20-Renewable Energy Integration

ECEGR 4530

Renewable Energy Systems

Overview

- Introduction
- Generation
- Load
- Generator Commitment

Introduction

- The power system is NOT "plug-and-play"
- Renewable resources are not always good citizens
 - intermittent availability
 - variable power output
 - difficult to predict (in many cases)
 - reactive power consumers (if induction generators are used)

Introduction

- A level of accommodation is necessary to integrate renewable resources
- What determines how ease/difficult it is to integrate?
 - characteristic of renewable resource
 - characteristics of the power system

Introduction

- Recall that power systems are comprised of three classifications of components
 - generation
 - transmission
 - load

Generation (2015 Data)

- Total number and capacity of generators in U.S.: 20,068
 - Natural Gas: 5,774; 503,936 MW
 - Hydro: 4,020; 78,956 MW
 - Petroleum: 3,550; 42,321 MW
 - Coal: 968; 304,789 MW
 - Wind: 1098; 73,393 MW
 - Solar PV: 1633; 11,983 MW
 - Solar Thermal: 19, 1,774 MW
 - Geothermal: 197; 3,811 MW
 - Nuclear: 99; 103,860 MW
- Total nameplate capacity: 1,167,365 MW

A single power plant may have more than one generator.

Generation-Load Balance

- Power generated must equal load (plus losses) at any instant
- If load exceeds generation, kinetic energy is extracted from the rotors, slowing down their rotational speed
 - System frequency decreases
- If generation exceeds load, kinetic energy is added to the rotors, increasing their rotational speed

Dr. Louie

System frequency increases

Generation-Load Balance

- Rotating machines provide the inertia that buffer against moment-to-moment mismatches in generation and load
- If load increases for a prolonged period, the generation must also increase or the system frequency will eventually decay to zero
 - But the generators will have tripped off-line before this happens

>>>

Load Profiles

- Load profiles are influenced by:
 - Time of day
 - Day of week
 - Season
 - Special events (e.g. Super Bowl)
 - Weather (primarily temperature)
- Customer size and make up (commercial, industry, business, etc.)

Generator Commitment & Dispatch

- System operators attempt to dispatch and commit generators to match supply and demand, plus a safety margin in case of a contingency
 - Contingencies typically include: loss of generator(s), transmission line(s)
- Forecasting load, and control of generators are important in maintaining system reliability

Load Forecasting

- Load profiles can generally be accurately predicted
 - Utilities have long historical records
 - Models account for day of week, temperature, season, etc.
- As forecast horizon (amount of time in the future the forecast is for) increases, accuracy decreases
- Utilities make forecasts with different horizons and durations
 - Hour ahead (or even less)
 - Day ahead

-

- Day-ahead forecast matches actual shape
- Hour-ahead forecast has greater accuracy

Today's Outlook

Generator Commitment

- Nuclear and Coal-fired power plants
 - Long start-up times from several hours to days
 - Slow ramp rates
 - Inexpensive
- Natural Gas power plants
 - Short start-up times
 - Fast ramp rates
 - Expensive

Generator Commitment

• How should power plants be dispatched to satisfy the load?

Dr. Louie

16

Generator Commitment

Natural gas is now displacing coal

- How does the inclusion of uncontrollable renewable resources affect generator commitment?
 - We can control the resource to produce less power, but not more

Note: Total Wind Plant Capacity is 2780 MW

- Presence of wind plants disrupts the "natural" commitment of generators
- Assuming integration is done into an existing system (i.e. nonrenewable generators are already built)
 - Baseload units may not run continuously
 - Shoulder units may start-up, shut down and ramp more frequently
 - Peaking units may or may not be used more often
- All of the above threaten reliability and economy of the power system

- Factors affecting integration of renewable resources:
 - Capacity
 - Resource characteristic
 - Correlation with load
 - Variability
 - Uncertainty
 - Transmission
 - Generation Resource Mix (flexibility of the system)

— Geographic Diversity

Correlation of wind power decreases as separation of wind plants increases

--- Geographic Diversity

PDF tends toward a Normal distribution as diversity increases.

Smoothing Effect

Variation is larger for single wind plant (A) than a large system (B)

Renewable Resource Penetration

- Penetration by Energy: ratio of energy from renewable resource to energy consumed by load over a given period
- Penetration by Capacity: ratio of total wind plant capacity to peak load (annual or given period)

Renewable Resource Penetration

Renewable Resource Penetration

Penetration by Energy: 18%

■ Penetration by Capacity: 42%

33

 Assume that instead of wind plants, the renewable resources is PV plants (2,780 MW)

Solar tends to coincide with peak load

Integration of Renewable Resources

- Integration of solar power tends to be easier than with wind power
 - Easier to forecast
 - Coincides with peak load
 - Beneficial to offset air conditioning load in hot climates
- As solar penetration increases, fast-ramping generators are needed near sun set hours

Integration of Renewable Resources

Solutions:

- Curtail renewable resources
- Add energy storage
- Include forecasting
- Demand Response

What happens when there is too much wind?

- Net load: load wind power
 - Wind power potential > load late at night
- Hydro systems can be constrained due to environmental concerns
- Solution:
 - Curtail wind power production
- Result:
 - Lawsuits!

Forecasting Renewables

- Integration of renewables becomes easier if the wind, solar, etc. can be accurately forecasted
- More challenging than forecasting load, but accuracy is improving
- Geographic diversity improves forecast accuracy

Forecasting Techniques

- Approaches to forecasting depend on time scale
- Short term
 - "persistence"
 - neural networks
 - time-series models
- Long term (1-2 days)
 - Numerical weather prediction models
- Longer term
 - Climatology (historical averages)

Many new approaches being researched

Dr. Louie

42

Renewable Energy Credits

- Value of renewable energy can be split into two commodities:
 - Energy
 - "green-ness"
- Renewable Energy Credit (REC): value associated with the green-ness with 1 MWh of energy produced from a qualifying renewable resource

Renewable Energy Credits

- Just like energy, RECs can be sold by the owner of the renewable energy plant
- Who might purchase a REC?
 - Carbon-offset companies
 - Utilities that are in states with Renewable Portfolio Standards (buy REC instead of build a renewable power plant)
 - Companies/individuals wanting to reduce their carbon footprint
- REC purchase can be entirely independent of energy purchase

Renewable Energy Credits

- RECs can be bought and sold in markets
- RECs can be differentiated by generation source (Solar RECs)
- Prices vary:
 - Typically range from \$10 to \$50 per MWh

Example

46

- A Wind Plant produces 100 MWh of electricity
- Electricity is sold on the spot market for \$30/MWh
- RECs are sold at the market rate of \$10/MWh
- The Wind Plant receives $100 \times 30 + 100 \times 10 = 400
- The Wind Plant could sell less than 100 MWh of RECs, but not more

Production Tax Credit

- U.S. government has supported renewable energy through Production Tax Credit (PTC)
- For every MWh of generation, the owner is awarded a tax credit
 - Amount varies, and is inflation-adjusted
 - ~\$23/MWh
- PTC requires renewal by Congress
 - Has lapsed several times, creating volatility in the construction of wind plants
- Tax credits can be sold to other companies

» RECs and PTCs

- RECs and PTCs provide revenue streams to renewable power plants external to the energy market
- Renewable power plants can bid zero or negative prices into electricity markets and still profit

Example

- Let the PTC be \$23/MWh and the REC price be \$15/MWh
- A renewable energy power plant can offer
- -\$37/MWh for energy and make \$1 profit (ignoring their variable costs)
- In other words, they will <u>pay</u> \$37 to produce
 - 1 MWh of electricity but make \$38 in RECs and PTCs

