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Introduction

» Faraday’s Law is the basis for transformer operation

* Application of Faraday’s Law requires knowledge of flux
density

* How can these quantities be computed for a given physical
arrangement?
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Ferromagnetic Materials

» Experience a strong attractive force to an applied magnetic
field

* Force can be several thousand times stronger than that in
paramagnetic materials

* Resulting magnetic field may be stronger than the applied field

" Ferromagnetic materials include
* Iron, cobalt, nickel

» Relative permeability may be several thousand (compared
with 1.0 for free space)
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Magnetic Circuit Assumptions

" Let magnetic flux be set up by a coil of wire with dc current, i
* Current establishes flux ¢ in the core
" Let there be N turns of wire on the coil
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Magnetic Circuit Elements

* Some flux does not pass through the core
* leakage flux: ¢,
* small compared to ¢

* Leakage flux can be reasonably ignored
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Magnetic Circuit Elements

Magnetic flux density might not be
uniform in a cross sectional area

Cross
section
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Magnetic Circuit Elements

* Fringing occurs 1n air gaps
" Flux density decreases (cross sectional area increases)

v

Rest of magnetic
circuit not shown
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Summary: Magnetic Circuit Assumptions

* Magnetic flux flows entirely through the magnetic material
(no leakage)

* Magnet flux density is uniform throughout the cross section
the material

" Fringing across alr-gaps is negligible
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Magnetic Circuit Observations

Flux density (flux) is less in a circuit with an air gap
Without air gap With air gap

Red: 2.5

Red: 1.0

Note: circuits have same dimensions, but the zoom is different.
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Magnetic Circuit Observations

Field intensity is low in iron (high permeability)
and high in air gap (low permeability)

Without air gap With air gap

Red: 10000

Red: 1500

Note: circuits have same dimensions, zoom is different.
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Magnetic Circuit Observations

air

Also note: flux “prefers” path of high permeability.
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Magnetic Circuit Observations

How does the
flux density in

this segment
/ compare to the

others?

[~

Assume uniform depth
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Magnetic Circuit Observations
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Magnetic Circuit Analysis

* We are often interested in designing magnetic circuits that
maximize the flux through a winding or across an air gap

* The flux through a portion of a magnetic circuit depends on:
* The source magnetic material

* The physical properties of the magnetic circuit
» Size (length, cross-sectional area)
* Material

Dr. Henry Louie SEATTLE



Magnetic Circuit Analysis

Let ¢ be the mean length of the magnetic path (m)

€=t by + bq Ty,
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Magnetomotive Force (mmif)

* The current enclosed by the closed path through the core is
(Ampere’s Law) ¢H-d¢=Ni=¢

* where
* ¥: magnetomotive force (A-t)
. . . . 4
* mmf is analogous to voltage in a circuit A
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Flux in Magnetic Circuits

* Assuming that H is uniform in the material, then
H¢ = Ni

* The magnetic flux density in the material is also uniform and
B=uH-= MTNI

= The flux is:

¢=BA=E%A
* A:cross sectional area of the material (m?)
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Exercise

Which path (red, blue or green) results in the greatest mmf?

Cross section is
uniform
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Exercise

Which path (red, blue or green) results in the greatest mmf?
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The mmf is the same. The same number of C_ﬁH-d /=Ni= 9
Ampere-turns is enclosed by each loop (Ni). <
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Magnetic Circuit Analysis

mmf is the same, no matter which path is used
Ni = Hfagfa + Habgab + Hbegbe + Hefgef
- Hfagfa + Habgab + Hbcgbc + Hcdgcd + Hdegde + Hefgef
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Magnetic Circuit Analysis
Ni = Hdagda + Habgab + Hbcgbc + Hcdgcd
B B B B

F = ,ja Ca "‘Tabfab +%€bc "‘TCdEm using: H=B/pu
B B B B A
¥ —( dagda"‘ abgab'|' bCgbc"’ Cdgd)_
u u u u A
l, 0o
§ = O, Aa + Oap A using: ¢ = BA
b
by
l:d)b Cross section is
( uniform
? C
cd
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Magnetic Circuit Analysis

C 14 {4
— d ~“bc
¥ (I)da ° + (I)ab A - + (I)Cd A -
Since flux entering a boundary =
(I) — (I)da — (I)ab = (I)bC = (I)Cd - flux leaving the boundary
L L $B-ds =0
— (I)( da ab bc cd) /

Au Au A;,t Au
F =0(Ry + Ry + R +NRy) R = L R: reluctance (A-t/Wb)

uA
b
———e 04
l:d)b‘ Cross section is
uniform
____/‘
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Magnetic Circuit Analysis

F =Ry, + R, + R +Ry) Equation can be modeled and
f ' . ' solved like a circuit. Important!
resistance
voltage
8¢ Circuit equivalent
current

"(Rab

SEATTLE



Magnetic Circuits

= Note that
_F _NifAp <

. : E 1
= For electric circuits Analogous equations

i \J \
= — = —
R — €

. o: conductivity (S/m)

* Ohm’s law for magnetic circuits # = ¢R
 mmf = flux x reluctance

* Checking the units
+ A-t = Wb x (A-t/Wb) = A-t
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Magnetic Circuits

Voltage, v (volt) mmf, F (A-turns)

Current, i (Ampere) magnetic flux, ¢, (Wb)

Resistance, R (Ohm) Reluctance, R, (A-turns/Wb)

Conductivity, o (S/m) Permeability, u (H/m)
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Magnetic Circuit Analysis

KVL and KCL and all other circuit theorems apply to equivalent
electric circuit.
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Magnetic Circuit Analysis

* Note: linear circuits assumed in analogy, therefore the
magnetic circuit must be linear
* Linear magnetic circuit = constant permeability

* Ferromagnetic materials do not have constant permeability (see BH
curve)

* Non-linear magnetic circuits can be solved iteratively
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Example

* Compute the flux flowing through the material given:

ci=1A

« N=700

* u, = 1000 (assumed to be constant)

18 cm
i L7 .
— ° ® —>
~ s | N 10 cm ° I 4 cm
[
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Example

= Want to use: # =Ni= &R , % = ——

. A
* First compute ¢
18 cm
I 4
—> o . cm
~_=7 | N 10 cm ° I 4 cm
)
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Example

* First compute ¢
e (=18+10+18+10=0.56m

18 cm
i L7
é PA
~= J N

10 cm

4 cm

I4cm
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Example

= Want to use: # = Ni = R, m:o'—ifs
* Computing A:

A =0.04x0.04 =0.0016m?
» Computing p: 1000 x 47 x 10~

= Gives: R = 218,520 A—t/WQ)

18 cm

10 cm

° I4cm
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Example

" Solving
Z =Ni= OR
o= NF_700x1 _ 5 025 wh
R 278520
18 cm
L) L7 4 cm
[ 9 —>
~_=7 | N 10 cm ° I4cm
[ )
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sSummary

» Basic assumptions for magnetic circuit analysis:
* No leakage
* Uniform flux density
* No fringing across air-gaps

» Assumptions are reasonable for most magnetic circuits
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