19-DC Machine Principles

ECEGR 3500

Text: Chapter 12.7

Electrical Energy Systems

Professor Henry Louie

Basic Principles of Electric Machines

- Recall that a relative motion between a conductor and constant magnetic field induces an emf
 - A coil can rotate in a fixed magnetic field
 - A fixed coil in a rotating (varying) magnetic field

$$\mathbf{F} = \int_{C} \mathrm{id}\ell \times \mathbf{B}$$

- DC machines: stationary magnetic field, rotating coil
- AC machine: stationary coils, rotating magnetic field

Basic Principles of Machines

- Generically:
 - Rotating part is known as the *rotor* (also known as the *armature* in dc machines)
 - Stationary part is known as a *stator*
- Rotor and stator are made from highly permeable material
- A small air gap between stator and rotor allows the rotor to rotate
 - Air gap consumes most of the mmf (similar to large voltage drop)

Basic Principle of Machines

- How can a constant magnetic field be set up?
 - Permanent magnet (PM)
 - Electromagnet (also known as a wound machine)
 - Both have advantages and disadvantages
- For clarity, we will assume PM DC machines for now
- We will discuss AC machines later

Consider an idealized cylindrical rotating machine with two poles (North and South)

- Ends of the coil are placed 180° apart
 - full pitch
- As the rotor rotates, one end of the coil enters N, just as the other enters S
- Note the magnetic field approximation

Assume B and dS are normalized values so that

$$| B | | dS | = 1.0$$

 If the coil is at rest, no emf is induced

$$e = -\int_{s} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{s} = -N \frac{d\Phi}{dt}$$

N = 1 for single-turn coils

• $\theta_{\rm m}$: angle of rotation (angle between **B** and **S**)

B • **S** = | **B** | | **S** |
$$\cos \theta_{\rm m} = 1.0$$

- Flux through the coil is maximum (B and S are aligned)
- Following slides: rotor is rotated CW by an external torque

- Now the coil has 30°
- Has the flux increased or decreased?
 - Decreased

$$| \, \textbf{\textit{B}} \, | \, | \, \textbf{\textit{S}} \, | \, \cos \theta_{\rm m} = 0.866$$

$$\theta_{\rm m} = 30^{\rm c}$$

- If the ends of the coil are connected to a closed circuit, what direction does the current flow due to the induced emf?
- Is the current into a and out b, or into b and out a?

 Recall that the induced current flows in such a way that the flux it creates opposes the change in flux that caused it

- If the induced current is going into a and out b, then the associated magnetic fields would be as shown
- Does this increase or decrease the flux through the coil?
 - Increases it, so it is the correct direction
 - The induced emf is therefore positive from a to b

• Flux is at a minimum

$$|\mathbf{B}||\mathbf{S}|\cos\theta_{m}=0$$

- dΦ/dt is large
 - Large voltage is induced
- Flux has still decreased, so current is still into a and out of b

Flux is now in opposite direction through coil (negative)

$$| \, \mathbf{B} \, | \, | \, \mathbf{S} \, | \, \cos \theta_{\rm m} \, = -0.50$$

 Induced current still flows into a and out of b

Flux is at its maximum negative value

$$| \, \boldsymbol{B} \, | \, | \, \boldsymbol{S} \, | \, \cos \theta_{\rm m} = -1$$

- $d\Phi/dt$ is small
 - small voltage is induced
- Flux has still decreased, so current is still into a and out of b

Flux starts to increase toward zero

$$| \mathbf{B} | | \mathbf{S} | \cos \theta_{\rm m} = -0.766$$

- Induced current should act to decrease the flux
 - What direction is the current?
 - Into b and out of a

16

- Polarity of voltage reverses
- Induced current stays in this direction until a full rotation is complete

$$\theta_{\rm m}$$
 = 220°

Observations

- Induced voltage lags flux by 90°
- Induced voltage varies as a sinusoid
- One full mechanical rotation equals one full electrical rotation (for 2-pole machines)
- Alternating current is produced

Analytically, the flux linking the coil is

$$\Phi=\Phi_{\mathsf{P}}\cos\theta$$

- Φ: flux linking the coil (Wb)
- Φ_p : flux per pole (Wb)
- θ : angular position of the coil (degrees electrical)
- The induced emf is:

Electrical and mechanical degrees are the same in 2-pole machines

$$\mathbf{e} = -\frac{d\Phi}{dt} = \Phi_{P} \sin \theta \frac{d\theta}{dt} = \Phi_{P} \omega \sin \theta$$

■ Note that $\frac{d\theta}{dt} = \omega$ is the angular frequency of the coil

Dr. Louie

19

** Exercise

- Which of the following increases the induced voltage of the generator?
 - Decreasing the angular velocity
 - Increasing the flux per pole

» Exercise

- Which of the following increases the induced voltage of the generator?
 - Decreasing the angular velocity
 - Increasing the flux per pole
 - Also increasing the angular velocity

» DC Machine

Connecting a rotor to a stationary circuit is problematic $_{\rm N}$

» DC Machine

- Coil ends a and b are attached to either half of the split ring
- Stationary brushes are used to connect the split ring to the load R
- Current flows in one direction, but it is not constant

** Exercise

What does the current waveform through the load R look like?

» Exercise

- What does the current waveform through the load R look like?
- It is not a constant, but it is unidirectional

Force on a Conductor

 Recall that a current-carrying conductor in a magnetic field experiences a force in accordance with the Lorentz Force Equation:

$$\mathbf{F} = \int_{c} \mathbf{I} d\ell \times \mathbf{B}$$
$$\mathbf{F} = i\mathbf{L} \times \mathbf{B}$$

• We will use this to understand how motors work

** Exercise

- Consider a 2-pole machine
- Assume that coil ends a and b are connected to a constant voltage source with current into coil end a and out b
- What are the directions of the force on the conductor a and b?

» Exercise

- No net force or torque in this position
- What about other positions?

Motor Action

- Torque causes shaft to rotate in CCW direction
- If current polarity is reversed, rotation is in CW direction

Motor Action

 Polarity must be reversed every half cycle to provide unidirectional rotation

Motor Action

- We can also find rotation direction by thinking of the coil as an electromagnet
- Since flux leaves the North of a magnet, the direction of the electromagnet's North is N*
- This will try to align with the South of the stator
- Hence, counterclockwise rotation

Stepper Motors (Read Chapter 12.8)

- Stepper motors allow for precise control of rotor position
- Used in robotics and high-precision processes
- Many types of stepper motors
 - Variable reluctance
 - Permanent magnet
 - Hybrid

Stepper Motor Stator

Wariable Reluctance Stepper Motor

Stator Winding Control

- Switches Q_a, Q_b, ... are controlled to energize specific stator coils to achieve
 - desired rotation
 - desired position

Stepper Motor Control

Permanent Magnet Stepper Motor

- Rotor is magnetized
- Provides better holding force and torque than variable reluctance motor
- More expensive
- "Cogging"

https://www.youtube.com/watch?v=eyqwLiowZiU

https://www.youtube.com/watch?v=1 AJkEFk7Zk

Summary

- Induced emf increases with number of poles (for a given mechanical frequency)
- Motors operate by interaction of current flowing in rotor with magnetic field produced by the stator
- Current polarity must be reversed every half-cycle for unidirectional rotation
- Brushes and split ring (commutator) needed for DC output
- Stepper motors are common when open-loop precise position and speed is needed

