04-Electricity Access

Off-Grid Electrical Systems in Developing Countries
Chapter 2.5—2.6

Learning Outcomes

At the end of this lecture, you will be able to:

- √ describe the role of electricity in meeting the energy needs of a rural household
- ✓ define the terms universal access, electrification rate, and Annual Growth Rate
- ✓ compute the electrification rate and Annual Growth Rate for countries and regions

Replace or Complement?

- Off-grid systems can be designed to <u>partially</u> or <u>completely</u> replace traditional fuels, or to <u>complement</u> them by powering devices that traditional fuels cannot supply (e.g. a mobile phone)
- Size, cost, and design of the system depends on the strategy selected

Example

Consider a household whose consumption is 60 GJ (16,667 kWh) per year from fuel wood and kerosene. Of this, 36 GJ from fuel wood is used for cooking and water heating on a cook stove with an efficiency of 12%, and 20 GJ from fuel wood is used for space heating. Kerosene is used for lighting, with an annual consumption of 4 GJ. Compute the annual energy required, in kilowatthours, to replace the fuel with electricity from the national grid. Assume the electric cook stove is 75% efficient and the electric lamps consume 45 kWh per year.

Example---Electric Cookstove Consumption

Of this, 36 GJ from fuel wood is used for cooking and water heating on a cook stove with an efficiency of 12%... Assume the electric cook stove is 75% efficient.

The electric cookstove reduces the consumption from water heating and cooking to:

 $36 \text{ GJ} \times 0.12/0.75 = 5.76 \text{ GJ} = 1600 \text{ kWh}$

Example---Heating

...20 GJ from fuel wood is used for space heating

Assuming the same energy for heating is required from electricity

20 GJ x (1 kWh/0.0036 GJ) = 5555 kWh

Example: Total

The total electrical energy for complete replacement is:

Exercise

Compute the annual expenditure of the same household if electricity is used to completely replace the traditional fuels, assuming the electricity is \$0.15/kWh.

Replace or Complement?

- Complete replacement of traditional fuels is not practical in most situations
- Common strategy:
 - Replace expensive, low-quality, and/or harmful fuels such as kerosene (lighting) and disposable batteries
 - Complement traditional fuels for applications like mobile phone charging, radios, television
 - Retain traditional fuels for heating and cooking

Use traditional fuels for thermal applications (heating, cooking)

How much electricity does a household need?

Household electricity requirements depends on local context and <u>level of service</u> provided

20 to 100 kWh/person/year

365 kWh/<u>household</u>/year (1 kWh/day)

Electricity Services

Service	Very-Low Power	Low-Power	Medium-Power	High-Power	Very High-Power
1. Lighting	Task	General			
2. Communication & entertainment	Phone charging, radio	TV, computer, printer			
3. Space cooling & heating		Fan	Air cooler		Air conditioner
4. Refrigeration			Refrigerator, freezer		
5. Mechanical Loads			Water pump, food processor	Washing machine	Vacuum cleaner
6. Product heating				Iron, hair dryer	Water heater
7. Cooking			Rice Cooker	Toaster, microwave	Electric range (cooker)

Electricity Services

Services	Consumption (kWh/person/year)
Task lighting	1
Light or TV or radio	2
Light, phone, radio, small TV	22
Light, phone, radio, TV, fan, productive uses	220

Type of technology used also affects consumption (e.g. LED versus compact florescent light)

Electrification Rate (%): 100 X

population whose house is connected to national grid

total population

2020 Electrification rate: 90.5%. 733 million without access to electricity

Calculating Population with and without Access

- Population with access = total population x electrification rate
- Population without access = total population x (100 electrification rate)
- Electricity access is a binary indicator, so population with access plus population without access = total population

Electricity Access Around the World

Electrification rate of SSA is approx. 48%

Rural penalty

- World urban electrification rate:
 97%
- World rural electrification rate:
 83%
- SSA urban electrification rate: 78%
- SSA rural electrification rate is 28%

Source: Tracking SDG7, The Energy Progress Report, 2022

Countries with Largest Populations without Electricity Access

- 1) Nigeria (92 million*)
- 2) Democratic Republic of Congo (72 million*)
- 3) Ethiopia (56 million)
- 4) Pakistan (54 million)
- 5) Tanzania (36 million)

Electricity Access Around the World

Approximately 76% of unelectrified live in just 20 countries

Source: Tracking SDG7, The Energy Progress Report, 2022

Distribution of Population without Electricity Access

Navajo Reservation, United States

(courtesy D. Terry, Navajo Tribal Utility Authority)

The headlines

Chowkidar Narendra Modi 📀

@narendramodi (Indian Prime Minister Modi)

28th April 2018 will be remembered as a historic day in the development journey of India. Yesterday, we fulfilled a commitment due to which the lives of several Indians will be transformed forever! I am delighted that every single village of India now has access to electricity.

♥ 47.1K 9:58 PM - Apr 28, 2018

The headlines

Every village in India now has electricity. But millions still live in darkness. -- Washington Post

https://www.washingtonpost.com/world/asia_pacific/every-village-in-india-now-has-electricity-but-millions-still-live-in-darkness/2018/04/30/367c1e08-4b1f-11e8-8082-105a446d19b8_story.html?utm_term=.717711e32ff9

Modi Announces '100% Village Electrification', But 31 Million Indian Homes Are Still In The Dark --Forbes

https://www.forbes.com/sites/suparnadutt/2018/05/07/modi-announces-100-village-electrification-but-31-million-homes-are-still-in-the-dark/#64670d0763ba

Achieving Universal Electricity Access

Universal electricity access: global electrification rate of 100%

Realistically, universal access is decades away. (see Problem 2.9)

Universal access is technically feasible, with relatively limited environmental impact depending on consumption

Estimated annual investment through 2030 is \$45 billion per year. Present investment is approx. \$10 billion per year.

Is progress really being made?

Malawi in 2010

- total population: 14.8 million
- electrification rate: 9%

Malawi in 2012

- total population: 15.7 million
- electrification rate: 10%

An increase of 1 percentage point in electrification rate shows progress

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA-NC</u>

Is progress really being made?

Malawi in 2010

- total population: 14.8 million
- electrification rate: 9%
- population without electricity: 13.47 million

Malawi in 2012

- total population: 15.7 million
- electrification rate: 10%
- population without electricity: 14.13 million

Number of people without electricity increased by 600,000!

Discussion

Do you consider Malawi to be making progress on electricity access?

Is progress really being made?

Sub-Saharan Africa in 2013

- total population: 0.952 billion
- electrification rate: 36.5%
- population without electricity: 604.5 million

Sub-Saharan Africa in 2014

- total population: 0.979 billion
- electrification rate: 37.7%
- population without electricity: 609.9 million

More people without access in 2014 than in 2013

Is progress really being made?

Sub-Saharan Africa in 2015

- total population: 1.01 billion
- electrification rate: 38.4%
- population without electricity: 622.2 million

Sub-Saharan Africa in 2016

- total population: 1.03 billion
- electrification rate: 42.8%
- population without electricity: 589.2 million

Electrification rate increasing AND population without access decreasing

Annual Growth Rate (AGR)

- Annual Growth Rate: quantifies the change in electricity access over a period of time
- AGR considers population growth dynamics as well as change in electricity access

$$AGR = \frac{(A[y] - A[y - t]) - (P[y] - P[y - t])}{P[y]} \times \frac{1}{t}$$

$$= \frac{\text{(pop. without access year in year } y - t) - \text{(pop. without access in year } y)}{P[y]} \times \frac{1}{\Delta t}$$

Annual Growth Rate (AGR)

$$AGR = \frac{(A[y] - A[y - t]) - (P[y] - P[y - t])}{P[y]} \times \frac{1}{t}$$

$$= \frac{\text{(pop. without access in year } y - t) - \text{(pop. without access in year } y)}{\text{population in year } y} \times \frac{1}{t}$$

A[y]: number of people with access to electricity in year y

P[y]: population in year y

t: period of time considered, years

Exercise

Compute the AGR of Malawi between 2010 and 2012

Malawi in 2010

- total population: 14.8 million
- electrification rate: 9%
- population without electricity: 13.47 million

Malawi in 2012

- total population: 15.7 million
- electrification rate: 10%
- population without electricity: 14.13 million

Exercise

Compute the AGR of Malawi between 2010 and 2012

Malawi in 2010

- total population: 14.8 million
- electrification rate: 9%
- population without electricity: 13.47 million

Malawi in 2012

- total population: 15.7 million
- electrification rate: 10%
- population without electricity: 14.13 million

$$AGR = \frac{\text{(pop. without access in year } y - t) - \text{(pop. without access in year } y)}{\text{population in year } y} \times \frac{1}{t}$$
$$= \frac{13.47 - 14.13}{15.7} \times \frac{1}{2} = -0.021$$

If population without electricity increases, then the AGR will be negative

Contact Information

Henry Louie, PhD

Professor

Seattle University

hlouie@ieee.org

Office: +1-206-398-4619