

Gen Sets Components

Main components:

- Fuel tank (not shown)
- Fuel and air supply system
- Engine
- Cooling & exhaust system
- Generator & excitation system

Source: https://www.powergenenterprises.com/detroit-diesel-generator

copyright 2019 www.drhenrylouie.com

Gen Sets

Available in wide range of capacities several hundred watts to a few megawatts

Portable Gen Set

Larger capacity gen sets are usually pad-mounted and placed in protective and acoustic damping enclosures

(courtesy Sigora Haiti)

Spark Ignition Versus Compression Ignition

- Compression Ignition engines are heavier, louder, vibrate more, are more expensive (up front), and emit more uncombusted hydrocarbons
- Diesel fuel can "gel" at low temperatures, but degrades slower than gasoline
- Diesel fuel might be less available and more expensive than gasoline

	Spark Ignition (gasoline)	Compression Ignition (diesel)		
Back-Up Application	\checkmark			
Continuous Use Application		\checkmark	These are general	
Fuel Storage (volume, safety)		\checkmark	characteristics only	
Lifespan		\checkmark		
Noise	\checkmark			
Physical Size (smaller)	\checkmark			
Portability	\checkmark			
Safety (of fuel)		\checkmark		

Fuel Consumption

- Fuel costs for gen sets are high
- Prices can fluctuate and consistent supply is not guaranteed
- Energy density
 - Diesel: ~37 to 39 MJ/l
 - Gasoline: ~31 to 36 MJ/l

Country	Diesel Price (\$/liter)
Angola	0.43
Botswana	0.86
India	0.97
S. Africa	1.06
Mali	1.09
Burundi	1.29
Zambia	1.43
Zimbabwe	3.19

Source: https://www.globalpetrolprices.com/diesel_prices/

copyright 2019 www.drhenrylouie.com

Capacity (kW)	25% (l/hr)	50% (l/hr) 75% (l/hr)		100% (l/hr)
10	1.3	2.5	3.5	4.3
50	4.9	8.7	12.5	16.4
100	8.3	15.9	22.3	27.6
500	39.7	73.8	89.7	118.1

Exe	rcise						
Compute the efficiency of the 10 kW gen set if loaded at 50%. Assume the energy density of diesel fuel is 39 MJ/liter							
	Capacity (kW)	25% (l/hr)	50% (l/hr)	75% (l/hr)	100% (l/hr)		
	10	1.3	2.5	3.5	4.3		
	50	4.9	8.7	12.5	16.4		
	100	8.3	15.9	22.3	27.6		
	500	39.7	73.8	89.7	118.1		
	copyright 2019 www.drhenrylouie.com						7

Wet Stacking

- When diesel gen sets operate at low loading some of the fuel is not combusted
- Oily substance can accumulate in the exhaust system and cause engine failure
- Avoid operating diesel gen sets at below 30 to 50% for prolonged periods of time

Source: D. Maalouf, Edarat Group

31

copyright 2019 www.drhenrylouie.com

Design Example: Mwase

33

Exercise Estimate the daily and annual cost of supplying the village of Mwase. Assume a 5 kW diesel gen set is used whose average consumption is 0.7 liters per hour. The cost of diesel fuel is US\$1.4/liter. 34 copyright 2019 www.drhenrylouie.com

Example Consider a mini-grid with two gen sets operated in parallel. Gen set 1 is rated at 75 kW with droop slope of 0.6, and Gen set 2 is rated at 37.5 kW with a droop slope of 0.3. Both have a no-load frequency of 50 Hz. Determine the operating frequency and the ower output by each gen set if the load increases to 60 kW.

Example

Consider a mini-grid with two gen sets operated in parallel. Gen set 1 is rated at 75 kW with droop slope of 0.6, and Gen set 2 is rated at 37.5 kW with a droop slope of 0.3. Both have a no-load frequency of 50 Hz. Determine the operating frequency and the power output by each gen set if the load increases to 60 kW.

copyright 2019 www.drhenrylouie.com

$$f_1 = f_2 = 50 - 0.6 \frac{30}{75} = 49.76$$
 Hz

