13-Wind Turbine Power Curves

ECEGR 4530 Renewable Energy Systems

Overview

- Power Coefficient
- Power Curve
- Empirical Power Curve
- Wind Power Modeling

Power Coefficient

- Recall the power in a mass of moving air is: $P = \frac{1}{2}A\rho v^3$
- Mechanical power available is: $P = \frac{1}{2}C_{p}A\rho v^{3}$
- C_p: is the unitless power coefficient (more on this in the next lecture)

- Relationship between power output of a wind turbine and the wind speed is known as the Power Curve
- Power Curve depends on wind turbine type, model, manufacturer

- Power curve is dictated by:
 - Cut in wind speed: minimum wind speed for power generation
 - Cut out wind speed: maximum wind speed for which the wind turbine produces power
 - Rated wind speed: wind speed at which the wind turbine produces rated (nameplate) power
- Also density of the air
 - We will assume it is constant

- For a given wind speed, the power output of a wind turbine can be computed directly from the power curve
- Power curve is non-linear
- Subdivide it into four regions
- Compute power output based upon region

- Region 1:
 - $V < V_{cut-in}$ P = 0
- Region 2: $v_{cut-in} \le v < v_{rated}$ P = h(v)
- Region 3:

$$V_{rated} \le V < V_{cut-out}$$

 $P = P_{rated}$

• Region 4: $V_{cut-out} \leq V$

 $\boldsymbol{P}=0$

Below Cut-In

- At low wind speeds no electrical power is produced
- C_p is zero
- Power in the wind is not enough to either overcome the friction of the drivetrain, or to result in positive net power production

Between cut-in and rated wind speed

- When the wind speed is between the cut-in and rated wind speed (v_r), the wind turbine generates power.
- *C*_p is maximized
- Nearly cubic wind speedturbine power relationship is observed

$$h(v) = av^3 - bP_{rated}$$

Between cut-in and rated wind speed

- h(v) can be found by:
 - fitting a line to data points
 - solving for a and b in
 h(v) = av³ bP_{rated}
 - noting that

$$P_{\text{rated}} = av_{\text{rated}}^3 - bP_{\text{rated}}$$
$$0 = av_{\text{cut-in}}^3 - bP_{\text{rated}}$$

Between rated and cut-out wind speed

- At wind speeds above rated and below cut-out (v_{co}), the wind turbine is controlled to maintain constant power production.
- Constant power is maintained by reducing C_p through active pitch control or passive stall design

At and above cut-out wind speed

- At excessively high wind speeds, the wind turbine is in danger of mechanical failure
- Turbine is aerodynamically slowed and stopped, and then mechanically locked into place to prevent rotation
- C_p is zero

Match the Power Output with the Wind Speed

Match the Power Output with the Wind Speed

Match the Power Output with the Wind Speed

- Wind turbine power output is highly variable
- Like wind speed, it is useful to develop a probabilistic model of wind turbine power

Empirical Power Curve

What causes departures in Power production from the power curve?

- Assume the following histogram of wind speed distribution is given for a potential wind plant
- How much energy will be produced each year?
 - VERY important for financing the project

- We want the PDF of the power output
 - Let **P** = g(**v**)
 - g is a function representing the power curve
 - Assume that we will first consider the GE 1.5XLE model
- PDF of power output can be found by computing f(P) = f(g(v))

- Total energy can be found by through integration (carefully accounting for units)
- In this example: 5,545 MWh/year

- What is the capacity factor?
- Theoretical maximum energy is 1.5 MW x 8760 hrs = 13,140 MWh
- CF = 5545/13140 = 42%
- Since CF is unitless, it is often used to describe the desirability of the wind resource in an area
 - Different turbines will result in different capacity factors, so the turbine type must be specified
 - CF for time of day and season of interest (due to interaction with load profile and energy price)

Example 24 x 12 table showing average capacity factor by month and hour

	Jan.	Feb.	 Nov.	Dec.
1:00	0.25	0.28	0.22	0.23
2:00	0.28	0.30	0.24	0.26
23:00	0.24	0.24	0.20	0.23
24:00	0.25	0.29	0.20	0.24

Wind Power Modeling Notes

- How do you model a <u>wind plant</u>?
- Simplest way:
 - Compute power output of 1 turbine, multiply by number of turbines in the wind plant

$$P_{wp} = NF$$

- Where
 - P: power output of the modeled turbine (MW)
 - N: number of wind turbines in the wind plant
 - P_{wp} : power output of the wind plant

wind turbines

Horse Hollow 1

Wind Power Modeling Notes

- Wind speed is not uniform over a wind plant
- Different turbines will experience different wind speeds
- Direction of wind becomes important
- Compute/estimate wind speeds at each wind turbine

$$P_{wp} = \sum_{i=1}^{N} P_i$$

- Where:
 - i: wind turbine number

Other Modeling Considerations

- Wind turbines consume power for monitoring and other supervisory control functions (few kW per turbine)
- Outages (planned and unplanned) can be common and last for hours or longer (much longer for offshore wind turbines)
 - Rare for all wind turbines to be operational in a large wind farm
- Collector system has losses (up to 5 percent)
- Air density is not constant nor consistent

Effect of Direction

 Wind Power Rose showing percent of power by direction

Reading

R. Thresher, M. Robinson and P. Veers "To Capture the Wind", IEEE Power & Energy Magazine, Vol. 5, No. 6, Dec 2007