12-Electrochemistry (for electrical engineers, not chemists)

Off-Grid Electrical Systems in Developing Countries Chapter 8.4

Making a Battery

- Batteries (cells) can be constructed from many different chemicals, although not all combinations are useful or practical
- Examples:
 - Zinc-Carbon: used in inexpensive "dry cell" batteries
 - zinc anode, manganese dioxide (with carbon rod) cathode, ammonium chloride electrolyte
 - Alkaline:
 - zinc powder anode, manganese dioxide mixture cathode, potassium hydroxide electrolyte

By Mcy jerry, CC BY 2.5, https://commons.wikimedia.org/w/index.php?c urid=22406581

copyright 2019 www.drhenrylouie.com

What Voltage is Produced?

- Electrochemists empirically measure voltage from different cell types and tabulate results
- Each half-reaction is measured in reference to a "standard hydrogen electrode" (SHE)
- Measured voltage is known as the "standard cell potential" $E^{\scriptscriptstyle 0}_{\scriptscriptstyle cell}$

copyright 2019 www.drhenrylouie.com

	Reaction	E°/V	Reaction	E°/V
	$Ac^{3*} + 3 e \rightleftharpoons Ac$	-2.20	$As + 3 H^* + 3 e \rightleftharpoons AsH_3$	-0.608
	$Ag^* + e \rightleftharpoons Ag$	0.7996	$As_2O_3 + 6 H^* + 6 e \rightleftharpoons 2 As + 3 H_2O$	0.234
	$Ag^{2*} + e \rightleftharpoons Ag^*$	1.980	$HAsO_2 + 3 H^* + 3 e \rightleftharpoons As + 2 H_2O$	0.248
Cell Voltage	$Ag(ac) + e \rightleftharpoons Ag + (ac)^{-}$	0.643	$AsO_2^- + 2H_2O + 3e \Rightarrow As + 4OH^-$	-0.68 0.560
	$AgBr + e \rightleftharpoons Ag + Br^-$ $AgBrO_{,} + e \rightleftharpoons Ag + BrO_{,}^-$	0.07133 0.546	$H_3AsO_4 + 2 H^* + 2 e^- \Rightarrow HAsO_2 + 2 H_2O$ $AsO_4^{3-} + 2 H_3O + 2 e \Rightarrow AsO_2^{-} + 4 OH^-$	-0.71
	$Ag_3 C_3 C_3 + e \rightleftharpoons Ag + b O_3$ $Ag_3 C_3 O_4 + 2 e \rightleftharpoons 2 Ag + C_3 O_4^{2-}$	0.4647	$AsO_4 + 2 H_2O + 2e \leftarrow AsO_2 + 4 OH$ $At_1 + 2e \rightleftharpoons 2At^-$	-0.71
	$Ag_2 e_2 e_4 + 2e \leftarrow 2Ag + e_2 e_4$ AgCl + e \Rightarrow Ag + Cl ⁻	0.22233	$Au^{\circ} + e \rightleftharpoons Au$	1.692
Voltage is an <i>intrinsic</i> property of the cell, which	$AgCN + e \rightleftharpoons Ag + CN^-$	-0.017	$Au^{3*} + 2 e \rightleftharpoons Au^*$	1.401
	$Ag, CO_1 + 2e \rightleftharpoons 2Ag + CO_1^{2-}$	0.47	Au³+ + 3 e ≠ Au	1.498
depends on:	$Ag_2CrO_4 + 2 e \rightleftharpoons 2 Ag + CrO_4^{2-}$	0.4470	$Au^{2*} + e^- \rightleftharpoons Au^*$	1.8
 chemical composition 	$AgF + e \rightleftharpoons Ag + F^-$	0.779	$AuOH^{2*} + H^* + 2 e \rightleftharpoons Au^* + H_2O$	1.32
·	$Ag_4[Fe(CN)_6] + 4 e \rightleftharpoons 4 Ag + [Fe(CN)_6]^{4-}$	0.1478	$AuBr_2^- + e \rightleftharpoons Au + 2 Br^-$	0.959
 "activity" (concentration) 	AgI + e ⇔ Ag + I-	-0.15224	$AuBr_4^- + 3 e \rightleftharpoons Au + 4 Br^-$	0.854
	$AgIO_3 + e \rightleftharpoons Ag + IO_3^-$	0.354	$AuCl_4^- + 3 e \rightleftharpoons Au + 4 Cl^-$	1.002
 temperature 	$Ag_2MoO_4 + 2 e \rightleftharpoons 2 Ag + MoO_4^{2-}$	0.4573 0.564	$Au(OH)_3 + 3 H^\circ + 3 e \rightleftharpoons Au + 3 H_2O$	1.45
	AgNO ₂ + $e \rightleftharpoons Ag + 2 NO_2^-$ Ag,O + H ₂ O + 2 $e \rightleftharpoons 2 Ag + 2 OH^-$	0.342	$H_2BO_3^- + 5 H_2O + 8 e \rightleftharpoons BH_4^- + 8 OH^-$	-1.24
	$Ag_2O + H_2O + 2e \rightleftharpoons 2Ag + 2OH$ $Ag_2O_1 + H_2O + 2e \rightleftharpoons 2AgO + 2OH^-$	0.342	$H_2BO_3^- + H_2O + 3 e \rightleftharpoons B + 4 OH^-$ $H_3BO_3 + 3 H^* + 3 e \rightleftharpoons B + 3 H_2O$	-1.79
Tabulated voltages in reference to a	$Ag_2O_3 + H_2O + 2e \leftarrow 2AgO + 2OH$ $Ag^{3+} + 2e \rightleftharpoons Ag^+$	1.9	$B(OH)_{*} + 7 H^{*} + 8 e \rightleftharpoons BH_{*}^{-} + 3 H_{*}O$	-0.869
hydrogen electrode under certain	$Ag^{3+} + e \Rightarrow Ag^{2+}$	1.8	$Ba^{2*} + 2e \rightleftharpoons Ba$	-2.912
, ,	$Ag_{,O_{,}} + 4 H^{\circ} + e \rightleftharpoons 2 Ag + 2 H_{,O}$	1.802	$Ba^{2*} + 2e \rightleftharpoons Ba(Hg)$	-1.570
temperature and pressure conditions	$2 \text{ AgO} + \text{H}, \text{O} + 2 \text{ e} \Rightarrow \text{Ag,O} + 2 \text{ OH}^-$	0.607	$Ba(OH)_{2} + 2 e \rightleftharpoons Ba + 2 OH^{-}$	-2.99
	$AgOCN + e \rightleftharpoons Ag + OCN^{-1}$	0.41	$Be^{2+} + 2e \rightleftharpoons Be$	-1.847
 Temperature of 25 °C 	$Ag_2S + 2 e \rightleftharpoons 2 Ag + S^{2-}$	-0.691	$Be_2O_3^{2-}$ + 3 H_2O + 4 e \rightleftharpoons 2 Be + 6 OH ⁻	-2.63
•	$Ag_2S + 2H^* + 2e \rightleftharpoons 2Ag + H_2S$	-0.0366	p-benzoquinone + 2 H [*] + 2 e ≈	0.699
 Pressure of 1 atm 	$AgSCN + e \rightleftharpoons Ag + SCN^{-}$	0.08951	hydroquinone	
 Effective concentration of 1 mol/dm⁻³ 	$Ag_2SeO_3 + 2 e \rightleftharpoons 2 Ag + SeO_4^{2-}$	0.3629	$Bi^* + e \rightleftharpoons Bi$ $Bi^{3*} + 3 e \rightleftharpoons Bi$	0.5
• Effective concentration of 1 mot/dm s	$Ag_2SO_4 + 2 e \rightleftharpoons 2 Ag + SO_4^{2-}$ $Ag_2WO_4 + 2 e \rightleftharpoons 2 Ag + WO_4^{2-}$	0.654	$BI^{*} + 3e \neq BI$ $BI^{3*} + 2e \neq BI^{*}$	0.308
	$Ag_2wO_4 + 2e \rightleftharpoons 2Ag + wO_4^-$ $Al^{3*} + 3e \rightleftharpoons Al$	-1.662	$Bi + 2e \neq Bi$ $Bi + 3H^{\circ} + 3e \neq BiH_{o}$	-0.8
	$Al(OH)_{+} + 3 e \rightleftharpoons Al + 3 OH^{-}$	-2.31	$BiCl_a^- + 3 e \rightleftharpoons Bi + 4 Cl^-$	0.16
	$Al(OH)_{4}^{-} + 3 e \rightleftharpoons Al + 4 OH^{-}$	-2.328	$Bi_3O_3 + 3 H_3O + 6 e \rightleftharpoons 2 Bi + 6 OH^-$	-0.46
Tabulated voltage for a	$H_2AIO_3^- + H_2O + 3 e \rightleftharpoons AI + 4 OH^-$	-2.33	$Bi_2O_4 + 4 H^* + 2 e \rightleftharpoons 2 BiO^* + 2 H_2O$	1.593
<u> </u>	AIF_6^{3-} + 3 e \rightleftharpoons Al + 6 F ⁻	-2.069	$BiO' + 2 H' + 3 e \rightleftharpoons Bi + H_2O$	0.320
lead-acid cell is ~2.04V	$Am^{4+} + e \rightleftharpoons Am^{3+}$	2.60	$BiOCl + 2 H^* + 3 e \Rightarrow Bi + Cl^- + H_0$	0.1583

Cell Voltage Just like STC for PV panels, most of the time we expect the battery to be in an a state or environment that is different from which the standard cell potential was measured Need to adjust the standard cell potential Temperature Concentration Use the Nernst Equation

17

The Nernst equation

 Relates voltage under standard conditions to non-standard conditions (like those encountered outside the laboratory)

$$\boldsymbol{E}_{cell} = \boldsymbol{E}_{cell}^{0} - \left(\frac{\boldsymbol{R}\boldsymbol{T}}{\boldsymbol{n}\boldsymbol{F}}\right)\boldsymbol{l}\boldsymbol{n}\left(\boldsymbol{Q}_{r}\right)$$

• Note:

- Natural logarithm introduces non-linearity
- Voltage dependence on reaction and chemicals involved, as well as their "activities" (concentration)
- Voltage dependence on temperature

E_{cell}⁰: tabulated voltage (V)

R: Universal Gas Constant (8.314 J/mol/K)

- T: temperature (K)
- F: Faraday Constant (96,485 C/mol)
- n: moles of electrons transferred in the reaction Q_r: reaction quotient

Exercise

Consider the battery in the previous example (sulfuric acid concentration of 6 moles per liter). Compute the open-circuit voltage when the battery is at a higher temperature of 35° C

copyright 2019 www.drhenrylouie.com

$$\begin{split} E_{cell} &= E_{cell}^{0} - \left(\frac{RT}{nF}\right) ln(Q_{r}) \\ E_{cell} &= 2.04 - \left(\frac{8.314 \times 308.15}{2 \times 96,485}\right) ln\left(\frac{1}{36}\right) = 2.088 \text{ V} \end{split}$$

