17-CSP Technologies

ECEGR 4530

Renewable Energy Systems

Overview

- State of the Industry
- Parabolic Trough Collector (PTC)
- Centralized Receiver Systems (solar towers)
- Dish
- Thermal Energy Storage
- Hybrid Systems

CSP Industry (2019)

Top Countries

- 1. Spain: 2,304 MW
- 2. U.S.: 1,758 MW
- 3. Morocco: 530 MW
- 4. South Africa: 500
- 5. Israel: 421 MW
- How does this compare to solar PV?

PTC Technology Overview

Source: Centralized Solar Thermal Power Now!, Greenpeace

SEGS VIII and SEGS IX, 80 MW each

(Photo courtesy of SkyFuel Inc.)

» PTC Overview

- PTCs are the most mature CSP technology
- Notable CSP plants
 - SEGS II-IX (354 MW total)
 - Genesis Solar Energy Project (250 MW)
 - Nevada Solar One (64-70MW)
- Efficiency gains can still occur
- Concentration ratios: 30-80
- Sizes: 30 80MW
- Best land use factor of all CSPs

PTC Costs

- Electrical energy cost: \$0.12-0.15/kWh
- Capital costs: \$2,400 3,500/kW
- Operations and maintenance: \$0.01 0.023/kWh

 Parabola: set of points on a plane that are equidistant from a point (the focus) and a line (directrix)

• All lines parallel to the axis of symmetry will reflect to the focus

■ Recall that the solid angle subtended by the Sun is 0.53° (rays are not all parallel)

Receiver cannot be a point

- Design for an acceptance angle β_a around 1° to 2°
- Less precise tracking of Sun needed

- Truncated parabola described by:
 - rim angle, φ
 - width, d
 - focus distance, f

- As rim angle increases, focal distance decreases
- PTCs: $70^{\circ} < \phi < 110^{\circ}$

Seometric Relationships $y = \frac{X^2}{4f} \text{ (eqn of a parabola)}$

$$y = \frac{X^2}{4f}$$
 (eqn of a parabola)

$$x=d/2$$

$$y = \frac{d^2}{16f}$$

$$z\sin\varphi = \frac{d}{2}$$
 Half tangent formula $z\cos\varphi = f - y$

$$\tan\left(\frac{\varphi}{2}\right) = \frac{\sin\varphi}{1 + \cos\varphi} = \frac{\frac{d}{2}}{1 + \frac{d^2}{16f}} = \frac{\frac{d}{2}}{z + f - \frac{d^2}{16f}}$$

$$\tan\left(\frac{\varphi}{2}\right) = \frac{\frac{d}{2}}{f + \frac{d^2}{16f} + f - \frac{d^2}{16f}} = \frac{d}{4f}$$

Geometric relationships

$$\frac{d}{4f} = \tan\left(\frac{\varphi}{2}\right)$$

$$\frac{f}{d} = \frac{1}{4 \tan\left(\frac{\varphi}{2}\right)}$$

Focal length/diameter relationship

$$C = \frac{\ell d}{\pi d_o \ell} = \frac{d}{\pi d_o}$$
 concentration ratio

 ℓ : length of trough

Approximation since not all of the receiver area is used

■ Consider a 4.75 m wide parabolic trough with ϕ = 110° and β_a = 1°. Find the concentration ratio

• Need to use:

$$C = \frac{d}{\pi d_0}$$

■ We must solve for do using geometry

■ Solving
$$z = \frac{d/2}{\sin \varphi} = 2.53 \text{ m}$$

$$d_0 = 2z \tan \frac{\beta_a}{2} = 0.044 \text{ m}$$

Solving for the concentration ratio

$$C = \frac{d}{\pi d_o} = 35.9$$

» Exercise

• Find the concentration ratio of the shown PTC if the rim angle is 100 degrees and the diameter of the receiver is 0.05m.

» Exercise

• Find the concentration ratio of the shown PTC if the rim angle is 100 degrees and the diameter of the receiver is 0.05m.

$$C = \frac{d}{\pi d_o} = \frac{7.5}{\pi (0.05)} = 47.75$$

Orientation

• Which way should the troughs be oriented?

Orientation

- Collector orientation influences incidence angle of the Sun
- North-South layout: large seasonal variation (3-4 times is possible), greater overall energy production
- East-West layout: even distribution of energy production
- Select orientation for specific conditions (energy prices, load, etc)

» PTC

- Troughs rotate on one axis to track the Sun
- Receiver is a tube composed of an inner pipe (carrying the working fluid) surrounded by a vacuum
- Working fluid temperature range: 150-400 °C
 - usually an oil (water use would result in high pressure at the operating temperature
- Steam turbine is used (due to the low temperature)

Solar Tower Technology Overview

Solar Tower Technology Overview

29

(Photo courtesy of Sandia National Laboratories)

Dr. Louie

Solar Tower Overview

- Research-scale plants built in the 1980s
- First commercial plants built in Spain (2007), approximately 11 MW (for now)
 - 624 mirrors
- Efficiency gains can still occur
- Concentration ratio: 500-1000
- Large land use

Solar Tower Overview

- Heliostats rotate on two axes
 - each has different angles
 - complex control

Heliostat surface is not normal to the Sun, so not entire surface area is used

Solar Tower Overview

- Capable for high temperature operation (800 °C):
 - hydrogen production or combustion turbine operation
 - efficient thermal storage (claimed to decrease overall cost of energy if included)
 - integration into fossil fuel plants

Solar Tower Costs

- Electrical energy cost: €0.14-0.20/kWh
 - expected to drop to €0.05/kWh
- Capital costs: €2,700/kW (with storage)

Parabolic Dish Overview

Source: Centralized Solar Thermal Power Now!, Greenpeace

34

(Photo courtesy of Sandia National Laboratories/Randy Montoya)

Parabolic Dish Overview

- Modular (mechanical limitations on dish size)
- 5 to 50kW
- Current applications in distributed, off-grid applications
- Large plants planned (500 MW)
- High efficiency: 30% solar-to-electric possible
- Temperatures around 700°C
- Two-axis tracking
- Highest concentration ratios (1000+)

Parabolic Dish Costs

- Electrical energy cost: € 0.15/kWh
- Capital costs: €10,000 14,000/kW
 - could drop to €7,000/kW in the short term
 - target: €1,600/kW

--- Comparison

Technology	Peak Efficiency (%)	Annual Efficiency (%)
Trough	21	10-12 up to 14-18
Power Tower	23	14-19
Dish	29	18-23

	Parabolic Trough	Central Receiver	Parabolic Dish
Applications	Grid-connected plants, mid- to high process heat (80MWe)	Grid-connected plants, high temperature process heat (10MWe)	Stand-alone, small off-grid power systems or clustered to larger grid connected dish parks (25 kwe size)
Advantages	 Commercially available operating temperature potential up to 500°C Commercially proven annual net plant efficiency of 14% Commercially proven investment and operating costs Modularity Best land-use factor of all solar technologies Lowest materials demand Hybrid concept proven Storage capability 	Good mid-term prospects for high conversion efficiencies, operating temperature potential beyond 1,000°C Storage at high temperatures Hybrid operation possible	 Very high conversion efficiencies – peak solar to net electric conversion over 30% Modularity Hybrid operation possible Operational experience of first demonstration projects
Disadvantages	The use of oil-based heat transfer media restricts operating temperatures today to 400°C, resulting in only moderate steam Qualities	Projected annual performance values, investment and operating costs still need to be proven in commercial operation Dr. Louie	Reliability needs to be improved • Projected cost goals of mass production still need to be achieved

Source: Centralized Solar Thermal Power Now!, Greenpeace

- Thermal energy at high temperature can be efficiently stored (95%)
- Allows for greater control (dispatchability) of the electrical power output of the CSP plant
- Reduces need for large generator size
- Low cost: \$25-75/kWh
- Thermal nature of CSP provides an inertia that buffers against transient changes in DNI (cloud cover) even without a discrete storage module

Two designs:

43

• single-medium storage: working fluid is the same as the storage medium

• dual-medium storage: storage medium can be iron plates, molten

salt, concrete

Dr. Louie

Integrated Solar Combined Cycle (ISCC)

Source: Centralized Solar Thermal Power Now!, Greenpeace

Wey Requirements for Solar Thermal

- Clear, cloud-free location (high DNI)
- Access to water supply
- Contiguous area of land (for large collector fields)
- Access to uncongested transmission lines

Reading

 Solar Energy Industry Association, Concentrating Solar Power Fact Sheet (on Canvas)