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Overview

▪ Inverters

▪ Grid-Tied Considerations

▪ PV Panel Discharge Protection

▪ PV Shading
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Inverters
▪ Inverters are required in stand-alone systems if AC load is to 

be served OR

▪ If the systems is grid connected
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Consider Stand-alone inverters first



Inverter
▪ Use solid-state switching to alternate 

polarity of voltage applied to a load

▪ Switch in pairs

• Q1, Q3 open and close at same time

• Q2, Q4 open and close at the same time

▪ Voltage output can be increased via 
DC—DC converter at the input or 
transformer at the output (or both)
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Inverters: Basic Circuit
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Output Signal

▪ Waveform is square

▪ Centered at zero
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Inverter
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Squarewave Inverter
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Poor Voltage Regulation
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Vbatt = 12.4

Vbatt = 9



Inverter

▪ MPPT can be used between PV and inverter

▪ Voltage can be stepped up to 120 Vac using a transformer

▪ Some ac loads can handle “dirty” power, many cannot
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Inverter

▪ Full bridge inverter output may be filtered to better 
approximate a sine wave
• Significant harmonics are close to fundamental

• Large capacitor is required 

▪ A better approach is to use pulse width modulation (PWM) to 
control the switches
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PWM Inverters

▪ Distortion in output can be reduced using PWM

▪ Vary duty cycle over the course of the output
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PWM Inverter

▪ Switching frequency should be much greater (4kHz - 10kHz) 
than fundamental frequency (60 Hz or 50 Hz)

▪ Basic idea: vary the duty ratios within each switching period 
to replicate a sine wave
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PWM Inverter
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PWM Inverter

Dr. Louie16

Keep fundamental
frequency at 60 Hz

Increase PWM (switching) frequency



PWM Inverter
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Fundamental (60 Hz)

Switching 
frequency (500 Hz).
In practice, switching
frequency is much higher

harmonics of switching frequency



PWM Inverter

▪ Use a low-pass filter to remove frequency components greater 
than the switching frequency

▪ Result should closely approximate a sine wave
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PWM Inverter
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PWM Inverter
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PWM Inverter
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PWM Inverter
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Three-Phase Inverters
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Inverters

▪ Inverters tied to the grid require special performance 
characteristics
• Must be able to synchronize with the grid

• Closely follow voltage amplitude AND frequency

• Must disconnect if the grid losses power

• Must have acceptable power quality
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Grid Tied Inverters (GTI)

▪ Certain inverters can be coupled to the grid 
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Grid Connection
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By adjusting the timing (phase) 
of the inverter switching, it is 
possible to make inverter 
voltage
lead or lag grid
voltage, as well
as make the magnitude larger or 
smaller.

grid

inverter



GTI

▪ Inverters have 
large coupling 
inductors

▪ Inverter current:
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Inverter Power
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Power supplied by the inverter can be controlled by 

adjusting the inverter’s voltage magnitude and phase.

This equation may look familiar from ECEGR 3500 (synchronous generators)



Inverter Efficiency

▪ Inverter efficiency is not constant, 
and is non-linear

▪ Low efficiency at low-loading

▪ Inverter efficiency is sometimes 
reported as the “European” 
efficiency, which considers 
different operating points
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Effects of PV on the Grid

▪ Let

▪ We can show that: 
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Inverter Waveforms

Dr. Louie31

Inverter producing
at unity power factor



Grid Connection

▪ Note: voltage at the inverter end of the distribution line is low 
(113V)
• Other customers on the line will be affected

▪ Some inverters are able to adjust phase so that the power 
factor can be controlled (e.g. supply power at unity power 
factor, or leading/lagging)

▪ See IEEE 1547 (Standard for Interconnecting Distributed 
Resources with Electric Power Systems)
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Grid Connection

▪ Now let

▪ We can show that: 
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Inverter Waveforms
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Inverter
current and voltage
are out of phase.



Reactive Power Control

▪ The voltage at the end of the line is improved

▪ Inverter is supplying reactive power (PF = 0.97)

▪ In general, the voltage magnitude at a node is more sensitive 
to the reactive power than the active power

▪ Adjust inverter power factor to enhance voltage regulation of 
the line
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Example Control Scheme
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Inverter Sizing

▪ Assume you have a PV power plant whose PV array is rated at 
45 kW

▪ What should the power rating of the inverter be?

▪ What factors should you consider?
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Inverter Sizing

▪ Recall that a 45 kW array will 
usually (or maybe never) produce 
45 kW

▪ Power production will vary
throughout the year

▪ Larger inverters cost additional 
money
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Inverter Sizing

▪ Consider two inverter sizes, one at 
45kW, and one at 35kW

▪ The 35kW inverter will cost
approximately 35/45 = 78% the
cost of the 45 kW inverter, but it 
will not be able to sell all of the 
energy produced by the array

▪ If the cost savings exceeds the loss
in revenue, then use the small
inverter
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Shading

Dr. Henry Louie 40



Discharge Protection
▪ Consider a PV panel connected to a battery
▪ What happens at night?

• IL = 0
• Diode can be forward biased 

• depends on number of cells in series in the module

• Battery discharges through PV
• How can we prevent this?
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Battery Charging

▪ Add a blocking diode

▪ Less efficient operation during charging
• Power loss due to diode voltage drop

▪ Prevents discharging when Vm < VB
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Blocking Diodes

▪ The same problem can occur 
when a portion of a PV 
module (or a PV module in 
string) is shaded

▪ Voltage in shaded string is 
reduced

▪ Any strings in parallel may
have current flow through 
the shaded string
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Blocking Diodes

▪ Blocking diodes installed
when strings are in parallel 
to prevent on string from 
sending current through the 
other

▪ Under unshaded operation,
there is loss associated with
the blocking diodes
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Shading
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Shading

▪ Voltage across shaded 
cell
• V30 = -V10 –V20

▪ Shaded cell is a reversed 
biased diode

▪ Power is dissipated
• Overheating and damage 

can occur

▪ Output current is severely 
reduced
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Shading
▪ Solution to shading is to use bypass diodes (blocking diodes 

not shown)
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Bypass-Diodes

Dr. Louie48

MPPT

I

Rest of the system

Current bypasses

the shaded module

shaded

module



Bypass diodes

▪ Most larger PV modules 
contain bypass diodes
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Shading

▪ Solution to shading is to use bypass diodes
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