
09-Micro Hydro Power Systems

Off-Grid Electrical Systems in Developing Countries

Chapter 6.3



Learning Outcomes

At the end of this lecture, you will be able to:

✓understand the principles of micro hydro power generation

✓be able to characterize a hydro resource

✓describe the importance of turbine selection and matching to 
the hydro resource
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Micro Hydro Power (MHP)

• Turbines convert energy in water into 
mechanical energy to power a 
turbine

• Mature technology

• Requires suitable water resource and 
terrain

• Can be AC-coupled or DC-coupled

• Civil works are required
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Hydro Resource

• Power potential of a hydro resource depends on:
• Head (m)

• Flow rate (m3/s)

• Conveyance system loss estimate

• Desirable characteristics
• Steep surrounding terrain (reduces penstock length and losses)

• Water intake at high elevation compared to powerhouse location

• Consistent, predictable seasonal flow
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Hydro Resource

• From Bernoulli, the energy in a 
volume of water depends on its
• Velocity

• Elevation (above reference plane)

• Pressure

• Energy from pressure and 
velocity usually ignored
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wa: density of water, ~1000 kg/m3

vwa: velocity of water, m/s

g: gravitational constant, 9.81 m/s2

z: elevation, m

Pwa: pressure, Pa

K: constant, J/m3



Bernoulli’s Equation

• What happens if water is flowing through a 
pipe and then a valve is closed so that the 
velocity suddenly drops to zero?
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Total Head

• Re-writing Bernoulli’s equation by dividing both sides by the 
density, wa, and the gravitational constant, g:

• Ht: total head, m
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Total Head

Total Head: allows the energy density of a hydro resource to be 
expressed by one value (total head), with more familiar units 
(m)
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Total Head

• The total energy in a volume of water is related to total head 
as:

• Vwa: volume of water (m3)

• Ewa,total: total energy in a volume of water (J)
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Total Head

• The total energy is the same as the potential energy of a mass 
of water with density wa and volume Vwa at an elevation of Ht

• We can conceptually replace water with a certain velocity, 
elevation, and pressure, with an equivalent mass (or volume) 
of water with no velocity, no pressure, and at an elevation of 
Ht
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Example

Compute the total head of two cubic meters of water whose 
velocity is 1 m/s and is located 38 meters above the reference 
plane. The water is exposed to atmospheric pressure (101.325 
kPa). Compute the total head.
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Example

Compute the total head of two cubic meters of water whose 
velocity is 1 m/s and is located 38 meters above the reference 
plane. The water is exposed to atmospheric pressure (101.325 
kPa). Compute the total head.
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Note that the total head is greater than the height

of the water above the reference plane



Example

Compute the total head of two cubic meters of water whose 
velocity is 1 m/s and is located 38 meters above the reference 
plane. The water is exposed to atmospheric pressure (101.325 
kPa). Compute the total head.
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Exercise

• Compute the total head of two cubic meters of water whose 
velocity is 1 m/s and is located 38 meters above the reference 
plane. The water is exposed to atmospheric pressure (101.325 
kPa). Compute the total energy in the water.
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Exercise

• Compute the total head of two cubic meters of water whose 
velocity is 1 m/s and is located 38 meters above the reference 
plane. The water is exposed to atmospheric pressure (101.325 
kPa). Compute the total energy in the water.
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This is the same value as if we applied Bernoulli’s

equation



Effective Head

• Effective head: head available to the hydroturbine for energy 
conversion

• Effective head accounts for losses
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Effective head and Total head

• Difference between total head and effective head are due to:
• Conveyance losses (friction, etc.) in the penstock—these losses are expressed as a 

reduction of the total head by Hf

• Velocity head is assumed to be zero

• Pressure head is zero (the turbine ultimately rejects water that is also at 
atmospheric pressure)

• These differences have the conceptual effect of lowering the location of 
the water used by the hydroturbine (and reducing its potential energy)
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f conveyH z H z= − = Effective head is the elevation of the water minus the

losses as expressed in head



Hydro Resource
• Useable energy in a volume of water

• Power in falling water
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g: gravitational constant, 9.8 m/s2

H: effective head, m
mwa: mass of water, kg
V: volume of water, m3

wa: density of water, 1000 kg/m3

Q: water flow rate, m3/s

turbine

Water of volume, V

elevation

difference, z

H z conveyance system efficiency= 



Exercise

The water resource for MHP scheme has an effective head of 38 
m. The flow rate is 0.005 m3/s (5 liters per second). Compute 
power available to the input of the turbine.
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Exercise

The water resource for MHP scheme has an effective head of 38 
m. The flow rate is 0.005 m3/s (5 liters per second). Compute 
power available to the input of the turbine.
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Power Extraction

• The turbine can only extract a portion of the power in the 
water

• Pd,turbine: mechanical power developed by the turbine (W)

• Poutlet: power of the water at the turbine’s outlet (W)

• Eturbine: efficiency of the turbine
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Exercise

• The water resource for MHP scheme is at an elevation of 38 m. 
The flow rate is 0.005 m3/s (5 liters per second). The 
conveyance system efficiency is 90% and the turbine efficiency 
is 85%. Compute the power extracted by the turbine.
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Note: in this problem, we are given the elevation, not the effective head.



Exercise

• The water resource for MHP scheme is at an elevation of 38 m. 
The flow rate is 0.005 m3/s (5 liters per second). The 
conveyance system efficiency is 90% and the turbine efficiency 
is 85%. Compute the power extracted by the turbine.
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Water Intake
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Only a portion of the stream is 

diverted for MHP use

(courtesy Joe Butchers)

(courtesy Joe Butchers)

(courtesy Joe Butchers)



Intake
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Water passes through

grate into penstock 

(not visible)

Removeable boards 

to clear silt/debris



Penstock
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• Conveys water from 
intake to turbine

• Above- or below-
ground pipe

• Should be straight 
and short

(courtesy Joe Butchers) (courtesy Joe Butchers) (courtesy Joe Butchers)



Turbine Types
FrancisPelton

Crossflow Turgo
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Turbine coupled to generator
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Turbine Selection

• Several types of hydro 
turbines

• Most water resources for 
MHP are high head or 
medium head

High Head Medium Head Low Head

Pelton Crossflow Crossflow

Pelton (Multi-jet) Turgo Propeller

Turgo
Pelton (Multi-

jet), Francis
Kaplan

www.drhenrylouie.com
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Turbine Selection

• Select turbine that will 
operate most efficiently given 
the power and rotational 
speed requirements, and the 
water resource speed and head
• Turbine Application Chart

• Calculate using “specific speed” 

Illustrative efficiency curve for Pelton Turbine
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Speed Matters

• Velocity of water jet depends on 
head

• Efficiency is maximized when water 
jet speed is 1/2 the tangential 
speed of the bucket 

• Bucket must rotate at certain RPM 
to produce desired voltage 
frequency 

• Mismatch of resource and turbine 
lowers efficiency
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Pelton Turbine



Turbine Application Chart
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Specific Speed (Dimensionless)
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Caution: several other “dimensioned” 

specific speeds are used and reported by 

turbine manufacturers.

m: rotational speed of turbine, rad/s
g: gravitational constant, m/s2

H: effective head, m
Q: water flow rate, m3/s



Specific Speed

• For many MHP systems, the power developed, rotational 
speed, and head are such that Pelton, Turgo, or crossflow 
turbines should be selected
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Example

• Compute the dimensionless specific speed for a water resource 
with an effective head of 30m. Assume the turbine will rotate 
1500 RPM with a developed mechanical power of 1.25 kW
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Example
• Compute the dimensionless specific speed for a water resource 

with an effective head of 30m. Assume the turbine will rotate 
1500 RPM with a developed mechanical power of 1.25 kW
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We see that a Pelton or Turgo

turbine would be suitable for this application



Exercise

• Compute the dimensionless specific speed for a water resource 
with an effective head of 10m. Assume the turbine will rotate 
1500 RPM with a developed mechanical power of 1.25 kW. 
What turbine(s) would be suitable for this application?

copyright 2019 www.drhenrylouie.com

37



Exercise

• Compute the dimensionless specific speed for a water resource 
with an effective head of 10m. Assume the turbine will rotate 
1500 RPM with a developed mechanical power of 1.25 kW. 
What turbine(s) would be suitable for this application?
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This “low head” resource would 

require a Francis or cross flow turbine



Turbine Design

• We will consider the design of a single-nozzle pelton turbine to 
see how the characteristics of the hydro resource interplay 
with our design decisions
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PCD: Pitch Circle Diameter



Pelton Turbines

• The nozzle aims water at the splitter in turbine’s buckets
• vj: water jet velocity (m/s)

• vb: tangential bucket velocity (m/s)

• What should the relationship between vj and vb be so that the 
maximum amount of kinetic energy is transferred to the 
bucket?
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Pelton Turbine Design

• Design the system so that the force on each bucket is 
maximized

• Note that (vj – vb) is the relative velocity, vrelative between the 
bucket and jet

• Force is equal to rate of change of momentum (M)
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Factor of two is a result of the change in 

direction of the water as it flows around the bucket



Pelton Turbine Design

• The power developed by the turbine is found by recognizing 
that power = force x velocity

• This is maximized when
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The optimal speed of a Pelton turbine is when 

the velocity of the jet of water is twice the 

velocity of the bucket

“y” is known as the “speed ratio”



Pelton Turbine Design

• The maximum power developed by the turbine is then

• If the speed of the jet is not equal to twice the speed of the 
bucket, the developed power is not maximum and we 
conclude the turbine is not operated efficiently 

copyright 2019 www.drhenrylouie.com

43

= * 2

d,turbine wa j

1

2
P Qv



Developed Power

• Note that if we want to increase the power developed by the 
turbine, we can either increase the flow rate, or increase the 
velocity of the water jet
• But, keep in mind that keep the turbine operating an optimal speed, 

if we increase the water jet velocity we must also increase the 
bucket speed
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Pelton Turbine Efficiency

• The efficiency is expressed as

• Theoretical efficiency is 
100%,

• Actual efficiency is ~50-85%,  
with maximum efficiency 
closer t oy = 0.46
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Pelton Turbine Design

• We know we should design our turbine so that the turbine 
rotates at half the speed of the incoming jet of water

• How do we achieve this?

• Consider the velocity of the jet of water
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Assuming lossless nozzle, the potential energy

of the water equals the kinetic energy of the jet

We see the jet velocity depends on the effective head of the resource



Speed Equation

• Rotational speed of the turbine is:
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Nm: speed, in RPM



Speed Equation

• We can re-write the speed equation in terms of the effective 
head of the water resource as:

• We now have an equation that relates the rotational speed of 
the turbine, the head of the resource, and the PCD diameter 
of the turbine
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Pelton Turbine Design

• For practical reasons, we usually design the turbine such that

• In other words, the diameter of the water jet, djet, cannot be 
made arbitrarily large. It should be no more than about 11% of 
the turbine’s PCD
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Pelton Turbine Design

• How do we determine the diameter of the water jet?

• Start with relating flow rate to water jet velocity:
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Nozzle Diameter

• Relating area to diameter:
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Exercise

• To achieve a higher flow rate, the diameter of the water jet 
must (assuming every thing remains the same):
• Increase

• Decrease

• The diameter is not affected by flow rate
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Exercise

• To achieve a higher flow rate, the diameter of the water jet 
must (assuming every thing remains the same):
• Increase

• Decrease

• The diameter is not affected by flow rate
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Exercise

• If the head of the system is increased, but the flow rate 
remains the same, the diameter of the jet must
• Increase

• Decrease

• The diameter of the jet is not affected by the head
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Exercise

• If the head of the system is increased, but the flow rate 
remains the same, the diameter of the jet must
• Increase

• Decrease

• The diameter of the jet is not affected by the head
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Example

• Assume a Pelton turbine is directly coupled to a four-pole 
synchronous generator. The generator is to produce 50Hz AC. 
The required power is 10 kW. The generator is 90% efficient. 
The head of the hydro resource is 70 m. Assume the maximum 
efficiency of Pelton turbine (100%) is achieved when y =0.50.

• Determine the PCD of the turbine, the diameter of the jet, 
and the required flow rate.
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Example

• Start by determining the input power required by the turbine:

• Next, compute the corresponding flow rate
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Example

• Now determine the PCD from
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This is a four pole machine designed to output 50Hz, 

so the speed is 3000/2 = 1500 RPM



Example

• Finally, determine the diameter of the jet

• This is less than 11% of the PCD, so the design is viable
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Turbine Control

• Can be AC- or DC- coupled

• Frequency Regulation

• Spear valve: adjust water flow to turbine

• Electronic load controller: adjust electrical power to 
ballast (dummy) load to keep electrical power 
constant

• Voltage Regulation

• Automatic Voltage Regulator (synchronous generator)

• Impedance controller (self-excited induction 
generators)

• Do not suddenly remove load (overspeed can result)
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Micro Hydro Power

▪ Relatively inexpensive

▪ Simple to operate

▪ No fuel costs

▪ Long operational life

▪ Consistent power production---no need 
for batteries

▪ Renewable resource

▪ No emissions

▪ Mature technology
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▪ Adequate water resource not widely 
available

▪ High up-front costs

▪ Water resource characteristics (flow 
rate, head, and effects of 
seasonality) must be assessed 

▪ Must be custom-designed

▪ Commercially-available turbines 
might not match the site 
characteristics 

▪ Many stakeholders affected—permits 
and permissions might be required



Contact Information

Henry Louie, PhD

Professor

Seattle University

hlouie@ieee.org

Office: +1-206-398-4619

@henrylouie

62

mailto:hlouie@ieee.org

