21-Micro Hydro Power Systems

Off-Grid Electrical Systems in Developing Countries Chapter 6.3

1

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item>

Bernoulli's Equation

As water flows down a slope in open air, assuming no friction losses and ignoring the small change in atmospheric pressure, the velocity increases and the elevation decreases so that K remains unchanged

$$\frac{1}{2}\rho_{wa}\mathbf{v}_{wa}^2 + \rho_{wa}g\mathbf{z} + p_{wa} = \mathbf{K}$$

copyright 2019 www.drhenrylouie.com

Exercise

The water resource for a MHP scheme has an effective head of 38 m. The flow rate is $0.005 \text{ m}^3/\text{s}$ (5 liters per second). Compute power available to the input of the turbine.

www.drhenrylouie.com

 $P_{wa} = \rho_{wa} \times g \times H \times Q$ $P_{wa} = 1000 \times 9.8 \times 38 \times 0.005 = 1862 \text{ W}$

(courtesy Joe Butchers)

www.drhenrylouie.com

(courtesy Joe Butchers) (courtesy Joe Butchers)

Turbine coupled to generator

Turbine Selection Several types of hydro High Head Medium Head Low Head turbines Pelton Crossflow Crossflow Pelton (Multi-jet) Turgo Propeller Most water resources for Pelton (Multi-MHP are high head or Turgo Kaplan jet), Francis medium head 25 www.drhenrylouie.com

Exercise Compute the dimensionless specific speed for a water resource with an effective head of 30 m. Assume the turbine will rotate at 1500 RPM with a developed mechanical power of 1.25 kW. Francis Propeller $S = \frac{\omega_{\rm m} \sqrt{P / \rho_{\rm wa}}}{(gH)^{5/4}} = \frac{\frac{2\pi}{60} \times 1500\sqrt{1250 / 1000}}{(9.8 \times 30)^{5/4}} = 0.144$ Turgo Specific 0.05 0.10 0.20 0.40 0.80 1.6 3.2 6.4 Speed Pelton, Crossflow Kaplan single jet Pelton, multiple jet Here we see that either a Pelton (single or multiple jet) or Turgo is an appropriate turbine 31 copyright 2019 www.drhenrylouie.com 31

Turbine Control Can be AC- or DC- coupled AC Bus Frequency Regulation → AC Load Spear valve: adjust water flow to turbine Electronic · Electronic load controller: adjust electrical power to Load MHP ballast (dummy) load to keep electrical power Controller constant Voltage Regulation **Ballast** Automatic Voltage Regulator (synchronous generator) Load Impedance controller (self-excited induction generators) Do not suddenly remove load (overspeed can result) 32 www.drhenrylouie.com

