

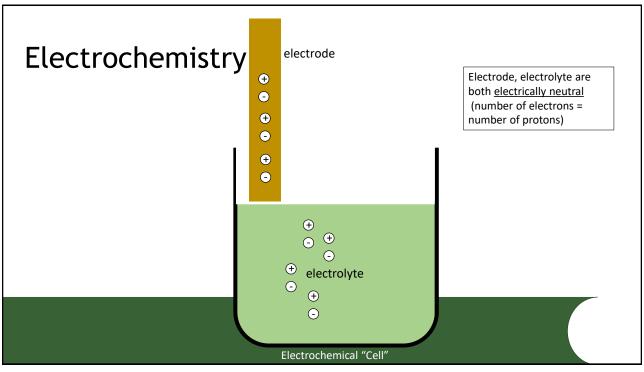
Off-Grid Electrical Systems in Developing Countries
Chapter 8.4

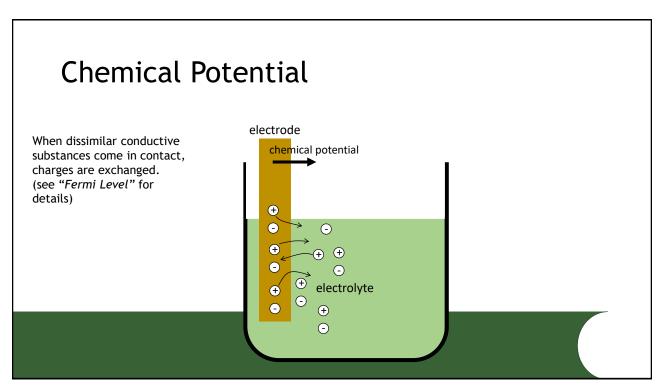
1

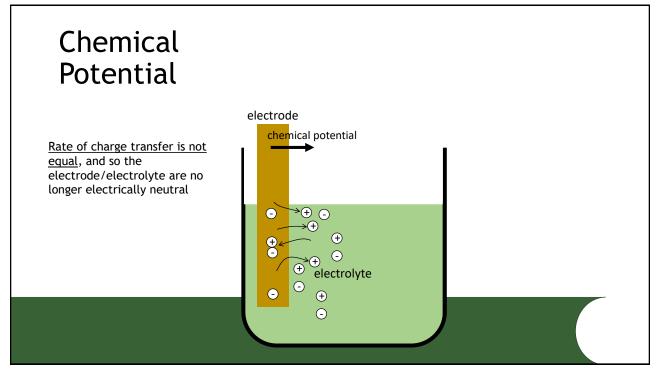
At the end of this lecture, you will be able to:

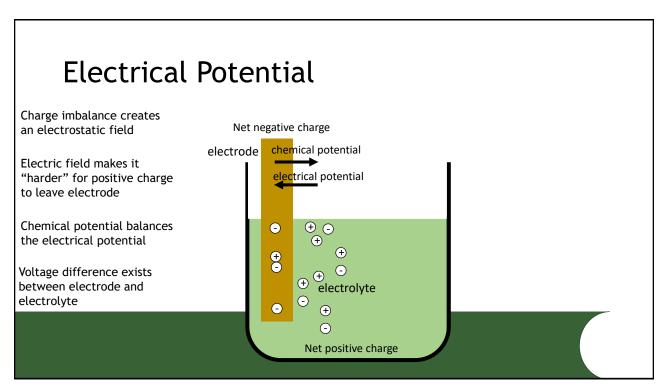
- ✓ describe the basic principles of electrochemistry that produce voltage in a battery
- ✓understand what "standard cell potential" is and how to adjust it for non-standard conditions using the Nernst Equation

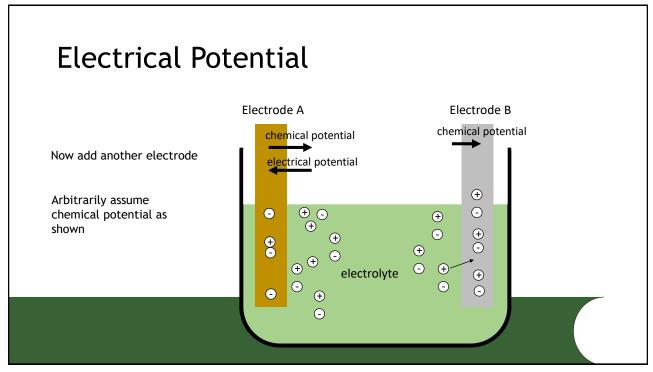
2

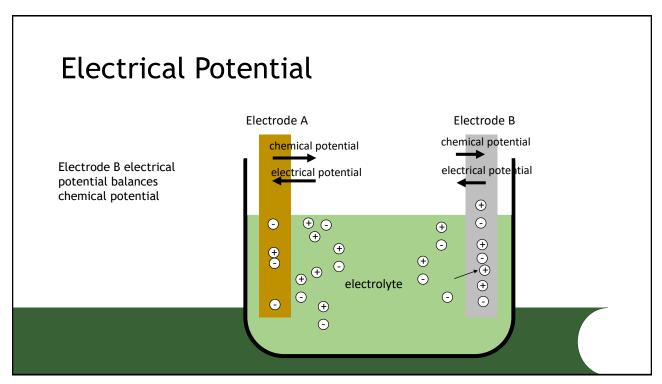


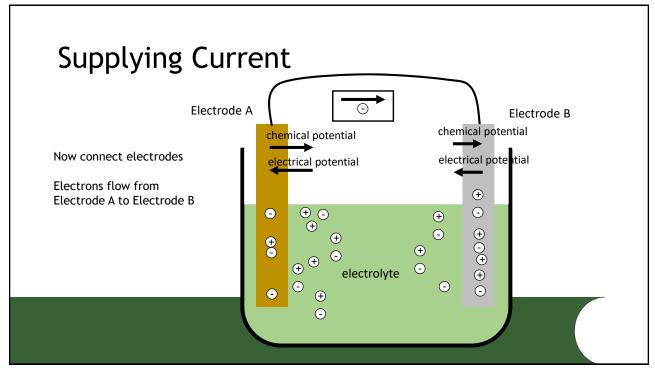

https://teachbesideme.com/dirt-battery-experiment/

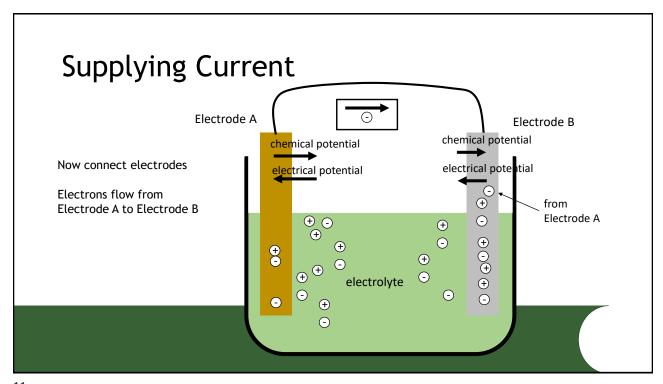

copyright 2019 www.drhenrylouie.com

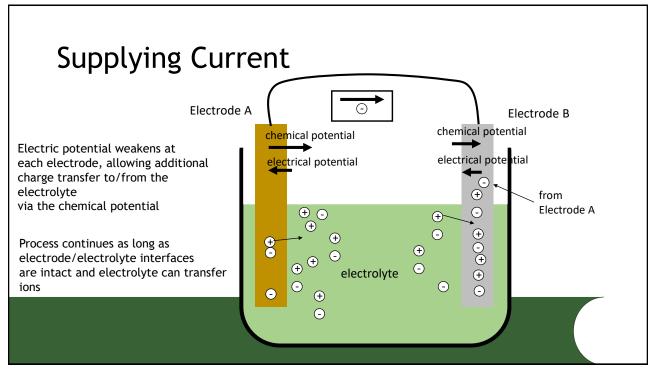

3


3









Electrochemistry

- The preceding is a rather simplistic description of how charge separation occurs
- Several other mechanisms occur including:
 - · Adsorption of charge particles at the interface
 - · Orientation of dipoles
 - Formulation of an electrical double layer at the interface

copyright 2019 www.drhenrylouie.com

13

13

Making a Battery

- Batteries (cells) can be constructed from many different chemicals, although not all combinations are useful or practical
- Examples:
 - Zinc-Carbon: used in inexpensive "dry cell" batteries
 - zinc anode, manganese dioxide (with carbon rod) cathode, ammonium chloride electrolyte
 - Alkaline:
 - zinc powder anode, manganese dioxide mixture cathode, potassium hydroxide electrolyte

By Mcy jerry, CC BY 2.5, https://commons.wikimedia.org/w/index.php?c urid=22406581

14

What Voltage is Produced?

- Electrochemists empirically measure voltage from different cell types and tabulate results
- Each half-reaction is measured in reference to a "standard hydrogen electrode" (SHE)
- Measured voltage is known as the "standard cell potential" E_{cell}^0

copyright 2019 www.drhenrylouie.com

15

15

Cell Voltage

Voltage is an *intrinsic* property of the cell, which depends on:

- · chemical composition
- "activity" (concentration)
- temperature

Tabulated voltages in reference to a hydrogen electrode under certain temperature and pressure conditions

- Temperature of 25 °C
- · Pressure of 1 atm
- Effective concentration of 1 mol/dm⁻³

Tabulated voltage for a lead-acid cell is ~2.04V

Reaction	E°/V	Reaction	E°/V
$Ac^{3+} + 3e \rightleftharpoons Ac$	-2.20	$As + 3 H^{\circ} + 3 e \Rightarrow AsH_3$	-0.608
$Ag^+ + e \rightleftharpoons Ag$	0.7996	$As_{2}O_{3} + 6 H^{+} + 6 e \rightleftharpoons 2 As + 3 H_{2}O$	0.234
$Ag^{2+} + e \Rightarrow Ag^{+}$	1.980	$HAsO_{2} + 3 H^{0} + 3 e \Rightarrow As + 2 H_{2}O$	0.248
$Ag(ac) + e \rightleftharpoons Ag + (ac)^-$	0.643	$AsO_{,-} + 2 H_{,O} + 3 e \Rightarrow As + 4 OH_{-}$	-0.68
$AgBr + e \Rightarrow Ag + Br^-$	0.07133	$H_1AsO_4 + 2 H^* + 2 e^- \Rightarrow HAsO_2 + 2 H_2O$	0.560
$AgBrO_3 + e \Rightarrow Ag + BrO_3^-$	0.546	$AsO_4^{3-} + 2 H_2O + 2 e \Rightarrow AsO_2^{-} + 4 OH^{-}$	-0.71
$Ag_2C_2O_4 + 2e \rightleftharpoons 2Ag + C_2O_4^{2-}$	0.4647	$At_2 + 2 e \rightleftharpoons 2 At^-$	0.3
$AgCl + e \rightleftharpoons Ag + Cl^{-}$	0.22233	Au° + e ⇌ Au	1.692
$AgCN + e \rightleftharpoons Ag + CN^-$	-0.017	$Au^{3+} + 2e \rightleftharpoons Au^{+}$	1.401
$Ag_2CO_3 + 2 e \rightleftharpoons 2 Ag + CO_3^{2-}$	0.47	$Au^{3+} + 3e \rightleftharpoons Au$	1.498
$Ag_2CrO_4 + 2e \rightleftharpoons 2Ag + CrO_4^{2-}$	0.4470	Au ²⁺ + e ⁻ ⇌ Au ⁺	1.8
$AgF + e \rightleftharpoons Ag + F^-$	0.779	$AuOH^{2+} + H^{+} + 2 e \rightleftharpoons Au^{+} + H_{2}O$	1.32
$Ag_4[Fe(CN)_6] + 4e \rightleftharpoons 4Ag + [Fe(CN)_6]^{4-}$	0.1478	$AuBr_2^- + e \rightleftharpoons Au + 2 Br^-$	0.959
$AgI + e \rightleftharpoons Ag + I^-$	-0.15224	AuBr₄ + 3 e ≠ Au + 4 Br	0.854
$AgIO_3 + e \rightleftharpoons Ag + IO_3^-$	0.354	$AuCl_4^- + 3e \rightleftharpoons Au + 4Cl^-$	1.002
$Ag_2MoO_4 + 2 e \rightleftharpoons 2 Ag + MoO_4^{2-}$	0.4573	$Au(OH)_3 + 3 H^{\circ} + 3 e \rightleftharpoons Au + 3 H_2O$	1.45
$AgNO_2 + e \rightleftharpoons Ag + 2NO_2^-$	0.564	$H_2BO_3^- + 5 H_2O + 8 e \Rightarrow BH_4^- + 8 OH^-$	-1.24
$Ag_2O + H_2O + 2 e \rightleftharpoons 2 Ag + 2 OH^-$	0.342	$H_2BO_3^- + H_2O + 3 e \Rightarrow B + 4 OH^-$	-1.79
$Ag_2O_3 + H_2O + 2 e \rightleftharpoons 2 AgO + 2 OH^-$	0.739	$H_3BO_3 + 3 H^+ + 3 e \rightleftharpoons B + 3 H_2O$	-0.8698
$Ag^{3+} + 2e \rightleftharpoons Ag^{+}$	1.9	$B(OH)_3 + 7 H^+ + 8 e \Rightarrow BH_4^- + 3 H_2O$	-0.481
$Ag^{3+} + e \rightleftharpoons Ag^{2+}$	1.8	Ba ²⁺ + 2 e ≠ Ba	-2.912
$Ag_2O_2 + 4 H^* + e \rightleftharpoons 2 Ag + 2 H_2O$	1.802	$Ba^{2+} + 2 e \rightleftharpoons Ba(Hg)$	-1.570
$2 \text{ AgO} + \text{H}_2\text{O} + 2 \text{ e} \rightleftharpoons \text{Ag}_2\text{O} + 2 \text{ OH}^-$	0.607	$Ba(OH)_2 + 2 e \rightleftharpoons Ba + 2 OH^-$	-2.99
$AgOCN + e \rightleftharpoons Ag + OCN^-$	0.41	$Be^{2+} + 2e \Rightarrow Be$	-1.847
$Ag_2S + 2e \rightleftharpoons 2Ag + S^{2-}$	-0.691	$Be_2O_3^{2-} + 3 H_2O + 4 e \rightleftharpoons 2 Be + 6 OH^-$	-2.63
$Ag_2S + 2 H^+ + 2 e \rightleftharpoons 2 Ag + H_2S$	-0.0366	p-benzoquinone + 2 H ⁺ + 2 e ⇌	0.6992
$AgSCN + e \rightleftharpoons Ag + SCN^-$	0.08951	hydroquinone	
$Ag_2SeO_3 + 2e \rightleftharpoons 2Ag + SeO_4^{2-}$	0.3629	Bi* + e ≠ Bi	0.5
$Ag_2SO_4 + 2e \rightleftharpoons 2Ag + SO_4^{2-}$	0.654	Bi³+ 3 e ≠ Bi	0.308
$Ag_2WO_4 + 2e \rightleftharpoons 2Ag + WO_4^{2-}$	0.4660	$Bi^{3+} + 2e \rightleftharpoons Bi^{+}$	0.2
$Al^{3+} + 3 e \rightleftharpoons Al$	-1.662	$Bi + 3 H^{\circ} + 3 e \rightleftharpoons BiH_3$	-0.8
$Al(OH)_3 + 3 e \rightleftharpoons Al + 3 OH^-$	-2.31	$BiCl_4^- + 3 e \rightleftharpoons Bi + 4 Cl^-$	0.16
$Al(OH)_4^- + 3 e \rightleftharpoons Al + 4 OH^-$	-2.328	$Bi_2O_3 + 3 H_2O + 6 e \rightleftharpoons 2 Bi + 6 OH^-$	-0.46
$H_2AlO_3^- + H_2O + 3 e \rightleftharpoons Al + 4 OH^-$	-2.33	$Bi_2O_4 + 4 H^* + 2 e \rightleftharpoons 2 BiO^* + 2 H_2O$	1.593
$AlF_{6}^{3-} + 3 e \rightleftharpoons Al + 6 F^{-}$	-2.069	$BiO^+ + 2 H^+ + 3 e \rightleftharpoons Bi + H_2O$	0.320
$Am^{4+} + e \rightleftharpoons Am^{3+}$	2.60	BiOCl + 2 H $^{\circ}$ + 3 e \rightleftharpoons Bi + Cl $^{-}$ + H $_{\circ}$ O	0.1583

Adapted from ELECTROCHEMICAL SERIES, by Petr Vanýsek

Cell Voltage

- Just like STC for PV panels, most of the time we expect the battery to be in an a state or environment that is different from which the standard cell potential was measured
- Need to adjust the standard cell potential
 - Temperature
 - Concentration
- Use the Nernst Equation

copyright 2019 www.drhenrylouie.com

17

17

The Nernst equation

 Relates voltage under standard conditions to non-standard conditions (like those encountered outside the laboratory)

$$\boldsymbol{E}_{cell} = \boldsymbol{E}_{cell}^{0} - \left(\frac{RT}{nF}\right) \boldsymbol{l} \boldsymbol{n} \big(\boldsymbol{Q}_{r}\big)$$

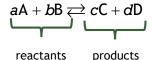
• Note:

- · Natural logarithm introduces non-linearity
- Voltage dependence on reaction and chemicals involved, as well as their "activities" (concentration)
- · Voltage dependence on temperature

E_{cell}: tabulated voltage (V)

R: Universal Gas Constant (8.314 J/mol/K)

T: temperature (K)


F: Faraday Constant (96,485 C/mol)

n: moles of electrons transferred in the reaction

Q_r: reaction quotient

Reaction Quotient (Q_r)

- Reaction quotient: measure of the relative amounts of products and reactants in a reaction at a certain point in time
- Reaction quotient is useful in predicting the direction of a chemical reaction as it evolves toward equilibrium---however, we are mostly interested in the reaction quotient it because it is how the concentration of the chemicals is accounted for in the Nernst equation
- Consider the generic reaction:

$$\mathbf{Q}_{\mathrm{r}} = \frac{\alpha_{\mathrm{C}}^{c} \alpha_{\mathrm{D}}^{d}}{\alpha_{\mathrm{A}}^{a} \alpha_{\mathrm{B}}^{b}}$$

copyright 2019 www.drhenrylouie.com

19

19

Calculating the Reaction Quotient

Consider the generic reaction:

$$aA + bB \rightleftharpoons cC + dD$$
reactants products

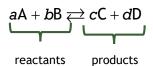
Example

$$N_2(g) + 3H_2(aq) \rightleftharpoons 2NH_3$$

a: 1 b: 3 c: 2 there is no d A: N₂ (nitrogen) B: H₂ (hydrogen)

C: NH₃ (Ammonia) there is no D

If there are greater than two products or reactants, just add letters (e.g. eE, fF). If there are fewer than two productors or reactants, remove letters


copyright 2019 www.drhenrylouie.com

20

Calculating the Reaction Quotient

The reaction quotient is:

$$\mathbf{Q}_{\mathrm{r}} = \frac{\alpha_{\mathrm{C}}^{c} \alpha_{\mathrm{D}}^{d}}{\alpha_{\mathrm{A}}^{a} \alpha_{\mathrm{B}}^{b}}$$

The α_i is the activity (<u>effective concentration</u>) of chemical *i* Effective concentration of solids and pure water is 1.0.

For our purposes, we will use assume the effective concentration is equal to the concentration (moles per liter), but this assumption introduces some error

copyright 2019 www.drhenrylouie.com

21

21

Example

Let the standard cell voltage for a lead-acid cell be 2.04 V. The battery is fully charged so the concentration of the sulfuric acid in the electrolyte is 6 moles per liter. Compute the corresponding cell voltage. Assume the temperature of the battery is 25° C.

Example

• First, write out the reaction for lead acid batteries:

```
PbO_2 + Pb + 2H_2SO_4 \rightleftharpoons 2PbSO_4 + 2H_2O
```

• Next, assign values to the letters in the reaction quotient:

copyright 2019 www.drhenrylouie.com

23

23

Example

Now determine the activities of the chemicals

 $PbO_2 + Pb + 2H_2SO_4 \rightleftharpoons 2PbSO_4 + 2H_2O$

```
a: 1
b: 1
e: 2
c: 2
d: 2
```

```
A: PbO<sub>2</sub>
B: Pb
E: 2H<sub>2</sub>SO<sub>4</sub>
C: 2PbSO<sub>4</sub>
D: 2H<sub>2</sub>O
```

```
\alpha_A: 1 (solid)

\alpha_B: 1 (solid)

\alpha_C: 6 (per problem statement)

\alpha_C: 1 (solid)

\alpha_D: 1 (liquid)
```

24

Example

Now compute the reaction quotient

$$\boldsymbol{Q}_{\mathrm{r}} = \frac{\boldsymbol{\alpha}_{\mathrm{C}}^{\mathit{c}}\boldsymbol{\alpha}_{\mathrm{D}}^{\mathit{d}}}{\boldsymbol{\alpha}_{\mathrm{A}}^{\mathit{a}}\boldsymbol{\alpha}_{\mathrm{B}}^{\mathit{b}}\underline{\boldsymbol{\alpha}_{\mathrm{E}}^{\mathit{e}}}} = \frac{\boldsymbol{1}^{2} \times \boldsymbol{1}^{2}}{\boldsymbol{1}^{1} \times \boldsymbol{1}^{1} \times \boldsymbol{6}^{2}} = \frac{1}{36}$$

a: 1 b: 1 e: 2 c: 2_

d: 2

A: PbO₂ B: Pb E: 2H₂SO

C: 2PbSO₄ D: 2H₂O α_A : 1 (solid)

 α_B : 1 (solid)

 $\alpha_{\rm C}$: 1 (solid)

 α_D : 1 (liquid)

copyright 2019 www.drhenrylouie.com

25

25

Example

Finally, apply the Nernst equation:

$$\boldsymbol{E}_{cell} = \boldsymbol{E}_{cell}^{0} - \! \left(\frac{RT}{nF} \right) \! ln \! \left(\boldsymbol{Q}_{r} \right) \label{eq:ecll}$$

$$E_{cell} = 2.04 - \left(\frac{8.314 \times 298.15}{2 \times 96,485}\right) ln\left(\frac{1}{36}\right) = 2.086 \text{ V}$$

E_{cell}: tabulated voltage (V)

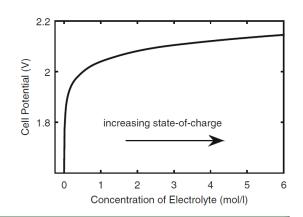
R: Universal Gas Constant (8.314 J/mol/K)

T: temperature (K)

F: Faraday Constant (96,485 C/mol)

n: moles of electrons transferred in the reaction

Q_r: reaction quotient


If this was a 12V battery, the voltage would be approx. 12.52 V

26

copyright 2019 www.drhenrylouie.com

Cell Potential of Lead-Acid Cells

- Approximated cell potential of a lead-acid cell as a function of electrolyte concentration
- Note:
 - Non-linear
 - Sharp drop at low concentration

copyright 2019 www.drhenrylouie.com

27

27

Exercise

Consider the battery in the previous example (sulfuric acid concentration of 6 moles per liter). Compute the open-circuit voltage when the battery is at a higher temperature of 35°C

28

Exercise

Consider the battery in the previous example (sulfuric acid concentration of 6 moles per liter). Compute the open-circuit voltage when the battery is at a higher temperature of 35°C

$$\begin{split} E_{cell} &= E_{cell}^{0} - \left(\frac{RT}{nF}\right) ln(Q_{r}) \\ E_{cell} &= 2.04 - \left(\frac{8.314 \times 308.15}{2 \times 96,485}\right) ln\left(\frac{1}{36}\right) = 2.088 \text{ V} \end{split}$$

copyright 2019 www.drhenrylouie.com

29

29

Exercise

Decreasing the temperature of a lead-acid battery lowers its open-circuit voltage

A. True

 $E_{cell} = E_{cell}^{0} - \left(\frac{RT}{nF}\right) ln(Q_{r})$

B. False

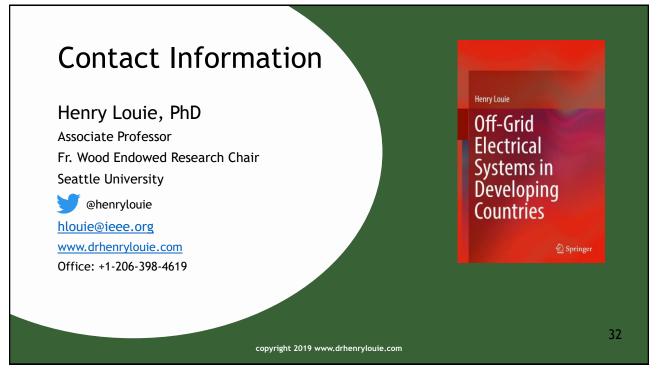
C. It depends...

30

Exercise

Decreasing the temperature of a lead-acid battery lowers its open-circuit voltage

- A. True
- B. False
- C. It depends...


$$\boldsymbol{E}_{cell} = \boldsymbol{E}_{cell}^{0} - \! \left(\frac{RT}{nF} \right) \! ln \! \left(\boldsymbol{Q}_{r} \right) \label{eq:ecll}$$

This is true most of the time, however, at very low sulfuric acid concentrations, \mathbf{Q}_{r} can be positive so decreasing the temperature increases the voltage

copyright 2019 www.drhenrylouie.com

31

31

