01-Energy Sources

ECEGR 4530

Renewable Energy Systems

Overview

- Global Consumption
- Energy Flows
- Renewable Energy

How much energy is consumed by the world?

Figure 1-1. World energy consumption, 1990-2040 auadrillion Btu

2012 worldwide energy consumption was 549 Quad (549 EJ)

Global per capita consumption is 78 GJ/year—redistribution of energy might be enough for all to have high HDI

IEO2019 projects renewables the most used energy source by 2050

Primary energy consumption by fuel, world

quadrillion British thermal units

Note: 1 = Includes biofuels

Source: U.S. Energy Information Administration, International Energy Outlook 2019

United States milestones in meeting global energy consumption

2011

Becomes petroleum products net exporter

2017

Becomes natural gas net exporter

2019

Becomes total energy exporter - total annual energy exports exceed imports

2020

Pandemic leads to market transitions

Source: EIA, Today in Energy, April 20, 2020 (https://www.eia.gov/todayinenergy/detail.php?id=43395)

U.S. energy flow, 2019

quadrillion Btu

¹ Includes lease condensate. | ² Natural gas plant liquids. | ³ Conventional hydroelectric power, biomass, geothermal, solar, and wind. | ⁴ Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve. | ⁵ Natural gas, coal, coal coke, biomass, and electricity. | ⁶ Adjustments, losses, and unaccounted for. | ⁷ Natural gas only; excludes supplemental gaseous fuels. | ⁸ Petroleum products supplied. | ⁹ Includes -0.02 quadrillion Btu of coal coke net imports. | ¹⁰ Includes 0.13 quadrillion Btu of electricity net imports. | ¹¹ Total energy consumption, which is the sum of primary energy consumption, electricity retail sales, and electrical system energy losses. Losses are allocated to the end-use sectors in proportion to each sector's share of total electricity retail sales. See Note 1, "Electrical system Energy gov Losses," at the end of U.S. Energy Information Administration (EIA), *Monthly Energy Review* (April 2020), Section 2. | Notes: • Data are preliminary. • Values are derived from source data prior to rounding for publication. • Totals may not equal sum of components due to independent rounding.

World Electricity Production

Worldwide gross electricity production is 23,815 TWh.

Growth rate of 1.9%, primarily in non OECD countries

Figure 1: Total gross electricity production

Figure 2: World gross electricity production, by source, 2014

Source: www.iea.org

Fossil fuels supply >60% of electricity

— Global Electricity Consumption

- Global per person
 electricity consumption
 has steadily increased
 260% from 1972 to 2015
 (2.3% per year)
- Total electricity consumption increased by 505%

Sources of U.S. Electricity Generation, 2011

Source: U.S. Energy Information Administration, *Electric Power Monthly* (February 2012). Percentages based on Table 1.1, preliminary 2011 data.

Sources of U.S. electricity generation, 2019 Total = 4.12 trillion kilowatthours

Note: Electricity generation from utility-scale facilities. Sum of percentages may not equal 100% because of independent rounding.

Source: U.S. Energy Information Administration, Electric Power Monthly, February 2020, preliminary data

- What is your definition of Renewable Energy?
 - Why is solar energy considered renewable but energy derived from burning coal is not?

- Energy cannot be created or destroyed, only converted from one form to another
- There is no such thing as renewable energy
- "Renewable Energy" is a bit of a misnomer

- A better way of defining renewable energy is with respect to the timescale considered (e.g. 1000 years or 1,000,000 years)
- Renewable energy are energy flows which are replenished at the same (or greater) rate than they are used over the timescale considered

- Coal could be considered renewable if we used it at the rate at which is formed
- Solar energy is considered renewable because the sun will supply energy throughout the timescale considered

- What we commonly consider renewable resources come from only three origins
 - Solar Radiation
 - Heat from the Earth
 - Gravity

Solar Radiation

- The Sun's solar radiation is responsible for:
 - Solar
 - Biomass (photosynthesis)
 - Hydro (evaporation)
 - Wind (uneven heating of the atmosphere)
 - Wave (a result of wind)

Solar Radiation

- Sun provides 5.4 YJ/yr (yotta joules: 1 x 10²⁴ J) to Earth's atmosphere
- Approx 30% is deflected back into space
- Remaining 3.8 YJ is approximately 10,000 times the amount of energy used by fossil and nuclear fuels per year

 $\longrightarrow \gg$

Solar Radiation

- Solar radiation also drives hydrological cycle, wind, waves and photosynthesis
 - Wind and waves: 11.17 ZJ/yr (zetta joule: 1 x10²¹ J)
 - Photosynthesis: 1.26 ZJ/yr

Hydro

Hydro

Potential Energy

Kinetic Energy

Wind

Wind

Heat from the Earth

- Interior of the Earth is at a high temperature
- Causes:
 - Decay of radioactive material
 - Residual heat from the formation of the Earth
- Note: scientists' knowledge of the core of the Earth is limited

Heat from the Earth

- We can only harness the heat that makes it way to the crust (5-50 km depth)
- Approximately 4 ZJ of energy stored as water or steam at depths of 10km
- Pockets of heat can be used to drive steam turbines in geothermal plants

Geothermal

Gravity

- Potential energy
- Gravity from the moon and Sun cause tides (mostly the moon)
- Approx. 93.6 EJ/yr (exajoule: 1 x 10¹⁸ J)
- Gradual slowing down of the Earth (not on any appreciable timescale)
- Tidal action can be harnessed by tidal generators

--- Tidal

Gravity pulls the water behind the dam

» Tidal

Gravity pulls the water behind the dam

» Tidal

Water is released

Weight and the second with the second sec

- Enough renewable energy available to more than fulfill mankind's energy appetite
- How well are we doing at harnessing it?

Harnessing Renewable Energy

Note seasonal dependence for hydro and wind

Note: Tidal, wave and others are not utilized on any appreciable scale

— Questions

• What is the relationship between natural gas prices and renewable energy expansion?

• What are the implications if the U.S. stopped using coal "cold turkey"?

