16-Solar Thermal Basics

ECEGR 4530

Renewable Energy Systems

Overview

- Introduction
- Concentrating Solar Power (CSP) Plant Principles
- CSP Technologies
- Concentration Ratio
- CSP Efficiency
- Stagnation

Introduction

- Solar radiation is converted to thermal energy when it is absorbed by an object
- Typical irradiance value is 1000 W/m²

Introduction

- Three types of solar-thermal systems
 - Active solar heating: a separate collector is used
 - Passive solar heating: collection is integrated into the design of a building
 - Solar thermal engines: similar to active, but the thermal energy is used to drive an generator

Concentrating Solar Power (CSP)

- Concentrator: none
- Receiver: a small pool (1 m²) laying on the ground containing 100 liters of water
- Assume:
 - no reflection
 - no energy lost to surroundings

- Ambient water temperature: 15° C
- After one hour: 3.6 MJ of solar radiation have been absorbed
- Assume:
 - no reflection
 - no energy lost to surroundings
- What is the temperature rise?

• How much has the temperature risen?

$$\Delta T = \frac{\Delta Q}{mc_h} = \frac{3.6MJ}{(100)(4186)} = 8.637 \, ^{\circ}C$$
(specific heat of water is 4186 J/K)

- We now have water at 23.6 °C
- Can we use this heated water to create electricity?

- We cannot use it to generate electricity efficiently
- Temperature is too low

Carnot Efficiency

 Upper limit on the efficiency of a process operating between two temperatures is dictated by the Carnot Efficiency

$$\eta_c = 1 - \frac{T_L}{T_H} = \frac{T_H - T_L}{T_H}$$

- Where
 - η_C : is the Carnot efficiency
 - T_L: is the cold reservoir temperature (K)
 - T_H: is the hot reservoir temperature (K)

 Assuming the cold reservoir is at ambient temperature, then the maximum efficiency is

$$\eta_C = \frac{T_H - T_C}{T_H} = \frac{296 - 288}{296} \approx 3\%$$

Can you think of a more efficient design?

Concentrating Solar Power (CSP)

- Concentrator: lens
 - Assume the area of the lens shadow is 2m² (note this is NOT the surface area)
 - Diffuse irradiance (assumed to be 100 W/m² is not concentrated)
 G_b = 900 W/m²
- Only direct radiation is focused
- Irradiance on the pool: 1800W/m²

Concentrating Solar Power (CSP)

- What is the temperature of the pool after one hour under these conditions?
 - same assumptions as previous case
 - $T_{amb} = 15 \, {}^{\circ}\text{C}$

— Concentrating Solar Power (CSP)

• What is the temperature of the pool after one hour under these conditions?

$$\Delta T = \frac{\Delta Q}{mc_h} = \frac{6.48MJ}{(100)(4186)} \approx 15.5 \, ^{\circ}C$$

$$\Rightarrow T_H = 30.5 \, ^{\circ}C$$

$$\eta_C = \frac{T_H - T_C}{T_H} \approx 5\% \quad \text{increased efficiency}$$

Concentrating Solar Power (CSP)

- Concentrator: mirrors
- Modeled from Snell's Law
- We will use G_{DNI}, assuming the mirrors track the sun absorber

Direct Normal Irradiance

Direct Normal Irradiance: beam irradiance on a surface that is normal to the beam

16

Concentrating Solar Power (CSP)

Angle of reflected beam determined from Snell's Law

Concentrating Solar Power (CSP)

- Fundamental operating premise: Concentrated Solar Power (CSP) allows for "higher quality" energy to be converted due to the higher operating temperature of the heat engine
- What CSP configurations can you think of?

Types of CSP

- Four commercial or pilot project types:
 - Parabolic trough collector (PTC)
 - Centralized receiver systems (power towers)
 - Dish/engine systems
 - Linear Fresnel reflector

» PTC

Power Tower

» Dish

Geometric concentration ratio

$$C = \frac{A_C}{A_{rec}}$$

- $C = \frac{A_C}{A_{rec}}$ A_C : area of collector
- A_{rec} : area of receiver
- "area" is interpreted as aperture area
- To heat a liquid to a high temperature, you need large collector area and/or a small receiver area

Example

- 25 mirrors with dimension 10m x 10m are used to concentrate beam irradiance (DNI) of 1000 W/m² on a receiver that is 5m x 5m. Find the:
 - geometric concentration ratio
 - irradiation received by the receiver

» Example

- 25 mirrors with dimension 10m x 10m are used to concentrate beam irradiance (DNI) of 1000 W/m² on a receiver that is 5m x 5m. Find the:
 - geometric concentration ratio
 - irradiation received by the receiver

$$C = \frac{25 \times (10 \times 10)}{(5 \times 5)} = 100$$
irradiance = $100 \times 1000 = 100kW / m^2$
irradiation = $100 \times 25 = 2.5MW$

• What prevents us from using an arbitrarily small receiver to increase the concentration ratio?

$$C = \frac{A_C}{A_{rec}}$$

- Consider a surface with aperture of 100m² that focuses solar radiation on a receiver with area 0.001m²
- What is the concentration ratio?

• What prevents us from using an arbitrarily small receiver to increase the concentration ratio?

$$C = \frac{A_C}{A_{rec}}$$

- Consider a surface with aperture of 100m² that focuses solar radiation on a receiver with area 0.001m²
- What is the concentration ratio?

$$C = \frac{100}{0.001} = 100,000$$

• What is the irradiance on the receiver (if $G_{DNI} = 1,000 \text{ W/m}^2$)?

• What is the irradiance on the receiver?

$$100,000 \times 1000 \, \text{W/m}^2 = 100 \, \text{MW/m}^2$$

- This greater than the irradiance at the surface of the Sun (about 63 MW/m²)!
- Second law of thermodynamics prevents this

The actual limit is

$$C < \left(\frac{R}{r}\right)^2 \approx 45,000$$

- R: mean distance from the Earth to the Sun
- r: radius of the Sun

- Actual concentration ratios are much smaller (< 5000), depending on the collector arrangement
- It is useful to consider the size of the reflected image of the Sun
- Sun does not appear as a point, it appears as a disc

Side Note

- Angle subtended by the moon is also about 0.53°
- This is why a "Ring of Fire" eclipse can occur

Source: National Geographic

Reflected Image

Sun's image

reflected image of the Sun will always have a target-to-mirror solid angle equal to 0.53⁰ Sun's rays cannot be focused to a single point!

SP Process

• CSPs concentrate irradiation, G_{DNI} , from the collector to receiver

$$G_{C} = \alpha CG_{DNI}$$

- G_c = irradiance from the collector (W/m²)
- α is the absorptivity (unitless, ≤ 1)

CSP Efficiency

- Temperature of the receiver, T_{rec} , increases
 - thermal energy, Q, is transferred to a working fluid in the receiver
 - as T_{rec} increases above the ambient temperature, T_{amb} , it begins to transfer heat via radiation (convection and conduction heat transfer are ignored)
 - Thermal energy is lost
 - How is the radiated power determined?

Recall the Stefan-Boltzmann Law:

$$G = \sigma T^4$$
 W/m²
 $\sigma = 5.67 \times 10^{-8}$ J/(sm²K⁴)

• If the object is not a black body, then:

$$G = \sigma \varepsilon T^4 \text{ W/m}^2$$

- ε is the emissivity of the object (unitless)
- Surrounding environment is also radiating energy toward the receiver
- net irradiance: $G_{rec} = \sigma \varepsilon (T_{rec}^4 T_{amb}^4)$

• Net flow of heat at the receiver (to be used as input to the thermodynamic cycle):

$$\dot{Q} = A_{rec}(G_C - G_{rec})$$
 Watts $\dot{Q} = A_{rec}(\alpha CG_{DNI} - \sigma \varepsilon (T_{rec}^4 - T_{amb}^4))$ Watts

Receiver efficiency:

$$\eta_{rec} = \dot{Q} / A_{rec} CG_{DNI}$$

• Efficiency:

$$\eta_{rec} = \dot{Q} / A_{rec} CG_{DNI} = \left(\alpha - \sigma \varepsilon \frac{(T_{rec}^4 - T_{amb}^4)}{CG_{DNI}} \right)$$

- Assume $T_{rec} > T_{amb}$
- What happens to the efficiency of the receiver if:
 - Concentration ratio (C) increases?
 - T_{rec} increases?
- What is the maximum efficiency?

• Efficiency:

$$\eta_{rec} = \dot{Q} / A_{rec} CG_{DNI} = \left(\alpha - \sigma \varepsilon \frac{(T_{rec}^4 - T_{amb}^4)}{CG_{DNI}} \right)$$

- assume $T_{rec} > T_{amb}$
- What happens to the efficiency of the receiver if:
 - Concentration ratio increases?
 - efficiency increases
 - T_{rec} increases?
 - efficiency decreases
- What is the maximum efficiency?
 - α

With: T_{amb} = 20 C; ε = α = .95; G_{DNI} =770 W/m²

- CSPs use heat engines
- System efficiency:

$$\eta_{CSP} = \eta_C \eta_{rec}$$

Carnot efficiency increases with temperature

$$\eta_C = \frac{T_{rec} - T_{amb}}{T_{rec}}$$

Which efficiency dominates?

A typical concentration ratio for a PTC CSP is 70. Find the receiver efficiency, Carnot efficiency and total efficiency if:

$$T_{rec} = 400 \, ^{\circ}\text{C}, T_{amb} = 20 \, ^{\circ}\text{C}; \varepsilon = \alpha = 1;$$

 $G_{DNI} = 800 \, \text{W/m}^2$

A typical concentration ratio for a PTC CSP is 70. Find the receiver efficiency, Carnot efficiency and total efficiency if:

$$T_{rec} = 400 \, ^{\circ}\text{C}, T_{amb} = 20 \, ^{\circ}\text{C}; \varepsilon = \alpha = 1;$$

 $G_{DNI} = 800 \, \text{W/m}^2$

Receiver efficiency:

$$\eta_{rec} = \left(\alpha - \sigma\varepsilon \frac{(T_{rec}^4 - T_{amb}^4)}{CG_{DNI}}\right)$$

A typical concentration ratio for a PTC CSP is 70. Find the receiver efficiency, Carnot efficiency and total efficiency if:

$$T_{rec} = 400 \, ^{\circ}\text{C}, T_{amb} = 20 \, ^{\circ}\text{C}; \varepsilon = \alpha = 1;$$

 $G_{DNI} = 800 \, \text{W/m}^2$

Receiver efficiency:

$$\eta_{rec} = \left(\alpha - \sigma \varepsilon \frac{(T_{rec}^4 - T_{amb}^4)}{CG_{DNI}}\right) = \left(1 - \sigma \frac{(673^4 - 293^4)}{70 \times 800}\right) \approx 80\%$$

A typical concentration ratio for a PTC CSP is 70. Find the receiver efficiency, Carnot efficiency and total efficiency if:

$$T_{rec} = 400 \, ^{\circ}\text{C}, T_{amb} = 20 \, ^{\circ}\text{C}; \varepsilon = \alpha = 1;$$

 $G_{DNI} = 800 \, \text{W/m}^2$

Carnot efficiency:

$$\eta_C = \frac{T_{rec} - T_{amb}}{T_{rec}}$$

A typical concentration ratio for a PTC CSP is 70. Find the receiver efficiency, Carnot efficiency and total efficiency if:

$$T_{rec} = 400 \, ^{\circ}\text{C}, T_{amb} = 20 \, ^{\circ}\text{C}; \varepsilon = \alpha = 1;$$

 $G_{DNI} = 800 \, \text{W/m}^2$

Carnot efficiency:

$$\eta_C = \frac{T_{rec} - T_{amb}}{T_{rec}} = \left(\frac{673 - 293}{673}\right) \approx 56\%$$

A typical concentration ratio for a PTC CSP is 70. Find the receiver efficiency, Carnot efficiency and total efficiency if:

$$T_{rec} = 400 \, ^{\circ}\text{C}, T_{amb} = 20 \, ^{\circ}\text{C}; \varepsilon = \alpha = 1;$$

 $G_{DNI} = 800 \, \text{W/m}^2$

Total efficiency:

$$\eta_{CSP} = \eta_C \eta_{rec}$$

A typical concentration ratio for a PTC CSP is 70. Find the receiver efficiency, Carnot efficiency and total efficiency if:

$$T_{rec} = 400 \, ^{\circ}\text{C}, T_{amb} = 20 \, ^{\circ}\text{C}; \varepsilon = \alpha = 1;$$

 $G_{DNI} = 800 \, \text{W/m}^2$

Total efficiency:

$$\eta_{CSP} = \eta_C \eta_{rec} \approx 44.8\%$$

Dr. Louie

51

