ECEGR 4530

Renewable Energy Systems

Overview

- Introduction
- Wind Resource Modeling
- Variation with Height
- Power Curve
- Wind Power Modeling

Introduction

- Energy from wind has been harnessed for thousands of years:
 - Sailing
 - Milling
 - Pumping water
- Wind turbines operate by converting kinetic energy in the air to electrical energy

Introduction

- Wind Mill: used to mill grain
- Wind Turbine: used to generate electricity
- Wind Plant (Wind Farm): collection of wind turbines

- Movement of air on appreciable scales is caused by temperature differentials
 - Higher temperature air is less dense than cold air
- Temperature differentials (gradients) are predominately caused by uneven solar heating
 - Wind is another form of solar energy

Wind Resource (Northern Hemisphere)

- Equatorial regions receive more solar radiation than polar regions
- Warm air rises and moves toward the north
 - Earth's rotation (Coriolis Effect) imparts an east-west direction (westerlies)
 - Around 30° N the air cools and sinks
- This cooler air returns to equatorial region
 - Direction is south west (trade winds)

5km Global Wind

5km Wind Map at 80m

- At lower levels of the atmosphere, wind is also influenced by frictional forces and obstacles (mountains, etc)
 - Very localized
- Result: wide variation in wind speed and direction
- Wind speed depends on
 - Geographic location
 - Climate
 - Height above ground
 - Terrain

- Localized scale wind regimes
- Examples
 - Shore lines: sea breezes caused by land/water temperature differentials
 - Mountain valleys or gorges: flow channeling
 - Mountain tops/down slope: mountain wave events (Chinook winds)

- Wind speed tends to exhibit patterns:
 - Semi-diurnal
 - Diurnal
 - Seasonal
 - Longer-term

 Van der Hoven spectrum distribution of kinetic energy in the wind in the frequency domain

Frequency (cycles per hour)

Wind Measurements

- Meteorological (Met) stations/towers contain weather measurement devices
 - Wind speed (anemometer)
 - Wind direction
 - Pressure
 - Other

- Wind speeds at greater distance from ground level tend to be higher
 - Wind shear

15

- Less turbulence caused by ground friction
- Important considering wind turbine hub heights are 80 m, but measurements may be taken at much lower heights

Dr. Louie

Low wind

16

Credit: Danielle Isbell

$$\frac{V_{hub}}{V_{meas}} = \frac{\ln(\frac{Z_{hub}}{Z_0})}{\ln(\frac{Z_{meas}}{Z_0})}$$

Where

V_{hub}: wind speed at hub height (m/s)

V_{meas}: measured wind speed (m/s)

Z_{hub}: height of the wind turbine hub (m)

Z_{meas}: height of measurement (m)

Z₀: roughness length (m)

Roughness Length

0.00001 m
0.0002 m
0.0005 m
0.003 m
0.008 m
0.010 m
0.03 m
0.05 m
0.10 m
0.25 m
0.5 m
1.5 m
3.0 m

Compute the wind speed at a hub height of 90 m if the measurement from a 10 m anemometer is 3 m/s, given the terrain is:

Dr. Louie

1. Few trees

19

2. City center

■ Few trees:
$$\frac{V_{hub}}{V_{meas}} = \frac{\ln(\frac{Z_{hub}}{Z_0})}{\ln(\frac{Z_{meas}}{Z_0})} \Rightarrow V_{hub} = 3 \times \frac{\ln(\frac{90}{0.1})}{\ln(\frac{10}{0.1})} = 4.43 \text{m/s}$$

■ City Center:
$$\frac{V_{hub}}{V_{meas}} = \frac{\ln(\frac{Z_{hub}}{Z_0})}{\ln(\frac{Z_{meas}}{Z_0})} \Rightarrow V_{hub} = 3 \times \frac{\ln(\frac{90}{3})}{\ln(\frac{10}{3})} = 8.48 \text{m/s}$$

Wind Resource in the US

U.S. Wind Map at 80m

Wind Resource Classes

		Mean Wind Speed (m/s)	Wind Power Density (W/m²)
	Class	at 50m	at 50m
suitable for large-scale development	1	<5.6	<200
	2	5.6-6.4	200-300
	3	6.4-7.0	300-400
	4	7.0-7.5	400-500
	5	7.5-8.0	500-600
	6	8.0-8.8	600-800
	7	>8.8	>800

How do these density values compare with irradiance?

Available Power

Kinetic energy in moving air:

$$E_{air} = \frac{1}{2} mv^2$$

» Available Power

- ullet Let the mass of air ℓ meters in length pass through a surface each second
- Mass of air that has passed through a circular cross section 1 m² each second
 - $m = 1\ell\rho$
- Where:
 - ρ : is the density of air kg/m³
 - Usually 1.23 kg/m³, but may vary

» Available Power

Substituting:

- $m = \ell \rho$ into
- $E_{air} = \frac{1}{2} mv^2 = \frac{1}{2} \ell \rho v^2$

Computing power

- $P_{air} = E_{air}/s = \frac{1}{2} \ell \rho v^2/s$ Note: s is seconds
- Substituting $\ell/s = v$ yields:

•
$$P_{air} = \frac{1}{2} \rho v^3$$

Available Power

- Cubic relationship between wind speed and power
 - $P_{\text{air}} = \frac{1}{2} \rho \mathbf{v}^3$
- Very important to place wind turbines in high wind speed locations

 Wind speeds (and power) tend to exhibit more variability and uncertainty than solar irradiance

- To determine if a location is suitable for development (i.e. will be profitable) developers rely on probabilistic models of wind speed
- This usually involves installing temporary anemometers for a period of 6 months 2 years
- Models can be formed based upon the data

- Wind speed can be considered a random variable v
- We can describe the likelihood that v will be within a particular range through its Probability Density Function (PDF), f(v)

For a random variable x with a Normal (Gaussian)
 Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

- Where
 - μ: mean
 - σ^2 : variance

• Probability that x will be between x_1 and x_2 is found through

integration
$$p[x_{1} \leq x \leq x_{2}] = \int_{x_{1}}^{x_{2}} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2\sigma^{2}}} dx$$

$$0.9$$

$$0.8$$

$$0.7$$

$$0.6$$

$$0.6$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.2$$

$$0.1$$

$$0.2$$

$$0.1$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.2$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.6$$

$$0.6$$

$$0.7$$

$$0.6$$

$$0.7$$

$$0.7$$

$$0.8$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

Probability that x will be between 0 and 1 is found through

integration

Cumulative Distribution Function

■ Cumulative Distribution Function (CDF) provides information on the probability that $x \le x_1$

Integral of the PDF

$$F(x_1) = p[x \le x_1] = \int_{-\infty}^{x_1} f(x) dx$$

$$0.8$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.7$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

Cumulative Distribution Function

- Probability that x will be between 0 and 1 is found by subtracting F(1) F(0)
 - 0.84-0.5=0.34

34

- PDF of the wind resource can be modeled by collecting a number of samples from a met tower
- Normalized histogram of those samples will resemble (hopefully) a common PDF

- Histogram of wind speed measurements
- Observations
 - Values > 0
 - Peaked
 - Long tail

 Based on empirical observations, wind speed tends to follow a Rayleigh (or Weibull) distribution

$$f\left(v\right) = \frac{2v}{c^2} e^{\frac{-v^2}{c^2}}$$

- Where:
 - c: a parameter of the distribution

$$c = \frac{2\overline{v}}{\sqrt{\pi}}$$

• \overline{v} : is the mean wind speed of the sample

- Mean wind speed is NOT the most probable
- Most probable wind speed occurs at 0.8v (if it perfectly follows a Rayleigh Distribution)

39

CDF of Rayleigh is:

$$F(v_1) = \int_{0}^{v_1} \frac{2v}{c^2} e^{\frac{-v^2}{c^2}} dv = 1 - e^{\frac{-v_1^2}{c^2}}$$

- We can judge how well the fitted Rayleigh distribution approximates the measurements in several ways
 - χ^2 goodness-of-fit test (parametric)
 - probability plots (non-parametric)
 - other
- We can refine the model by month, hour, wind direction

- Data from a 80 m met tower is shown
- Mean wind speed is computed to be: 7.1 m/s

Write the equation of the best-fit Rayleigh Distribution

$$c = \frac{2\overline{v}}{\sqrt{\pi}} = 8.03$$

$$f(v) = \frac{2v}{8.03^2} e^{\frac{-v^2}{8.03^2}}$$

Compute the probability that the wind speed will be less than 3 m/s

 Compute the probability that the wind speed will be less than 3 m/s

$$F(3) = 1 - e^{\frac{-3^2}{8.03^2}} = 0.13$$

$$F(0) = 1 - e^{\frac{-0^2}{8.03^2}} = 0$$

■ 13% of the time the wind will be <3 m/s

Wind Power Modeling

- Now that we have our wind resource modeled, we need to determine how much energy a wind turbine will produce
- Capacity Factor is an appropriate metric
- CF by:
 - Hour
 - Month
 - Direction

Wind Power Modeling

Distribution of Power in Wind

Cubic relationship between wind speed and wind power

