. As an example, the
model prediction for various strain rates and temperatures for
304L stainless steel is depicted in Figure 1. The response is
dominated by dynamic recovery at lower temperatures where
the rate dependence is weak. The effects of thermal recovery
become significant at higher temperatures where the rate
dependence is strong.

In Figure 2 the model prediction is compared with
uniaxial compression tests that involve a significant change in
temperature. Two specimens were loaded, one at 20C to a
strain of nearly 0.5 and the other at 800C to a strain of 0.23.
This specimen was unloaded and quenched rapidly. Once the
specimen had cooled, it was reloaded at 20C. If the stress was
a unique function of temperature and plastic strain, the flow
stress upon reload would have been identical to the 20C
specimen at that strain. As shown in Figure 2, this is not the
case. Rather, there is a strong temperature history effect upon
reload that is adequately captured by the state variable model.

For multiphase materials, additional complications arise
in predicting the material response. In particular, the effects of
phase transformation induced plastic strain must be included.
As a steel is cooled from above the austenization temperature, a
solid state phase transformation occurs. Which phase forms
depends upon the temperature and the cooling rate. In general,
these product phases are larger in volume and harder than the
surrounding austenite. As austenite transforms to one of several
product phases, a volumetric strain develops in the austenite.
In the presence of any deviatoric far field stress, this will be
accompanied by a deviatoric component of strain. Since the
product phases are generally stronger, this results in a forward
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Figure 1. Model prediction for 304L stainless steel tension
tests
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Figure 2. Model prediction of compression tests and

compression reload demonstrating temperature history effects

stress, z® (i=1), in the austenite, resulting in an apparent
softening of the material, as discussed previously. Similarly, a
backward stress, 7 (i=2,5), is created in each of the product
phases, where {=1—35 denotes austenite, pearlite, ferrite,
bainite, and martensite respectively. This stress field is a true,
tensorial backstress that must be subtracted from the applied
stress to get the glide resistance to macroscopic plastic flow. It
is proportional to the volume fraction of hard particles to first
order [21]. Introducing such a backstress in the yield
condition and flow rule provides a natural way to model the
apparent yield drop and additional plasticity characteristic of
transforming alloys.

To generalize the state variable model for multiphase
materials, we assume that each point of the continuum can be
occupied simultaneously by all phases. Each phase is modeled
by the single phase state variable model with rate and
temperature dependence as described above. Then the material
response can he modeled with as much complexity or
simplicity as required, since the model reduces to rate
independent bilinear response with an appropriate choice of
parameters. We denote the current configuration deviatoric

Cauchy stress in each phase by 6’'. We assume a classic
volume fraction weighted rule of mixtures, such that the total
deviatoric Cauchy stress, 0, is given by

=3 o0" ; Yo -=1. @)

where @, represents the volume fraction of each respective

phase, subject to the constraint that the sum of the volume
fractions of phases present must equal one. We assume a
hypoelastic relation for each phase that is consistent with an
assumption of linear elasticity giving

C;.r 0 _ ZﬂD'”: % ﬁo.rm 3)

where D) is the elastic symmetric part of the deviatoric
velocity gradient, and {4 is the temperature dependent shear
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modulus, assumed to be the same for all phases. In our initial
implementation we neglect the effect of the term related to the
time rate of change of the shear modulus. Elastic deformation
rates are defined as the difference between the total deformation

rate and the sum of the thermal, D’%)  and the inelastic,

D'“;, contributions in each phase
i) _ gy #(i) (i)
D=D'-D"-D;" . @

In equation (3), o denotes the convective derivative of the
Cauchy stress defined by

o

o.ff) = d.(l') _ “/e(i)o_[f] e O'“]W,m 5)

where W[,m is the skew part of the elastic velocity gradient for
each respective phase given by

‘v:flz W'_‘Vp{f) . (6)

For the present purposes we choose a Jaumann derivative and
all W, =0.
With a physical motivation

hardening , ' are long range internal stresses acting in the
different phases of the composite alloy. This type of approach
was taken by Freed, Raj and Walker [22] in modeling hard and
soft regions of a polycrystalline material as first proposed by
Kocks [23]. By approximating compatibility of relative hard
and soft regions of the multiphase alloy, a self-consistent type
scheme was used here to motivate an evolution equation for the
internal stresses that is consistent with the mixture theory. The
resultant stress rates are proportional to the temperature-
dependent shear modulus and volume fraction rates of change,

. AV &, . (AVY?
LRl
V) ® ¢ v i

%(nl _ ,rm)

i

similar to dispersion

Consistent with a mixture theory, the interaction terms in
the evolution law are proportional to the stress difference with
the virgin austenitic phase, ensuring that the sum of internal
stresses is self-equilibrating.

In addition to the long range forward and backward
internal stress fields which act between the phases, we assume

the existence of two short range internal stress fields o and

K '}, which act locally within each phase. We then define the
net stress acting in each phase, as,

EN =g _ g _ jdid _ i) ®)

Now, we impose specific assumptions concerning the



directionality of the stresses A and ¥/, In particular we
postulate that they act in the direction of the Cauchy stress

minus the short range stress, o, in each phase,

0 o’ -a" _ D o"-a’

i _ @ —% = L
n'=n |a’“’—a“’| K ’o’m—a’(”|

K0 ©)

The effective stresses acting to cause plastic flow in each phase
are then given by

|€m[=rdu)_am|_xm_xm' (10)

where K are the scalar internal variables acting in each phase
as discussed above. The plastic flow rule is chosen to have a
strong nonlinear dependence upon the deviatoric stress

|Ei}‘_ym(9) o'—a” .
vO@)(1+N(©) | Io""-a”1’

D= f“"(B)sinh{

where f(8) and V() describe a rate dependence of the yield
stress at constant temperature and N(C) describes the yield
increase with increasing carbon content, C. Tensor variables,
@, and scalar variables, k), have been introduced to
describe the deformed state of each phase as described
previously for a single phase material [18]. The evolution of
these variables is defined for each phase by

i)

}
(12,13)
d”|d” :

*GI!ZHUJ(B‘ C)lD”;

-{rR“®)+R")(®)|D"

o

Kle

" =h" (8,C)D"~{r"(8) +r,®)|D[}

The fit to the carbon dependent data reported by Sjostrom [21]
is shown in Figure 3.
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Figure 3. Fit of state variable model to hardening as a function
of carbon content (from Sjostrom [21]).
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Multiphase Transformation Kinetics

A fundamental balance principle is used to model phase
transformation kinetics at a volume fraction relevant for a broad
range of industrial steels. This micro balance provides
differential equations for transformation kinetics which couple
naturally to the differential equations governing the mechanical
and thermal aspects of a given process [24,25]. Avrami-type
kinetics as well as the Koistinen-Marburger equation have been
shown to result from special classes of energy and mobility
functions [11]. An illustrative example using a 5140 alloy
demonstrates how time-temperature-transformation (TTT) and
continuous cooling transformation (CCT) curves can be
generated using a particularly simple energy function. The
formulation of this theory is discussed in [11] for a single
product phase, but the interest here is in modeling the possibly
competitive development of ferrite, pearlite, bainite and
martensite.  For ease of identification, we replaace the
numericqal indices with latin indices and let the volume
fraction of austenite, ferrite, pearlite, bainite and martensite be
denoted by @, be, (Dp, @, and P, respectively. Let the

temperature be given by 6 and the carbon concentration by
C. Then a set of global balance postulates and constitutive
restrictions result in the following system of equations for
phase evolution:

do B
—L=v,/(C.O07 ¥ {® 1,.(C.0) - /) @,(0)=0.0001
dd op - B
—j =v,(C.O@,7 @7,  ®,(0)=0.0001 (14)
d®, _ ab g b _
s v, (C.00% 0 @,(0)=0.0001

{5

ao, |0, @, (0)=0.0001 8> M (C)
do  |-v,(C.0)@"m®Pm & (0)=0.0001;6<M,(C)
where equation (2), becomes,

@, =(1-0,-®,-D,-@,) (15)

and where the functions v,(C,0), v,(C.0), v,(C.6)
and Vm(C,G) as well as the constants O, O, 0, O,

B;. B,. B, and B, are material dependent quantities that

are determined from TTT quench data. These equations can
be fully coupled to the thermomechanical equations, but are
solved using a predetermined thermal profile in the present
work.

The thermal transformation strains were modeled as
follows. The thermal strain for austenite, £, , and an arbitrary
product phase, E, , are taken to be linear and cubic functions

of temperature, respectively, with the coefficients in these
polynomials themselves being quadratic functions of the carbon



concentration. The transformation strain, E, , for this product
phase is then given by

A

This modeling approach has been used successfully to
predict CCT curves for a 6150 steel [11] and is applied here to
predict CCT curves for a 5140 steel. While the goal of this
project is not to generate CCT curves, such a task represents a
check on mode! performance. TTT data generated using
Minitech software [26] was used to fit the model parameters.
We designed and used a differential fitting routine to
accomplish this so that analytic solutions were not required for
the kinetic equations. The TTT fit for all phases is shown in
Figure 4. The model was then used under an assumption of
exponential cooling to generate the CCT curves of Figure 5,
where they are compared with the curves generated using
Minitech. While only the total product volume fraction is
plotted, it should be noted that the volume fraction of each
phase is determined for all times.
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Figure 4. TTT curves for a 5140 alloy.
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Figure 5. CCT curves for a 5140 alloy.
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Model Simulations

Loecal Transformation Behavior. Locally, the averaged
microplasticity is manifested on the continuum level as
additional plastic strain whose stress dependence originates in
that of the internally stressed austenitic parent phase. In our
model, the stress dependence of the flow in the austenite is
accounted for naturally. Figure 6 illustrates the dependence of
the plastic strain rate as a function of volume fraction for
cooling rates sufficiently high to produce only martensite.
These curves were obtained by integrating equations (3), D,
(12) and (13) for various applied stresses. These curves
illustrate the effects of the nonlinearity of the model. In
addition to the obvious nonlinear stress dependence of the flow
rule, these curves also reflect the nonlinear response of the state
variables during the transformation. For high applied stress,

the short transient @, has saturated for very small values of

@ since @'’ grows initially as the hyperbolic sine of the
stress. Saeedvafa and Asaro [10] have recently investigated the
stress dependence of the microplasticity using a numerical
micromechanical approach. A comparison of the state variable
prediction with the discrete simulation is depicted in Figure 7
over a broad range of applied stresses.
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Figure 6. Dependence of transformation plastic strain on
volume fraction as a function of stress.
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Figure 7. State variable fit to results of micromechanical
simulations on a transforming representative volume.



The multiphase state variable model has been implemented
in a user material subroutine in the finite element program
ABAQUS [27] and used to simulate the time history of the
evolving gauge length for a 5140 quench dilatometer specimen.
The temperature and carbon dependent transformation strains
and start temperatures for transformation are captured well, as
shown in Figure 8.
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Figure 8. Quench dilatometer simulation for a 5140 alloy.

Global Transformation Behavior. The multiphase
implementation in ABAQUS has been used to simulate the
quenching of a long annular rod of arbitrary thickness. The rod
is initially at uniform temperature, T, =1073K. The

quenchant temperature, T, is 400 K and the heat flux differs

on inner and outer boundaries. The problem geometry is
depicted in Figure 9. For long aspect ratio cylinders, the
thermal response is one-dimensional. It can be computed
analytically [28] and used to drive the transformation.

Fli=18mrn Ta=1073 K

no.—.54mm Tq=473|(

Figure 9. One-dimensional, annular rod or disk.
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The corresponding radial and hoop stresses are depicted in
Figure 10. Including transformation plasticity has noticeable
effects on both components. The tangential stresses are
increased marginally at the inner surface, but relieved just
beyond the transformation front. Near the outer surface, the
tangential stress changes sign while maintaining nearly the
same magnitude. Radial stresses are larger, in general, and,
again, change sign at the outer surface. These results indicate
that local microplasticity is manifest on the global macroscopic
scale in a way that can be cast in a state variable framework. A
corresponding  experimental program is underway to
characterize a class of low alloy steels and verify the
simulations over a broad range of conditions. While the
qualitative trends are reasonable, the quantitative predictions
will need to be revisited when sufficient experimental data are
available.
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Figure 10. Radial and tangential stresses calculated with and
without the effects of phase transformation.

Conclusions

An internal state variable formulation for phase
transforming alloy steels is presented. We have illustrated
how local transformation plasticity can be accommodated by an
appropriate choice for the corresponding internal stress field
acting between the phases. The state variable framework
compares well with a numerical micromechanical calculation
providing a discrete dependence of microscopic plasticity on
volume fraction and the stress dependence attributable to a
softer parent phase. The multiphase model is used to simulate
the stress state of a quenched bar and show qualitative trends in
the response when the transformation phenomenon is
incorporated on the length scale of a global boundary value
problem.
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