21-Rotating Magnetic Field

ECEGR 3500
Text: 12.1
Electrical Energy Systems
Professor Henry Louie

Overview

- Introduction
- Rotating Magnetic Field
- Magnetic Field Rotational Speed
- Synchronous Speed

Introduction

- AC machines rely on a rotating magnetic field
- Stator houses current-carrying conductors
- Stator is the armature

revolving magnetic field provided by stator

revolving magnetic field provided by rotor

Rotating Magnetic Field

- Three-phase motors are very common
- Requires a three-phase source
- Under linear conditions, flux and current will have similar waveforms
$\mathbf{I}_{\mathrm{a}}=\mathrm{i}_{\text {max }} \sin (\omega \mathrm{t})$
$\mathbf{I}_{\mathrm{b}}=\mathrm{i}_{\max } \sin \left(\omega \mathrm{t}-120^{\circ}\right)$
$\mathbf{I}_{\mathrm{c}}=\mathrm{i}_{\max } \sin \left(\omega \mathrm{t}+120^{\circ}\right)$

Conceptual Illustration $\theta_{\mathrm{e}}=0^{\circ}$

b: -0.5p.u

direction of flux through rotor

Conceptual Illustration $\theta_{\mathrm{e}}=30^{\circ}$

b: Op.u.

direction of flux through rotor

Conceptual Illustration $\theta_{\mathrm{e}}=45^{\circ}$

b: 0.255 p.u.

direction of flux through rotor

Conceptual Illustration $\theta_{\mathrm{e}}=60^{\circ}$

b: 0.5p.u.

direction of flux through rotor

Conceptual Illustration $\theta_{\mathrm{e}}=90^{\circ}$

b: 0.86p.u.

a: Op.u.

direction of flux through rotor

Conceptual Illustration $\theta_{\mathrm{e}}=120^{\circ}$

What direction will the flux through the rotor be when $\theta_{\mathrm{e}}=$ 120° ?

Conceptual Illustration $\theta_{\mathrm{e}}=120^{\circ}$

b: 1p.u.

direction of flux through rotor

Two-Pole Three-Phase Revolving Field

- Coils are spatially separated by 60°
- Do not confuse the spatial direction with the phase of the flux
- We will analyze how the flux varies with time
- Note: if flux is negative, the direction is opposite as shown

Three-Phase AC Motor

Note: salient windings are shown.
Large motors use cylindrical windings.

Rotating Magnetic Field

- Want to analyze the net flux as seen by the rotor
- General approach:
- Consider the flux at 0,60 and 120 degrees in time
- Compute the a, b, c phase flux magnitudes
- Determine resulting flux by adding a, b, c phase flux
- Generalize results

Rotating Magnetic Field

- Maximum flux occurs in the following sequence
- a, c^{\prime}, b, a, c, b^{\prime} and so on
- same relative ordering of coils around stator

Rotating Magnetic Field

Let $\omega \mathrm{t}=0$. The magnitudes are:

$$
\left|\Phi_{\mathrm{a}}\right|=\phi_{\max } \sin (\omega \mathrm{t})=0
$$

$$
\begin{aligned}
& \left|\Phi_{\mathrm{b}}\right|=\phi_{\max } \sin \left(\omega \mathrm{t}-120^{\circ}\right)=\left|-\frac{\sqrt{3}}{2} \phi_{\max }\right| \\
& \left|\Phi_{\mathrm{c}}\right|=\phi_{\max } \sin \left(\omega \mathrm{t}+120^{\circ}\right)=\frac{\sqrt{3}}{2} \phi_{\max }
\end{aligned}
$$

Rotating Magnetic Field

- At $\omega t=0$ the flux is as shown
- The resulting flux, Φ_{r}, is found through vector addition $\Phi_{\mathrm{r}}=\Phi_{\mathrm{a}}+\Phi_{\mathrm{b}}+\Phi_{\mathrm{c}}$

$$
=0+\frac{-\sqrt{3}}{2} \phi_{\mathrm{m}} \angle 240^{\circ}+\frac{\sqrt{3}}{2} \phi_{\mathrm{m}} \angle 120^{\circ}=1.5 \phi_{\mathrm{m}} \angle 90^{\circ}
$$

$$
\begin{aligned}
& \Phi_{\mathrm{a}}=0 \angle 0^{\circ} \\
& \Phi_{\mathrm{b}}=-\frac{\sqrt{3}}{2} \phi_{\max } \angle 240^{\circ} \\
& \Phi_{\mathrm{c}}=\frac{\sqrt{3}}{2} \phi_{\max } \angle 120^{\circ}
\end{aligned}
$$

Rotating Magnetic Field

At $\omega t=60^{\circ}: \quad\left|\Phi_{\mathrm{a}}\right|=\phi_{\max } \sin (\omega t)=\frac{\sqrt{3}}{2} \phi_{\text {max }}$

$$
\begin{aligned}
& \left|\Phi_{\mathrm{b}}\right|=\phi_{\max } \sin \left(\omega \mathrm{t}-120^{\circ}\right)=\left|-\frac{\sqrt{3}}{2} \phi_{\max }\right| \\
& \left|\Phi_{\mathrm{c}}\right|=\phi_{\max } \sin \left(\omega \mathrm{t}+120^{\circ}\right)=0
\end{aligned}
$$

Rotating Magnetic Field

$$
\begin{aligned}
\Phi_{\mathrm{r}} & =\Phi_{\mathrm{a}}+\Phi_{\mathrm{b}}+\boldsymbol{\Phi}_{\mathrm{c}} \\
& =\frac{\sqrt{3}}{2} \phi_{\mathrm{m}} \angle 0^{\circ}+\frac{-\sqrt{3}}{2} \phi_{\mathrm{m}} \angle 240^{\circ}+0=1.5 \phi_{\mathrm{m}} \angle 30^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi_{\mathrm{a}}=\frac{\sqrt{3}}{2} \phi_{\max } \angle 0^{\circ} \\
& \Phi_{\mathrm{b}}=-\frac{\sqrt{3}}{2} \phi_{\max } \angle 240^{\circ} \\
& \Phi_{\mathrm{c}}=0 \angle 120^{\circ}
\end{aligned}
$$

Rotating Magnetic Field

Let $\omega t=120^{\circ} \quad \left\lvert\, \begin{array}{ll} & \left|\Phi_{\mathrm{a}}\right|=\phi_{\max } \sin (\omega \mathrm{t})=\frac{\sqrt{3}}{2} \phi_{\text {max }} \\ & \left|\Phi_{\mathrm{b}}\right|=\phi_{\max } \sin \left(\omega \mathrm{t}-120^{\circ}\right)=0 \\ & \left.\left|\Phi_{\mathrm{c}}\right|=\phi_{\max } \sin \left(\omega \mathrm{t}+120^{\circ}\right)=1-\frac{\sqrt{3}}{2} \phi_{\max } \right\rvert\,\end{array}\right.$

Rotating Magnetic Field

- At $\omega t=60^{\circ}$ the flux is as shown
- The resulting flux is found through vector addition

$$
\begin{aligned}
\Phi_{\mathrm{r}} & =\Phi_{\mathrm{a}}+\Phi_{\mathrm{b}}+\Phi_{\mathrm{c}} \\
= & \frac{\sqrt{3}}{2} \phi_{\mathrm{m}} \angle 0^{\circ}+0+-\frac{\sqrt{3}}{2} \phi_{\mathrm{m}} \angle 120^{\circ}=1.5 \phi_{\mathrm{m}} \angle-30^{\circ}
\end{aligned}
$$

Rotating Magnetic Field

$$
\omega t=0^{\circ}
$$

$$
\omega t=60^{\circ}
$$

$$
\omega t=120^{\circ}
$$

resulting flux vector rotates CW in time

Rotating Magnetic Field

Observations:

- Resulting flux magnitude is constant
- Direction of the resulting flux rotates with time
- 120° phase shift in the time domain has shifted the spatial orientation of the flux 120°
- To make the field rotate in the opposite direction (counter clockwise) switch any two phases (e.g. b and c phases)

Rotating Magnetic Field

Conceptually like rotating magnets around the periphery

Magnetic Field Rotational Speed

- For a 2-pole motor, one full rotation of the magnetic field occurs after one complete electrical cycle
- How does a 4-pole motor affect the rotational speed of the magnetic field?

Magnetic Field Rotational Speed

- Coils separated by 30 degrees
- a, c', b, a', c, b' ordering is preserved
- Four poles, examine one pole-pair

Magnetic Field Rotational Speed

60 degrees time shift resulted in spatial rotation of 30 degrees

$$
\theta_{\mathrm{m}}=45^{\circ}
$$

$$
\omega t=60^{\circ}
$$

$\theta_{m}=15^{\circ}$

Magnetic Field Rotational Speed

- For a 4 pole-motor one full rotation of the magnetic field requires two complete electrical cycles
- To generalize: $T_{s}=\frac{P}{2} T$
- T_{s} : period of the flux rotation (s)
- T: period of the AC waveform (s)
- P: number of poles

Note: do not confuse " T " for period, with " T " for torque.

Magnetic Field Rotational Speed

- Also $n_{s}=\frac{1}{T_{s}}=\frac{2 f}{P}$
- n_{s} : speed of the revolving field (revolutions/s)
- f: frequency of the AC waveform (Hz)
- $\underline{n}_{\text {s }}$ is known as the synchronous speed

Note: this and previous equations relate frequency of applied source with rotation of magnetic field, not the actual rotation of the rotor.

Exercise

Write N_{s}, the synchronous speed in revolutions per minute (RPM) and radians per second (ω_{s}) as a function of the number of poles and frequency f

Exercise

- Find N_{s}, the synchronous speed in revolutions per minute (RPM) and radians per second (ω_{s})

$$
\begin{aligned}
& N_{s}=\frac{120 f}{P}(R P M) \\
& \omega_{s}=\frac{4 \pi f}{P}=\frac{2}{P} \omega(\mathrm{rad} / \mathrm{s})
\end{aligned}
$$

Example

An 6-pole AC motor is connected to 50 Hz source. What is the synchronous speed of the motor in rpm?

Example

An 6-pole AC motor is connected to 50 Hz source. What is the synchronous speed of the motor in rpm?
$\mathrm{N}_{\mathrm{s}}=\frac{120 \times 50}{6}=1000 \mathrm{rpm}$

Summary

- Magnetic field rotates with constant magnitude
- The resulting flux is $0.5 n$ times the single phase flux, where n is the number of phases
- The synchronous speed is inversely proportional to the number of poles and proportional to the frequency of the applied source

