09-Photovoltaics Part 3 PV Module Specifications and Operation

ECEGR 4530 Renewable Energy Systems

Overview

- PV Module Spec. Sheets
- Fill Factor
- Temperature Effects

PV Module Spec Sheets

SUNTECH

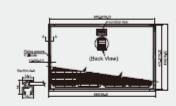
STP030S-12/Lb

Surtachh STPLI: featave total efficiency of 10.4% Which delivers the medicane power output at poak hours, lobal for of-grift and service power systems. With a 25 year warwin, the module how high efficiency and jong justing opening time wern in a wately of digenese conditions, Unique testanel cell services and types dickle design is ortikal for the module to high allow and absorb surlight and other maximum usable power per square field or leafer ang

Features and benefits

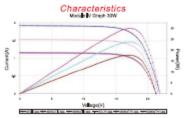
High officiency Hisraria 12 V DC for standard oxigut Voltatesting low-light performance High transport low-hor, torspand glass -Unique techniques give the parel following leatance: esthalit appearance, with schrob high wind-pressure and anow load, are easy installation -Unique schrobolizy ensure that problems of water freezing are weaping do not occur.

Design to meet unique demand of customer
 25 year power output warranty



<€

High Efficiency, High Quality PV Module


SUNTECH

Module Diagram

Note: mm(inoh)

ntech-power.com E-mailtaales@suntech-power.com December 2007

Specifications

Ce	Menocrystatise sileon scar cells 195mm-30mm	
No. of case and connections	36(6+8)	
Dimension of module	426mm+680mm×18mm	
magn	3,2340	

Temperature Coefficients

NOCT	45°C±2°C
Short-circuit current temperature coefficient	(0.055+0.01) %/4
Oper-circuit voltage temperature coefficient	-(76±10) mWK
Pack power tomperature coefficient	(3.48±3.25) 557
Power tolerance	±10%
NOCT: Nominal Operating Coll Temperati (the data is only for reference)	.re

Output

Catale	YUSHENG(1MM/G+2C)
Longiles	3000mm

Electrical Characteristics

Model	STP030B-127Lb
Open-circuit vollage (Voc)	21,89
Optimum operating vallage (Vmp)	17,49
Short-circuit current and	1_82A
Optimum operating current (Imp)	1224
Mentmum power at STC (Pmax)	30Wp
Operating temperature	-46°C to +86°C
Maximum system voltage	716V D0

STC: [redience 1990Wist]. Module temperature 25°C. AM-1,5

ww.sunisch-power.com E-mailtasies@sunisch-power.com December 2007

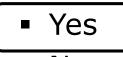
Dr. Louie

PV Module Spec Sheets

Electrical Characteristics

STP030S-12/Lb	
21.8V	
17.4V	
1.92A	
1.72A	
30Wp	
-40℃ to +85℃	
715V DC	
	21.8V 17.4V 1.92A 1.72A 30Wp -40°C to +85°C

Standard Test Conditions (STC)


- STC is defined as
 - Irradiance (G_{STC}): 1000 W/m²
 - Spectral Distribution: AM 1.5
 - T_C: 25 °C
- STC rarely occur in actual PV systems
 - $T_c > 25 \text{ °C}$ (when G = 1000 W/m²)
 - How have often does $G = 1000 \text{ W/m}^2$ in Seattle?

- Is it possible for a PV panel rated at 100 W to output more than 100 W?
 - Yes
 - No

 Is it possible for a PV panel rated at 100 W to output more than 100 W?

No

If irradiance, temperature and load conditions are more favorable than STC, then 100 W can be exceeded

PV Module Spec Sheets

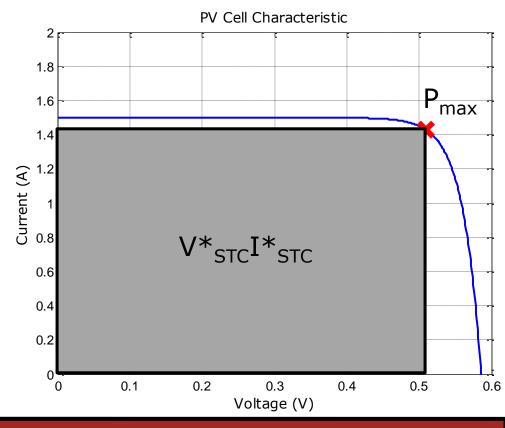
All values referenced to STC	
Electrical Characteristics	5
Model	STP030S-12/Lb
Open-circuit voltage (Voc)	21.8V
Optimum operating voltage (Vmp)	17.4V
Short-circuit current (Isc)	1.92A
Optimum operating current (Imp)	1.72A
Maximum power at STC (Pmax)	30Wp
Operating temperature	-40°C to +85°C
Maximum system voltage	715V DC
· · · · · · · · · · · · · · · · · · ·	

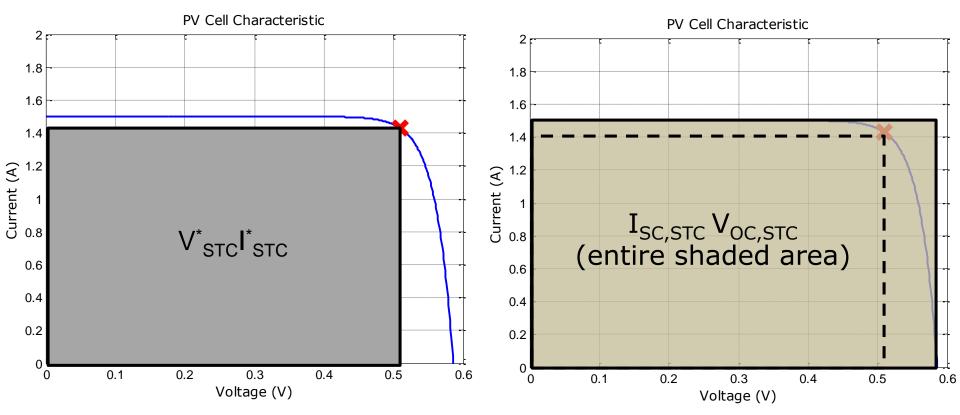
STC: Irradiance 1000W/m², Module temperature 25°C, AM=1,5

Notation

- P^*_{STC} : the maximum power output under STC
 - Sometimes units are written as Wp (Watts peak)
 - Also known as the rated power
 - Possible for power to exceed P^{*}_{STC}
- $V_{oc,STC}$: open circuit voltage of PV module under STC (V)
- I_{sc,STC} : short circuit current of PV module under STC (A)

Notation


- + V^*_{STC} : voltage of PV module corresponding to P^*_{STC} under STC (V)
- I^*_{STC} : current of PV corresponding to P^*_{STC} under STC (A)


- Theoretical maximum power output of a PV cell is found by multiplying open circuit voltage with the short circuit current
- The ratio of actual maximum power to theoretical is known as the <u>Fill Factor</u>, and provides a metric to compare PV cell quality

- The maximum power output of the cell is: $P_{STC}^* = I_{STC}^* V_{STC}^* = FI_{SC,STC} V_{OC,STC}$
- Where
 - F: fill factor
- Typical value of F
 - 0.5 to 0.83

- Assuming F is independent of:
 - Temperature
 - Irradiance
- MPP under various conditions can be estimated
 - Compute or measure V_{oc}(G)
 - Compute or measure I_{sc}(G)

 $P^{*}(G) = FI_{SC}(G)V_{OC}(G)$ (assumes constant Fill Factor)

PV Array Power Output

• Another method of estimating power:

$$P^*(G) = P^*_{STC} \times \left(\frac{G}{G_{STC}}\right)$$

- Where $G_{STC} = 1000 \text{ W/m}^2$
- Assumes:
 - Operation at MPP
 - $I^* = I^*_{STC} \times (G/G_{STC})$
 - $V^* = V_{OC}(G) = V_{oc,STC}$
- Ignores:
 - Thermal effects

• Find the fill factor and the maximum power output of the following cell if $G = 600 \text{ W/m}^2$. Ignore thermal effects. **Electrical Characteristics**

 $V_{OC}(600)$ is measured to be 44.04V

STC		STP185S-24/Ad+
Optimum Operating Voltage (Vmp)		36.4 V
Optimum Operating Current (Imp)		5.09 A
Open - Circuit Voltage (Voc)		45.0 V
Short - Circuit Current (Isc)		5.43 A
Maximum Power at STC (Pmax)		185 W
Module Efficiency		14.5 %
Operating Temperature		-40 °C to +85 °C
Maximum System Voltage		600 V DC
Maximum Series Fuse Rating		15 A
Power Tolerance		0/+5 W
STC: Irradiance 1000 W/m ² , module temperature 25 °C, AM=1.5		
No. of Cells	of Cells 72 (6 × 12)	

• Find the fill factor and the maximum power output of the following cell if $G = 600 \text{ W/m}^2$. Ignore thermal effects. Electrical Characteristics $V_{OC}(600)$ is measured to be 44.04V Optimum Operating Current (Imp) 5.05

$$P_{STC}^{*} = I_{STC}^{*} V_{STC}^{*} = FI_{SC,STC} V_{OC,STC}$$

$$F = \frac{P_{STC}^{*}}{I_{SC,STC} V_{OC,STC}} = \frac{185}{5.43 \times 45} = 0.757$$

STC	STP185S-24/Ad+	
Optimum Operating Voltage (Vmp)	36.4 V	
Optimum Operating Current (Imp)	5.09 A	
Open - Circuit Voltage (Voc)	45.0 V	
Short - Circuit Current (Isc)	5.43 A	
Maximum Power at STC (Pmax)	185 W	
Module Efficiency	14.5 %	
Operating Temperature	-40 °C to +85 °C	
Maximum System Voltage	600 V DC	
Maximum Series Fuse Rating	15 A	
Power Tolerance	0/+5 W	
STC: Irradiance 1000 W/m ² , module temperature 25 °C, AM=1.5		
No. of Cells	72 (6 × 12)	

• Find the fill factor and the maximum power output of the following cell if $G = 600 \text{ W/m}^2$. Ignore thermal effects. $V_{OC}(600)$ is measured to be 44.04V Find the following cell if $G = 600 \text{ W/m}^2$. Electrical Characteristics STC Optimum Operating Voltage (Vmp) Stoppersting Current (Imp)

$$F = 0.757$$
$$I_{SC}(G) = 5.43x \left(\frac{600}{1000}\right) = 3.258A$$
$$P^*(G) = FI_{SC}(G)V_{OC}(G) = 108.6W$$

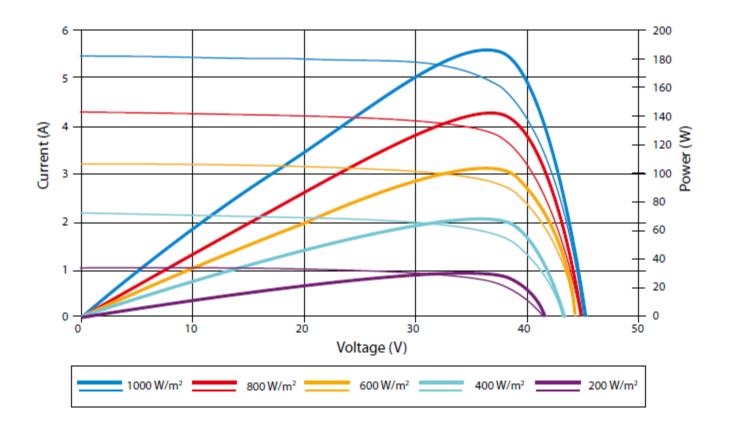
STC	STP185S-24/Ad+	
Optimum Operating Voltage (Vmp)	36.4 V	
Optimum Operating Current (Imp)	5.09 A	
Open - Circuit Voltage (Voc)	45.0 V	
Short - Circuit Current (Isc)	5.43 A	
Maximum Power at STC (Pmax)	185 W	
Module Efficiency	14.5 %	
Operating Temperature	-40 °C to +85 °C	
Maximum System Voltage	600 V DC	
Maximum Series Fuse Rating	15 A	
Power Tolerance	0/+5 W	
STC: Irradiance 1000 W/m ² , module temperature 25 °C, AM=1.5		
No. of Cells 72 (6 × 12)		

PV Array Power Output

 Alternatively, we could estimate P*(G) for G = 600 W/m² to be:

$$P^*(G) = P^*_{STC}\left(\frac{G}{G_{STC}}\right)$$

 $P^*(600) = 185\left(\frac{600}{1000}\right) = 111 \text{ W/m}^2$


Electrical Characteristics

STC	STP1855-24/Ad+
Optimum Operating Voltage (Vmp)	36.4 V
Optimum Operating Current (Imp)	5.09 A
Open - Circuit Voltage (Voc)	45.0 V
Short - Circuit Current (Isc)	5.43 A
Maximum Power at STC (Pmax)	185 W
Module Efficiency	14.5 %
Operating Temperature	-40 °C to +85 °C
Maximum System Voltage	600 V DC
Maximum Series Fuse Rating	15 A
Power Tolerance	0/+5 W

STC: Irradiance 1000 W/m², module temperature 25 °C, AM=1.5

PV Array Power Output

- PV cells often operate in areas of high solar irradiance and high ambient temperatures
- PV cells, like diodes, are temperature sensitive
- Effects of temperature:
 - Increase PV cell current
 - <u>Decrease</u> PV cell voltage

PV Module Spec Sheets

 α_v : open circuit voltage temperature coefficient at STC (%/K, %/C, mV/K or mV/C)

 percent change in voltage for every degree difference in temperature from <u>STC</u> (25° C)

Temperature Coefficients

NOCT	45°C±2°C
Short-circuit current temperature coefficient	(0.055±0_01) %/K
Open-circuit voltage temperature coefficient	–(78±10) mV/K
Peak power temperature coefficient	-(0.48±0.05) %/K
Power to erance	±10%

NOCT: Nominal Operating Cell Temperature (the data is only for reference)

PV Module Spec Sheets

 α_i : short circuit current temperature coefficient at STC (%/K or %/C)

 percent change in current for every degree difference in temperature from <u>STC</u> (25° C)

Temperature Coefficients

NOCT	45°C±2°C
Short-circuit current temperature coefficient	(0.055±0_01) %/K
Open-circuit voltage temperature coefficient	-(78±10) mV/K
Peak power temperature coefficient	-(0.48±0.05) %/K
Power to erance	±10%

NOCT: Nominal Operating Cell Temperature (the data is only for reference)

- A PV panel's rated open circuit voltage is 50 V. Let $\alpha_v = -0.37$ %/K. If G = 1000 W/m² and the panel's temperature is 30°C, then:
 - Open circuit voltage changes by:
 50(-0.0037 x (30 25)) = -0.925V
 - V_{oc} is then: 50 0.925 = 49.075 V

- A PV panel's rated short circuit current is 5 A. Let $\alpha_i = 0.04$ %/K. If G = 1000 W/m² and the panel's temperature is 30°C, then:
 - Short circuit current changes by:
 5(0.0004 x (30 25)) = 0.01A
 - I_{sc} is then: 5 + 0.01 = 5.01 A

- Mathematically:
 - $V_{OC}(T_c) = V_{OC}(25^{\circ}\text{C})[1 + \alpha_v \times (T_c 25)]$
 - V_{OC}(T_c): temperature-corrected open circuit voltage (V)
 - V_{OC}(25°C): open circuit voltage at T_C = 25°C (V)
- Important: if $G = 1000 \text{ W/m}^2$, then
 - $V_{OC}(25^{\circ}C) = V_{OC,STC}$, else
 - V_{oc}(25°C) must be adjusted for the irradiance

- Mathematically:
 - $I_{SC}(T_c) = I_{SC}(25^{\circ}\text{C})[1 + \alpha_i \times (T_c 25)]$
 - I_{SC}(T_c): temperature-corrected short circuit current (A)
 - $I_{SC}(25^{\circ}C)$: short circuit current at $T_C = 25^{\circ}C$ (A)
- Important: if $G = 1000 \text{ W/m}^2$, then
 - $I_{SC}(25^{\circ}C) = I_{SC,STC}$, else
 - I_{SC}(25°C) must be adjusted for the irradiance

- A PV panel's rated short circuit current is 5 A. Let $\alpha_i = 0.04 \ \%/K$. If G = 600 W/m² and the panel's temperature is 27°C, then:
 - Short circuit current at $G = 600W/m^2$, $T_C = 25^{\circ}C$: $I_{SC}(25^{\circ}C) = 5 \times (600/1000) = 3A$ (irradiance-adjusted current)

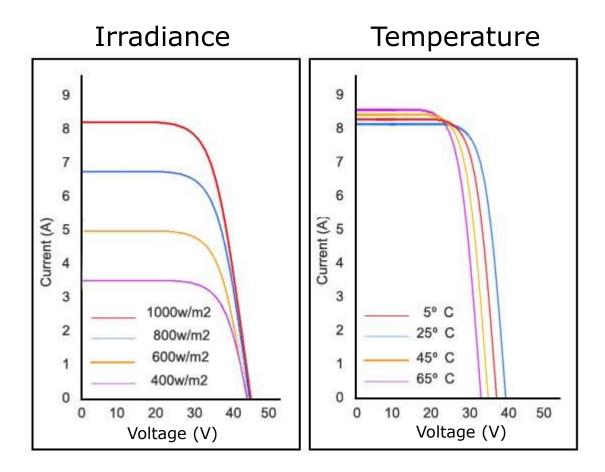
short circuit current

cel

- A PV panel's rated open circuit voltage is 50V. Let $\alpha_v = -0.37$ %/K. If G = 600 W/m² and the panel's temperature is 27°C, then:
 - Open circuit voltage at G = $600W/m^2$, T_c = $25^{\circ}C$: recall from Lecture 9:

$$V_{OC} = N_{cells} \times V_T \ln \left(\frac{I_L}{I_{Sat}}\right) \leftarrow I_L = I_{SC} = 3A$$
Let there be 80
series connected
cells in this panel $V_T = 26mV$

- A PV panel's rated open circuit voltage is 50V. Let $\alpha_v = -0.37$ %/K. If G = 600 W/m² and the panel's temperature is 27°C, then:
 - Open circuit voltage at $G = 600W/m^2$, $T_c = 25^{\circ}C$:


$$V_{OC}(25^{\circ}\text{C}) = 80 \times 0.026 \times \ln\left(\frac{3}{9.4^{-10}}\right) = 48.89V$$
(irradiance-adjusted voltage)

Open circuit voltage at G = 600W/m², T_c = 27°C
 V_{oc} = 48.89 x [1 - 0.37x(27-25)] = 45.27 V

irradiance-adjusted open circuit voltage

Irradiance/Temperature Effects

- PV voltage decrease dominates current increase
- Result: percent decrease in power is approximately equal to percent decrease in voltage

PV Module Spec Sheets

- α_p : power temperature coefficient at STC (%/K or %/C)
 - percent change in maximum power for every degree difference in temperature from <u>STC</u> (25° C)
- Mathematically:

$$P^{*}(T_{c}) = P^{*}(25^{\circ}C)[1 + \alpha_{p} \times (T_{c} - 25)]$$

- P*(T_c): temperature-corrected maximum power point (W)
- P*(25°C): maximum power at T_C = 25°C (W). Must be adjusted for irradiance if G is not 1000 W/m²

- Conversion of mV/K to %/K
 - Divide mV/K by V_{OC,STC}
- For a cell with
 - $\alpha_v = -78 \text{ mV/K}$
- With $V_{oc,STC} = 21.8 \text{ V}$
 - $\alpha_v = -0.36$ %/K (much larger than α_i)

Temperature Coefficients

NOCT	45°C±2°C
Short-circuit current temperature coefficient	(0.055±0.01) %/K
Open-circuit voltage temperature coefficient	-(78±10) mV/K
Peak power temperature coefficient	-(0.48±0.05) %/K
Power to erance	±10%

NOCT: Nominal Operating Cell Temperature

(the data is only for reference)

 To compute the change in voltage and/or current with respect to temperature, we must know the temperature of the cell

Temperature Coefficients

NOCT	45°C±2°C
Short-circuit current temperature coefficient	(0.055±0.01) %/K
Open-circuit voltage temperature coefficient	-(78±10) mV/K
Peak power temperature coefficient	-(0.48±0.05) %/K
Power tolerance	±10%
NOCT: Nominal Operating Cell Temperat (the data is only for reference)	ure

- Normal Operating Cell Temperature (NOCT) is the temperature of the cell (T_c) under the following conditions:
 - G: 0.8G_{STC}
 - Spectral Distribution: AM 1.5
 - T_{amb}: 20 °C
 - Wind speed: 1 m/s
 - No Load
- This is known as Standard Operating Conditions (SOC)

- Do NOT confuse SOC with STC
- STC is used to determine P^*_{STC} , etc
 - Note the difference in Temperature between NOCT and STC (20 °C vs 25 °C)
- Typical values of NOCT
 - 42 to 50 °C

• Cell temperature is computed by:

$$T_c - T_a = \frac{NOCT - 20}{800} G$$

• Where T_a is the ambient temperature

• Consider a PV module with the nameplate values:

Electrical Characteristics

STC	STP185S-24/Ad+
Optimum Operating Voltage (Vmp)	36.4 V
Optimum Operating Current (Imp)	5.09 A
Open - Circuit Voltage (Voc)	45.0 V
Short - Circuit Current (Isc)	5.43 A
Maximum Power at STC (Pmax)	185 W
Module Efficiency	14.5 %
Operating Temperature	-40 °C to +85 °C
Maximum System Voltage	600 V DC
Maximum Series Fuse Rating	15 A
PowerTolerance	0/+5 W

Temperature Characteristics

Nominal Operating Cell Temperature (NOCT)		45±2℃
Temperature Coefficient of Pmax	ĸ	-0.48 %/°C
Temperature Coefficient of Voc		-0.34 %/°C
Temperature Coefficient of Isc		0.037 %/°C
No. of Cells	72 (6 × 12)	

STC: Irradiance 1000 W/m², module temperature 25 °C, AM=1.5

- Under the following conditions:
 - $G = 700 \text{ W/m}^2$
 - T_a = 34 °C
- Compute the open circuit voltage and short circuit current

- First compute T_c
 - NOCT = 45 °C
 - $G = 700 \text{ W/m}^2$

$$T_{c} - T_{a} = \frac{NOCT - 20}{800}G = \frac{NOCT - 20}{800}G + T_{a}$$
$$T_{c} = \frac{45 - 20}{800}700 + 34 = 55.9 \ ^{\circ}C$$

- Now compute I_{sc}
 - T_c = 55.9 °C
 - α_i: 0.037 %/K
 - *I_{sc,STC}* = 5.43 A
- $I_{SC} = 3.801 \times [1 + 0.00037 \times (55.9-25)] = 3.84 \text{ A}$ 5.43 × 0.7

- Now compute V_{oc}
 - T_c = 55.9 °C
 - α_v: -0.34 %/K
 - $V_{oc,STC} = 45 \text{ V}$
 - N_{cells} = 72
 - Assume V_t = 25 mV, I_{sat} = 10.2⁻¹⁰ A

•
$$V_{OC} = 44.4 \times [1 - 0.0034 \times (55.9 - 25)] = 39.32 V$$

 $\bigwedge_{cells} \times V_T \ln \left(\frac{I_L}{I_{sat}} \right)$

PV Array Power Output

- Power output of PV array is:
 - T_c = 55.9 °C
 - α_p: -0.48 %/K
 - P*_{STC} = 185W

$$P^* = 129.5[1 - 0.0048(55.9 - 25)] = 110.3 \text{ W}$$

$$\begin{bmatrix}
 185 \\
 \overline{)} \\
 1000
 \end{bmatrix}
 or could use Fill Factor method to adjust for irradiance (slide 48)$$

- Sometimes α_p is not known, so this approximation can be used

$$\alpha_{p} \approx \alpha_{v} \frac{V_{OC,STC}}{V^{*}(G_{STC})}$$

• In the previous example:

$$\alpha_p \approx -0.0034 \frac{45}{36.4} = -0.0042$$
 nameplate value: -0.0048

Comparison of Power Output

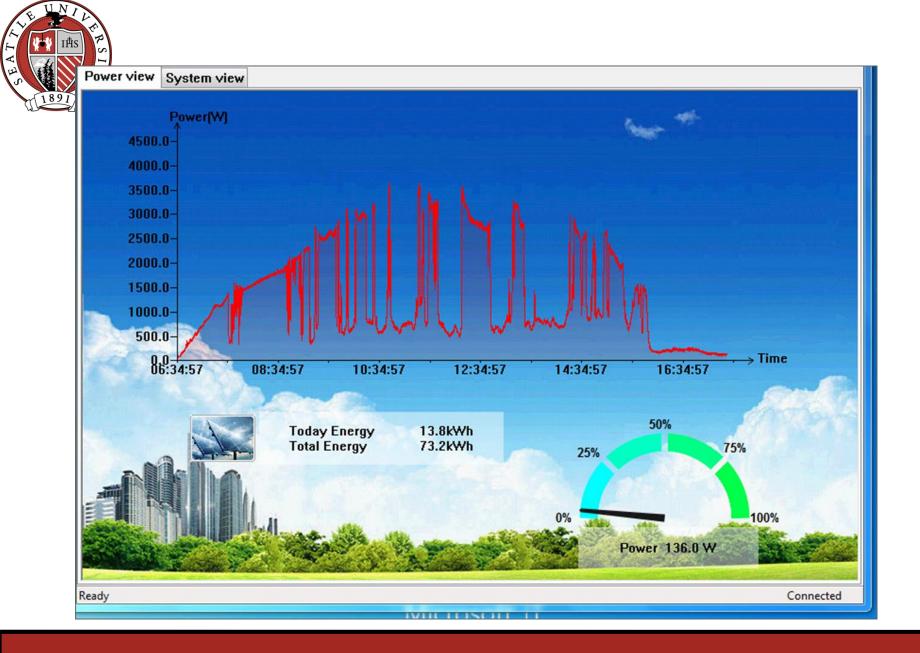
• Power as computed by various methods:

1.
$$P_{STC}^* = 185 \text{ W}$$

2. $P^* = P_{STC}^* \left(\frac{700}{1000}\right) = 129.5 \text{ W}$ Ignoring temperature
3. $P^* = FV_{OC}(700)I_{SC}(700) = 118.9 \text{ W}$ Using Fill factor, ignoring temp
4. $P^* = P_{STC}^* \left(\frac{700}{1000}\right)(1 + \alpha_v \frac{V_{OC,STC}}{V_{mp}^*}(T_c - 25)) = 112.7 \text{ W}$ Estimated α_p
5. $P^* = P_{STC}^* \left(\frac{700}{1000}\right)(1 + \alpha_p(T_c - 25)) = 110.3 \text{ W}$ Actual α_p , most accurate
Or use irradiance-adjusted short circuit current
and open circuit voltage and multiply by fill factor

Exercise

Which condition is the most favorable for PV power generation?


- Cold with high irradiance
- Hot with high irradiance
- Cold with low irradiance
- Hot with low irradiance

Exercise

Which condition is the most favorable for PV power generation?

- Cold with high irradiance
- Hot with high irradiance
- Cold with low irradiance
- Hot with low irradiance

