ECEGR 3500

Text: 12.1

Electrical Energy Systems

Professor Henry Louie

- Introduction
- Rotating Magnetic Field
- Magnetic Field Rotational Speed
- Synchronous Speed

Introduction

- AC machines rely on a rotating magnetic field
- Stator houses current-carrying conductors
 - Stator is the armature

provided by rotor

- Three-phase motors are very common
- Requires a three phase source
- Under linear conditions, flux and current will have similar waveforms

direction of flux through rotor

What direction will the flux through the rotor be when $\theta_e = 120^{\circ}$?

\Rightarrow Conceptual Illustration $\theta_e = 120^\circ$

direction of flux through rotor

» Two-Pole Three-Phase Revolving Field

- Coils are spatially separated by 60°
 - Do not confuse the spatial direction with the phase of the flux
- We will analyze how the flux varies with time
- Note: if flux is negative, the direction is opposite as shown

Three-Phase AC Motor

Note: salient windings are shown. Large motors use cylindrical windings.

- Want to analyze the net flux as seen by the rotor
- General approach:
 - Consider the flux at 0, 60 and 120 degrees in time
 - Compute the a, b, c phase flux magnitudes
 - Determine resulting flux by adding a, b, c phase flux
 - Generalize results

- Maximum flux occurs in the following sequence
 - a, c', b, a', c, b' and so on
 - same relative ordering of coils around stator

SEATTLE

Dr. Louie

16

- At $\omega t = 0$ the flux is as shown
- The resulting flux, Φ_r , is found through vector addition

SEATTLE

Dr. Louie

18

$$\Phi_{\rm r} = \Phi_{\rm a} + \Phi_{\rm b} + \Phi_{\rm c}$$
$$= \frac{\sqrt{3}}{2} \phi_{\rm m} \angle 0^{\circ} + \frac{-\sqrt{3}}{2} \phi_{\rm m} \angle 240^{\circ} + 0 = 1.5 \phi_{\rm m} \angle 30^{\circ}$$

SEATTLEU

Dr. Louie

20

- At $\omega t = 60^{\circ}$ the flux is as shown
- The resulting flux is found through vector addition

resulting flux vector rotates CW in time

Observations:

- Resulting flux magnitude is constant
- Direction of the resulting flux rotates with time
- 120° phase shift in the time domain has shifted the spatial orientation of the flux 120°
- To make the field rotate in the opposite direction (counter clockwise) switch any two phases (e.g. b and c phases)

Conceptually like rotating magnets around the periphery

- For a two pole motor one full rotation of the magnetic field occurs after one complete electrical cycle
- How does a 4-pole motor affect the rotational speed of the magnetic field?

- Coils separated by 30 degrees
 - a, c', b, a', c, b' ordering is preserved
- Four poles, examine one pole-pair

60 degrees time shift resulted in spatial rotation of 30 degrees

- For a 4 pole-motor <u>one full rotation of the magnetic field</u> requires two complete electrical cycles
- To generalize: $T_s = \frac{P}{2}T$
 - T_s : period of the flux rotation (s)
 - T: period of the AC waveform (s)
 - P: number of poles

Note: do not confuse "T" for period, with "T" for torque.

- Also $n_s = \frac{1}{T_s} = \frac{2f}{P}$
 - n_s : speed of the revolving field (revolutions/s)
 - f: frequency of the AC waveform (Hz)
- <u>n_s is known as the synchronous speed</u>

Note: this and previous equations relate frequency of applied source with rotation of magnetic field, <u>not the</u> <u>actual rotation of the rotor</u>.

Write N_s , the synchronous speed in revolutions per minute (RPM) and radians per second (ω_s) as a function of the number of poles and frequency f

• Find N_s , the synchronous speed in revolutions per minute (RPM) and radians per second (ω_s)

$$N_{s} = \frac{120f}{P} \text{ (RPM)}$$
$$\omega_{s} = \frac{4\pi f}{P} = \frac{2}{P}\omega \text{ (rad/s)}$$

An 6-pole AC motor is connected to 50 Hz source. What is the synchronous speed of the motor in rpm?

An 6-pole AC motor is connected to 50 Hz source. What is the synchronous speed of the motor in rpm?

$$N_{s} = \frac{120 \times 50}{6} = 1000 \text{ rpm}$$

- Magnetic field rotates with constant magnitude
- The resulting flux is 0.5n times the single phase flux, where n is the number of phases
- The synchronous speed is inversely proportional to the number of poles and proportional to the frequency of the applied source