ECEGR 3500

Text: 12.2

Electrical Energy Systems

Professor Henry Louie

Overview

- Introduction
- Applications
- Three-Phase Induction Motor Rotation

Dr. Louie

Slip Speed

Introduction

- Practical three-phase induction motor invented by Nikola Tesla in 1883
- Induction machines do not require brushes or slip rings
- Induction motors are very common
 - 1/3 of electrical energy consumption
 - Induction generators often used in wind turbine
- "singly-fed" machine (only stator is connected to power)
 - Induction generators may be "doubly fed"

Applications

- Large range of power ratings
 - Several watts to 40,000 hp
- Can be single phase, two phase, three phase...
 - >5 hp usually three phase
- Typical applications:
 - Washers, dryers, blenders, electric vehicles, fans, pumps

Applications

• Advantages:

- Low cost
- Simple and rugged construction
- Low maintenance
- Appealing torque-speed characteristics

Disadvantages:

- consumes reactive power (lagging)
- speed cannot be easily controlled if connected to fixed-frequency AC source

— Applications

Recall: revolving magnetic field established by connecting armature (stator) windings to three-phase AC source

Consider a single rotor coil with shorted terminals

- Assume rotor is locked in place (cannot rotate)
- Net flux through the coil varies with time
 - Voltage induced in rotor, current flows

Determine the direction of the induced current for the shown rotational directions of flux.

Determine the direction of the torque on the conductors.

S • **B** increasing

S • **B** decreasing

Determine the direction of the torque on the conductors.

Torque is in the same direction as rotating field

Squirrel Cage Induction Motors

- Most common induction motor type
- Rotor made of solid conductors shorted through end rings
 - Low resistance
 - Promotes high current flow
 - No external connection

Wound Rotor Induction Motors

- Rotor wound with phases
- Slip rings used to connect rotor to external stationary circuit

Dr. Louie

- Greater control of motor
 - often used in induction generators

14

- Now assume rotor rotates at synchronous speed N_s (same speed as rotating field)
- Does any current flow?

Three-Phase Induction Motor

- The rotor must rotate at a <u>different speed than the</u> <u>synchronous speed</u>
 - rotor speed < synchronous (motor)
 - rotor speed > synchronous (generator)
- If it rotated at the same speed, the flux through the closed would be constant and no emf would be induced
- Rate of change of flux through coil is difference between field speed and mechanical speed
- For this reason, induction motors are known as <u>asynchronous</u> <u>motors</u>

Three-Phase Induction Motor

- The rotor speed is dependent on the load (torque)
- As load increases the rotor will start to slow down
- As it slows down, the rate of change of the flux through the closed loop increases, resulting in greater current and hence greater applied torque
- The rotor will speed up until the load torque equals the applied torque

Slip Speed

- Slip speed: difference in synchronous speed and rotor speed
 - Relative speed of the revolving flux ahead of the rotor

$$N_{r} = N_{s} - N_{m}$$
$$\omega_{r} = \omega_{s} - \omega_{m}$$

- N_r: slip speed (rpm)
- N_m: rotor speed (rpm)
- ω_r : slip speed (rpm)
- ω_m : rotor speed (rpm)

Slip of a motor is:

$$s = \frac{\omega_r}{\omega_s} = \frac{\omega_s - \omega_m}{\omega_s} = \frac{N_s - N_m}{N_s}$$

Note: slip is often expressed as a percent

$$0.5 \, \text{slip} = 50\% \, \text{slip}$$

Three-Phase Induction Motor

Compute the synchronous speed of a 4-pole, 50 Hz three phase induction motor. What is the percent slip if the rotor rotates at 1200 RPM?

Three-Phase Induction Motor

Compute the synchronous speed of a 4-pole, 50 Hz three phase induction motor. What is the percent slip if the rotor rotates at 1200 RPM?

$$N_s = \frac{120f}{P} = \frac{120(50)}{4} = 1500 \text{ rpm}$$

 $s = 100 \times \frac{N_s - N_m}{N_s} = 20\%$

Induced Voltage

- Voltage induced in rotor depends on rate of change of flux
- The closer to synchronous speed the rotor rotates, the smaller the change in flux
- Induced voltage in the rotor: **E**_r = s**E**_b
 - \mathbf{E}_{r} : induced voltage in the rotor (V)
 - **E**_b: induced voltage in the rotor at standstill (V)
 - s: slip

» Example

- A 2-pole induction motor is connected to a 60 Hz three phase AC supply. The maximum flux through the rotor is 0.1 Wb. Assume the rotor has a single, full-pitch coil with 10 turns.
- Compute the magnitude of the induced voltage if:
 - The rotor is locked in place
 - The rotor rotates at 3500 rpm
 - The rotor rotates at 3000 rpm

» Example

 A 2-pole induction motor is connected to a 60 Hz three phase AC supply. The maximum flux through the rotor is 0.1 Wb. Assume the rotor has a single, full-pitch coil with 10 turns.

$$|\mathbf{e}| = \frac{\omega_{e} \times \phi_{p} \times N_{c} \times s}{\sqrt{2}} = \frac{2\pi \times 60 \times 0.1 \times 10 \times 1}{\sqrt{2}} = 266.6V$$

$$|\mathbf{e}| = \frac{\omega_{e} \times \phi_{p} \times N_{c} \times s}{\sqrt{2}} = \frac{2\pi \times 60 \times 0.1 \times 10 \times 0.028}{\sqrt{2}} = 7.4V$$

$$|\mathbf{e}| = \frac{(\omega_{e} - \omega_{m}) \times \phi_{p} \times N_{c} \times s}{\sqrt{2}} = \frac{2\pi \times 60 \times 0.1 \times 10 \times 0.028}{\sqrt{2}} = 44.4V$$

General Characteristics

General Characteristics

Slip is generally low < 5%

Induction motors are nearly constant speed in this region

— General Characteristics

Unique maximum torque and power operating points

General Characteristics

High starting current

Summary

- Induction motors are the "workhorse" of the industry
- Synchronous revolving field induces current in rotor circuit
- Rotor rotates in direction of revolving field
- Rotor rotates at different speed than field
- Percent difference in speed is called "slip"
 - · Higher the slip, the slower the rotation of the rotor

