05-Environmental Impacts

Text: Chapter 5

ECEGR 3500

Electrical Energy Systems

Professor Henry Louie

Dr. Henry Louie

Overview

- Emissions from Power Plants
- Greenhouse Effect
- Environmental Concerns of Hydropower
- Environmental Concerns of Nuclear Power

Introduction

- Every human activity has some effect on the environment
- Energy exploration, procurement, conversion, distribution and end-use all have environmental consequences
- Power plants exist in a continuum of environmental impact, some are less impactful than others or are impactful in different ways

Introduction—Which is greener?

- Redwood trees vs solar panels
 - http://archive.wusa9.com/news/article/69130/0/Redwood-Trees-vs-Solar-Panels
- Salmon vs wind power
 - http://www.opb.org/news/blog/ecotrope/bpa-shuts-off-wind-power-to-make-way-for-hydro/

Emissions from Power Plants

Emissions

 Combustion of fossil fuels can cause unwanted, harmful or damaging chemicals to be emitted to the atmosphere,

including

- Sulfur oxides
- Nitrogen oxides
- Ozone
- Carbon dioxide
- Particulates

Source: www.epa.gov

Ashes

- Particulates are released during combustion, including
 - Iron
 - Titanium
 - Zinc
 - Lead
 - Nickel
 - Arsenic
 - Silicon
 - Mercury
 - Chromium

Sulfur Oxides

- Sulfur is often found in coal, oil and natural gas
 - Coal contains about 6 percent sulfur
 - Powder River Basin in Wyoming has low-sulfur coal and is shipped to power plants around the U.S.
- Sulfur oxides (SO_2 and SO_3) are formed during combustion $S + O_2 \longrightarrow SO_2$

Sulfur Oxides

- Sulfur dioxide is corrosive, colorless and malodorous
- 73% of sulfur dioxide is from power plants
- Can cause acid rain
- Inhaling large amounts can lead to lung and respiratory tract damage within a few minutes of exposure
- See 1952 London disaster linked to sulfur dioxide exposure, which killed 4000 people
- Sulfur emissions from power plants are closely monitored under a quota system

» Nitrogen Oxides

- Nitrogen oxides (NO_x) are also release during combustion of fossil fuels
- NO_x is highly toxic
- NO₂ is corrosive and irritates the eyes, nose, throat and respiratory tract
- NO₂ causes smog and acid rain

Acid Rain

```
SO_2 and NO_x cause acid rain 2SO_2 + O_2 \longrightarrow 2SO_3 (sulfur dioxide reacts with oxygen) when it reaches the clouds, it reacts with water SO_3 + H_2O \longrightarrow H_2SO_4 (sulfuric acid!) for NO_x 3NO_2 + H_2O \longrightarrow 2HNO_3 + NO (nitric acid!)
```

Acid Rain

- Acid rain damages, crops, agricultural lands, buildings (and anything else outside), fish
- Acid rain is most common in the Northeast and Midwest (where there are heavy concentrations of coal-fired power plants)

Source: Electric Energy: An Introduction, M. El-Sharkawi

$\stackrel{\text{\tiny{"}}}{\sim}$ Reducing NO_x and SO₂

- NO_x and SO₂ can be reduced at power plants by technical means
 - Flue-gas desulfurization (FGD) (scrubbers)
 - Switching to lower sulfur coal (or increasing the share of low-sulfur coal)
 - Selective catalytic reduction (SCR)
 - Selective non-catalytic reduction
 - Low NO_x burners
- Non-technical means
 - Cap-and-trade program (1990 Clean Air Act Amendments)

Scrubbers

- After combustion, an aqueous mixture of lime/limestone is sprayed through the emissions
- Some of the sulfur is absorbed in the mixture (calcium in the limestone)
- By product (synthetic gypsum) can be used in wallboard, cement, as a soil amendment or sent to a landfill

$\stackrel{\text{\tiny{"}}}{\sim}$ Reducing NO_x and SO₂

» Ozone

- NO₂ released by power plants can create ozone in the troposphere (where it is damaging as a secondary pollutant)
- NO_2 + sun light \longrightarrow NO + O
- \bullet O + O₂ \longrightarrow O₃
- Ozone contributes to smog, is harmful to vegetation and to humans
- Ozone is naturally recycled back into NO₂
- \blacksquare NO + O₃ \longrightarrow NO₂ + O₂

Carbon Dioxide

 Carbon dioxide is release when hydro carbons are combusted

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O + energy$$

- Carbon dioxide is helpful to plants, but it is a green house gas
 - CO₂ concentration in 18th century ~280 ppm
 - Current CO₂ concentration: 412 ppm

- Earth receives radiation from the sun
 - Wide range of wave lengths: 250-5000 nm
- Atmosphere reflects about 30%

Not all wavelengths are reflected equally

20

Source: Renewable Energy: Power for a Sustainable Future, G. Boyle

- Earth's surface heats and re-radiates heat back into space
 - Longwave infrared radiation

- Atmosphere blocks some of this radiation from being re-radiated back to space
- Average surface temperature
 - with atmosphere: 15 °C
 - without atmosphere: -18 °C

Greenhouse gases

 Greenhouse gases: atmospheric gases that keep longwave infrared radiation from escaping

- Common Greenhouse gases
 - Water vapor (responsible for 60%-80% of the greenhouse effect)
 - Carbon dioxide
 - Methane
 - N_2O
 - Ozone

Emissions by Power Plants

- Natural gas plants generally have lower harmful emissions than coal-fired power plants (approximate values)
 - CO₂: coal 1000kg/MWh; natural gas 500kg/MWh
 - NO_x: coal and natural gas 2kg/MWh
 - SO₂: coal 7kg/MWh; natural gas 5g/MWh

Environmental Concerns of Hydropower

Dr. Henry Louie 25

** Hydro

Flooding

- Displacement of people, loss of land use
- Decaying plants emit greenhouse gases

Water Flow

 Water flow is restricted, which is often harmful to downstream ecosystems

Silt

• Silt is trapped behind the dam. Silt is an important downstream fertilizer and it helps prevent erosion

Weight and the second of th

Oxygen Depletion

 Oxygen is depleted at the bottom of the reservoir, harming the fish and aquatic vegetation

Nitrogen

 Spilled water increases nitrogen content of the water, which is harmful to fish

Fish

 Migration of many fish species are impacted by dams (even with fish ladders)

Environmental Concerns of Nuclear Power

Dr. Henry Louie 28

» Nuclear Power

- Release of radioactive material
 - Concern in boiling water reactors (steam is in contact with fuel rods)
- Loss of coolant "China Syndrome"
 - Caused by interruption of water flow (pipes or pumps malfunction)
 - Fuel rods in the core overheat and melt through the containment structure and/or cause hydrogen to separate from water, possibly leading to an explosion

Disposal of Radioactive Waste

- Spent fuel rods contain cesium and rubidium (half life of thousands of years) and can remain hot for hundreds of years
 - 2000 tons per year from power plants in the U.S.
 - 71,862 tons total
- Storage is challenging—radioactive waste must not leak out of containment structures
- Spent fuel rods are stored on site at the power plants in the U.S. (there is no national depository (see Yucca Mountain))
 - Spent fuel pools
 - Dry cask storage

Source: npr.org

