16-Non-Ideal Transformers

Text 11.5
ECEGR 3500
Electrical Energy Systems
Professor Henry Louie

Magnetizing Reactance

- Non-ideal transformers do not have near infinite permeability

$$
\mathfrak{R}=\frac{\ell}{\mu \mathrm{A}} \neq 0 \quad \mathfrak{I}=\mathrm{N}_{1} \mathbf{I}_{1}-\mathrm{N}_{2} \mathbf{I}_{2}=\mathfrak{R} \Phi_{\mathrm{m}} \neq 0
$$

- Add shunt magnetizing reactance $\left(\mathrm{X}_{0}\right)$ to ideal transformer model I_{i}

Magnetizing Reactance

without load

$$
\begin{gathered}
\mathrm{N}_{1} \boldsymbol{I}_{2}^{\prime}=\mathfrak{R} \boldsymbol{\Phi}_{\mathrm{m}}+\mathrm{N}_{2} \boldsymbol{I}_{2} \\
\quad \text { (vector sum) }
\end{gathered}
$$

Exercise

- A transformer has 450 turns on the primary and 50 turns on the secondary. The primary voltage is 6000 V . If the magnetizing reactance is $j 500 \Omega$ compute:
- The no-load primary current and real power loss of the transformer
- The primary current if a load impedance of $\boldsymbol{Z}=10+\mathrm{jl5}$ is applied to the secondary.

Exercise

$$
\boldsymbol{I}_{1}=\boldsymbol{I}_{0}+\boldsymbol{I}_{2}^{\prime}=\frac{\boldsymbol{V}_{1}}{500 \angle 90^{\circ}}+0=12 \angle-90^{\circ} \mathrm{A}
$$

$$
\begin{aligned}
& \mathrm{P}_{\text {in }}=\operatorname{Re}\left\{\boldsymbol{V}_{1} \boldsymbol{I}_{1}^{*}\right\}=0 \mathrm{~W} \\
& \mathrm{P}_{\text {out }}=\operatorname{Re}\left\{\boldsymbol{V}_{2} \boldsymbol{I}_{2}^{*}\right\}=0 \mathrm{~W} \\
& \mathrm{P}_{\text {Loss }}=\mathrm{P}_{\text {in }}-\mathrm{P}_{\text {out }}=0 \mathrm{~W}
\end{aligned}
$$

Exercise

$$
\begin{aligned}
& \boldsymbol{I}_{0}=\frac{\boldsymbol{V}_{1}}{500 \angle 90^{\circ}}=12 \angle-90^{\circ} \mathrm{A} \\
& \boldsymbol{E}_{1}=\boldsymbol{V}_{1}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}} \boldsymbol{E}_{2} \\
& \boldsymbol{E}_{2}=667 \angle 0^{\circ} \mathrm{V}
\end{aligned}
$$

$$
\boldsymbol{I}_{2}=\frac{\boldsymbol{E}_{2}}{10+j 15}=36.98 \angle-56.3^{\circ} \mathrm{A}
$$

$$
\boldsymbol{I}_{1}=\boldsymbol{I}_{0}+\boldsymbol{I}_{2}^{\prime}=\boldsymbol{I}_{0}+\frac{50}{450} \boldsymbol{I}_{2}=15.59 \angle-81.6^{\circ} \mathrm{A}
$$

Core Resistance

- Non-ideal transformers have eddy current loss
- real power loss
- occurs even with no secondary load
- Model as shunt resistance
- $\mathrm{R}_{0} \gg \mathrm{X}_{0}$

Note: xfmr are designed to have large X_{0}, R_{0} values

Leakage Flux

- Non-ideal transformers have leakage flux
- Leakage flux: flux in primary(secondary) coil that is not linked to secondary (primary) coil

$$
\begin{aligned}
& \boldsymbol{\lambda}_{1}=\boldsymbol{\lambda}_{11}+\mathrm{N}_{1} \boldsymbol{\Phi}_{\mathrm{m}} \\
& \boldsymbol{\lambda}_{2}=-\boldsymbol{\lambda}_{12}+\mathrm{N}_{2} \boldsymbol{\Phi}_{\mathrm{m}} \\
& \boldsymbol{V}_{1}=\frac{\mathrm{d} \boldsymbol{\lambda}_{1}}{\mathrm{~d} t}=L_{11} \frac{\mathrm{~d} \boldsymbol{I}_{1}}{\mathrm{~d} t}+\mathrm{N}_{1} \frac{\mathrm{~d} \boldsymbol{\Phi}_{\mathrm{m}}}{\mathrm{~d} t} \\
& \boldsymbol{V}_{2}=\frac{\mathrm{d} \boldsymbol{\lambda}_{2}}{\mathrm{~d} t}=-L_{12} \frac{\mathrm{~d} \boldsymbol{I}_{2}}{\mathrm{~d} t}+\mathrm{N}_{2} \frac{\mathrm{~d} \boldsymbol{\Phi}_{\mathrm{m}}}{\mathrm{~d} t}
\end{aligned}
$$

Leakage Flux

- Model as series reactances on primary and secondary
- Xmfrs are generally designed to have low leakage reactance
- $\mathrm{X}_{1} \ll \mathrm{X}_{0}$

Winding Resistance

- Include winding resistance
- $\mathrm{R}_{1}<X_{1}, R_{2}<X_{2}$

$$
\begin{aligned}
& \boldsymbol{V}_{1}=\mathrm{R}_{1} \boldsymbol{I}_{1}+\frac{\mathrm{d} \boldsymbol{\lambda}_{1}}{\mathrm{~d} t}=\mathrm{R}_{1} \boldsymbol{I}_{1}+L_{1} \frac{\mathrm{~d} \boldsymbol{I}_{1}}{\mathrm{~d} t}+\mathrm{N}_{1} \frac{\mathrm{~d} \boldsymbol{\Phi}_{\mathrm{m}}}{\mathrm{~d} t} \\
& \boldsymbol{v}_{2}=-\mathrm{R}_{2} \boldsymbol{I}_{2}+\frac{\mathrm{d} \boldsymbol{I}_{2}}{\mathrm{~d} t}=-\mathrm{R}_{2} \boldsymbol{I}_{2}-L_{2} \frac{\mathrm{~d} \boldsymbol{I}_{2}}{\mathrm{~d} t}+\mathrm{N}_{2} \frac{\mathrm{~d} \boldsymbol{\Phi}_{\mathrm{m}}}{\mathrm{~d} t}
\end{aligned}
$$

Winding Resistance

If you were designing a transformer with the shown number of turns, would you rather:
A. use the same gauge wire on the primary and secondary
B. use larger diameter on the primary
C. use larger diameter wire on the secondary

Winding Resistance

More current is flowing through the secondary, so it requires lower resistance to dissipate the same heat. You should use larger diameter wire.

```
Side with fewer turns (lower voltage, higher current)
    has lower resistance wire
```


Example

- Let:
- $\mathrm{X}_{\mathrm{o}}=20,000 \Omega$
- $\mathrm{R}_{\mathrm{o}}=40,000 \Omega$
- $\mathrm{R}_{1}=2.56 \Omega$
- $\mathrm{R}_{2}=0.010 \Omega$
- $\mathrm{X}_{1}=3.84 \Omega$
- $\mathrm{X}_{2}=0.015 \Omega$
- $\mathrm{N}_{1}=3200$
- $\mathrm{N}_{2}=200$

Find \boldsymbol{I}_{1}, and the input power

- $\mathrm{Z}_{\text {load }}=10 \Omega$
- $\left|\mathbf{V}_{1}\right|=8000 \mathrm{~V}$

Example

- Let:
- $X_{o}=20,000 \Omega$
- $\mathrm{N}_{1}=3200$
- $\mathrm{R}_{\mathrm{o}}=40,000 \Omega$
- $\mathrm{N}_{2}=200$
- $\mathrm{R}_{1}=2.56 \Omega$
- $\mathrm{Z}_{\text {load }}=10 \Omega$
- $\mathrm{R}_{2}=0.010 \Omega$
- $\left|\mathrm{V}_{1}\right|=8000 \mathrm{~V}$

- $\mathrm{X}_{1}=3.84 \Omega$
- $\mathrm{X}_{2}=0.015 \Omega$
$a=\frac{N_{1}}{N_{2}}=\frac{3200}{200}=16$
$Z_{2}=R_{2}+j X_{2}+Z_{\text {load }}=10.01+j 0.015 \Omega$
$Z_{2}^{\prime}=a^{2} Z_{2}=2563+j 3.84 \Omega$

Example

- Let:
- $\mathrm{X}_{\mathrm{o}}=20,000 \Omega$
- $\mathrm{N}_{1}=3200$
- $\mathrm{R}_{\mathrm{o}}=40,000 \Omega$
- $\mathrm{N}_{2}=200$
- $\mathrm{R}_{1}=2.56 \Omega$
- $\mathrm{Z}_{\text {load }}=10 \Omega$
- $\mathrm{R}_{2}=0.010 \Omega$
- $\left|\mathrm{V}_{1}\right|=8000 \mathrm{~V}$

- $\mathrm{X}_{1}=3.84 \Omega$
- $\mathrm{X}_{2}=0.015 \Omega$

$$
Z_{e q 1}=R_{1}+j X_{1}+Z_{2}^{\prime}=2565+j 3.855 \Omega
$$

Example

- Let:
- $X_{o}=20,000 \Omega$
- $\mathrm{N}_{1}=3200$
- $\mathrm{R}_{\mathrm{o}}=40,000 \Omega$
- $\mathrm{N}_{2}=200$
- $\mathrm{R}_{1}=2.56 \Omega$
- $\mathrm{Z}_{\text {load }}=10 \Omega$
- $\mathrm{R}_{2}=0.010 \Omega$
- $\left|\mathrm{V}_{1}\right|=8000 \mathrm{~V}$

- $\mathrm{X}_{1}=3.84 \Omega$
- $\mathrm{X}_{2}=0.015 \Omega$
$Z_{e q}=R_{0}\left\|j X_{0}\right\| Z_{e q 1}$
$\frac{1}{Z_{e q}}=\frac{1}{R_{0}}+\frac{1}{j X_{0}}+\frac{1}{Z_{e q 1}}$
$Z_{e q}=2375+j 289.6 \Omega$

Example

- Let:
- $\mathrm{X}_{\mathrm{o}}=20,000 \Omega \quad \cdot \mathrm{~N}_{1}=3200$
- $\mathrm{R}_{\mathrm{o}}=40,000 \Omega$
- $\mathrm{N}_{2}=200$
- $\mathrm{R}_{1}=2.56 \Omega$
- $\mathrm{Z}_{\text {load }}=10 \Omega$
- $\mathrm{R}_{2}=0.010 \Omega$
- $\left|\mathrm{V}_{1}\right|=8000 \mathrm{~V}$
- $\mathrm{X}_{1}=3.84 \Omega$
- $\mathrm{X}_{2}=0.015 \Omega$

$$
\begin{aligned}
& \boldsymbol{I}_{1}=\frac{\boldsymbol{V}_{1}}{Z_{e q}}=3.32-j 0.405=3.34 \angle-6.95 \mathrm{~A} \\
& \mathrm{P}_{\text {in }}=\operatorname{Re}\left\{\boldsymbol{V}_{1} \boldsymbol{I}_{1}^{*}\right\}=26,550 \mathrm{~W}
\end{aligned}
$$

Example

- Now find the output power
- Let:
- $X_{o}=20,000 \Omega$
- $\mathrm{N}_{1}=3200$
- $\mathrm{R}_{\mathrm{o}}=40,000 \Omega$
- $\mathrm{R}_{1}=2.56 \Omega$
- $\mathrm{R}_{2}=0.010 \Omega$
- $\mathrm{X}_{1}=3.84 \Omega$
- $\mathrm{X}_{2}=0.015 \Omega$
- $\mathrm{N}_{2}=200$
- $\mathrm{Z}_{\text {load }}=10 \Omega$
- $\left|\mathbf{V}_{1}\right|=8000 \mathrm{~V}$

Example

- Now find the output power

$$
\begin{aligned}
& \boldsymbol{I}_{1}=\frac{\boldsymbol{V}_{1}}{Z_{e q}}=3.32-j 0.405=3.34 \angle-6.95 \mathrm{~A} \\
& \boldsymbol{I}_{0}=\frac{\boldsymbol{V}_{1}}{R_{0}}+\frac{\boldsymbol{V}_{1}}{j X_{0}}=0.2-j 0.4 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{I}_{2}^{\prime}=\boldsymbol{I}_{1}-\boldsymbol{I}_{0}=3.12-j 0.005=3.12 \angle-0.09^{\circ} \mathrm{A} \\
& \boldsymbol{I}_{2}=\boldsymbol{I}_{2}^{\prime} a=49.9-j 0.075=49.9 \angle-0.09^{\circ} \mathrm{A} \\
& \mathrm{P}_{\text {out }}=\left|\boldsymbol{I}_{2}\right|^{2} \operatorname{Re}\left\{Z_{\text {load }}\right\}=24,900 \mathrm{~W}
\end{aligned}
$$

Approximate Circuit

- Often desirable to simplify the transformer model
- More accurate than ideal, less accurate than exact
- Voltage drop across $\boldsymbol{Z}_{1}=R_{1}+j X_{1}$ is designed to be small

Approximate Circuit

- Move Z_{1} to other side of shunt elements
- Next, eliminate the ideal transformer by referring the secondary elements to the primary

Approximate Circuit

- Move Z_{1} to other side of shunt elements
- Next, eliminate the ideal transformer by referring the secondary elements to the primary

Approximate Circuit

- Letting:
- $R^{\prime}{ }_{2}=a^{2} R_{2}$
- $X_{2}=\mathrm{a}^{2} X_{2}$
- $Z_{\mathrm{L}}^{\prime}=\mathrm{a}^{2} Z_{\mathrm{L}}$
- $V_{2}=\mathrm{a} V_{2}$

Approximate Circuit

- Combine series elements

$$
\begin{aligned}
& R_{\mathrm{e} 1}=R_{1}+R_{2}^{\prime} \\
& X_{\mathrm{e} 1}=X_{1}+X_{2}^{\prime}
\end{aligned}
$$

It is also possible to refer to the impedances from the secondary side.

Approximate Circuit

- Further approximations are possible
- Ignore shunt branch
- Ignore resistances
- Problem statement will indicate which model to use

Example

- Consider a single-phase xfmr with the following specifications:
- primary turns: 10
- secondary turns: 5
- winding resistance: 0.2 Ohms
- leakage reactance: 0.6 Ohms
- infinite permeability
- If the primary is connected to a 1000 V source and the secondary to a 5 Ohm load, find the power supplied to the load
- Assume the xfmr impedances are referred from the primary and include the secondary impedances

Example

First calculate the ratio:

$$
a=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=2
$$

transform the impedance
$\boldsymbol{Z}_{1}=\mathrm{a}^{2} \boldsymbol{Z}_{2}=20 \Omega$

redraw the circuit

Example

$$
\begin{aligned}
& \boldsymbol{I}_{1}=\frac{1000 \angle 0}{20.2+j 0.6}=49.48 \angle-1.7^{\circ} \mathrm{A} \\
& \mathrm{P}=\left|\boldsymbol{I}_{1}^{2}\right| Z_{\mathrm{L}}^{\prime}=48.97 \mathrm{~kW}
\end{aligned}
$$

Example

Another approach keeping
the ideal transformer element:

$$
\begin{aligned}
& \boldsymbol{I}_{1}=\frac{1000 \angle 0}{20.2+j 0.6}=49.48 \angle-1.7^{\circ} \mathrm{A} \\
& \boldsymbol{E}_{1}=\boldsymbol{V}_{1}-\boldsymbol{I}_{1}(0.2+\mathrm{j} 0.6)=989.66 \angle-1.7^{\circ} \mathrm{V} \\
& \boldsymbol{V}_{2}=\boldsymbol{E}_{2}=\left(989.66 \angle-1.7^{\circ}\right)\left(\frac{1}{\mathrm{a}}\right)=494.83 \angle-1.7 \mathrm{~V} \\
& \boldsymbol{I}_{2}=\left(49.48 \angle-1.7^{\circ}\right)(2)=98.96 \angle-1.7^{\circ} \mathrm{A} \\
& \mathrm{P}_{2}=\left|\mathbf{V}_{2}\right|\left|\mathbf{I}_{2}\right| \cos (0)=48.97 \mathrm{~kW}
\end{aligned}
$$

Reading [on your own]

- 11.5.2 Transformer Efficiency
- 11.5.3 Voltage Regulation

Summary

- Non-ideal xfmrs include: magnetization reactance, leakage reactance, winding resistance and core loss
- Approximations can be made to simplify circuit analysis (series impedances are small, shunt impedances are large)

