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Overview

▪ Introduction

▪ Applications

▪ Three-Phase Induction Motor Rotation

▪ Slip Speed
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Introduction

▪ Practical three-phase induction motor invented by Nikola 
Tesla in 1883

▪ Induction machines do not require brushes or slip rings

▪ Induction motors are very common
• 1/3 of electrical energy consumption

• Induction generators often used in wind turbines 

▪ “singly-fed” machine (only stator is connected to power)
• Induction generators may be “doubly fed”
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Applications

▪ Large range of power ratings 
• Several watts to 40,000 hp

▪ Can be single phase, two phase, three phase…
• >5 hp usually three phase

▪ Typical applications:
• Washers, dryers, blenders, electric vehicles, fans, pumps

Dr. Louie4



Applications

▪ Advantages:
• Low cost

• Simple and rugged construction

• Low maintenance

• Appealing torque-speed characteristics

▪ Disadvantages:
• Consumes reactive power (lagging)

• Speed cannot be easily controlled if connected to fixed-frequency 
AC source
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Applications
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Induction Motor

Recall: revolving magnetic field established by connecting 
armature (stator) windings to three-phase AC source
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Induction Motor

Consider a single rotor coil with shorted terminals
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Induction Motor
▪ Assume rotor is locked in place (cannot rotate)

▪ Net flux through the coil varies with time

• Voltage induced in rotor, current flows  
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Induction Motor

Determine the direction of the induced current for the shown 
rotational directions of flux.
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Exercise

Determine the direction of the torque on the conductors.
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Exercise

Determine the direction of the torque on the conductors.
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Squirrel Cage Induction Motors

▪ Most common induction motor type

▪ Rotor made of solid conductors shorted through 
end rings
• Low resistance

• Promotes high current flow

• No external connection
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Wound Rotor Induction Motors

▪ Rotor wound with phases

▪ Slip rings used to connect rotor to external stationary circuit

▪ Greater control of motor
• often used in induction generators
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Induction Motor

▪ Now assume rotor rotates at synchronous speed Ns (same 
speed as rotating field)

▪ Does any current flow?
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Three-Phase Induction Motor

▪ The rotor must rotate at a different speed than the 
synchronous speed
• rotor speed < synchronous (motor)

• rotor speed > synchronous (generator)

▪ If it rotated at the same speed, the flux through the closed 
would be constant and no emf would be induced

▪ Rate of change of flux through coil is difference between field 
speed and mechanical speed

▪ For this reason, induction motors are known as asynchronous 
motors
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Three-Phase Induction Motor

▪ The rotor speed is dependent on the load (torque)

▪ As load increases the rotor will start to slow down 

▪ As it slows down, the rate of change of the flux through the 
closed loop increases, resulting in greater current and hence 
greater applied torque

▪ The rotor will speed up until the load torque equals the 
applied torque
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Slip Speed

▪ Slip speed: difference in synchronous speed and rotor speed
• Relative speed of the revolving flux ahead of the rotor

• Nr: slip speed (rpm)

• Nm: rotor speed (rpm)

• r: slip speed (rad/s)

• m: rotor speed (rad/s)
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Slip

Slip of a motor is:

Note: slip is often expressed as a percent

0.5 slip = 50% slip
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Exercise

Compute the synchronous speed of a 4-pole, 50 Hz three phase 
induction motor. What is the percent slip if the rotor rotates at 
1200 RPM?
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Exercise

Compute the synchronous speed of a 4-pole, 50 Hz three phase 
induction motor. What is the percent slip if the rotor rotates at 
1200 RPM?
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Induced Voltage

▪ Voltage induced in rotor depends on rate of change of flux

▪ The closer to synchronous speed the rotor rotates, the smaller 
the change in flux

▪ Induced voltage in the rotor decreases in proportion to the 
slip:
• If the slip is zero, then the induced voltage is zero

• If the slip is 0.5, then the induced voltage is half of that when the slip 
is 1.0
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General Characteristics
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General Characteristics
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General Characteristics
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General Characteristics
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Blocked Rotor Model
▪ Consider an induction motor with a blocked rotor (rotor is 

mechanically prevented from moving)

• s = 1

▪ Identical to a transformer

▪ Equivalent per-phase circuit (assuming Y rotor, Y stator)
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Blocked Rotor Model
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Blocked Rotor Model

▪ Secondary (rotor) circuit is shorted (unless wound rotor)

• Large stator current will flow under blocked rotor or start-up conditions

▪ What happens as rotor begins to rotate (s < 1)?
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Rotating Induction Motor Model

▪ Behavior is now like a rotating transformer
• Primary operates at frequency f

• Secondary operates at frequency sf

▪ Secondary induced voltage is reduced
• Let: Er = sE2

▪ Secondary leakage reactance decreases
• Let:  jXr = sjX2

▪ Real power is delivered to the mechanical load
• Function of slip and rotor impedance

• Desirable to model in circuit
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Exercise

▪ An induction motor has a synchronous speed of 1800 rpm. 
When it operates at 1700 rpm, the induced voltage in the rotor 
is 106V.  Do you expect the induced voltage in the rotor to be 
greater than 106V or less than 106V if the rotor rotates at 1275 
rpm?
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Exercise

▪ An induction motor has a synchronous speed of 1800 rpm. When it operates at 1700 
rpm, the induced voltage in the rotor is 106V.  Do you expect the induced voltage in the 
rotor to be greater than 106V or less than 106V if the rotor rotates at 1275 rpm?

▪ Greater than 106V. 
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Induction Motor Model
▪ Note: V1, E1 I1, and E2,I2 have different frequencies (f, sf)

▪ Solving secondary (rotor) circuit:
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Induction Motor Model

▪ Customary to write rotor current as:
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An Observation

▪ Examine the previous algebraic operation:

▪ From Ohm’s Law, we see that the current is unchanged (Ia = Ib), 
but are the circuits equivalent?

▪ Example:
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An Observation
▪ Current is the same, but power is not

• Circuit a:

• Circuit b:

▪ Division by s does not preserve power

▪ Since s < 1, the new equivalent circuit is consuming power in 
addition to rotor copper loss
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Effective Resistance
▪ is the effective resistance

▪ Hypothetical, accounts for rotor copper losses and mechanical 
power developed by the rotor

▪ If s =1, effective resistance is the rotor resistance

▪ If s = 0, effective resistance is inf
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Induction Motor Model

▪ More convenient to eliminate ideal xfmr in circuit model

▪ Refer secondary side to primary (stator)

▪ Transformation ratio:

▪ Quantities become:
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Induction Motor Model
▪ Per-phase stator current: I1 = Ic + I’2

▪ Low speeds (s~1): high current 

▪ High speed (s ~0): low current
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Induction Motor Power

▪ Per-phase power delivered to the rotor:
• Copper loss

• Power developed (available to shaft)

▪ Per-phase rotor copper loss: 

▪ Per-phase power developed:
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Effective Resistance

▪ Effective resistance can be decoupled into copper loss 
resistance, and resistance representing mechanical power
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Effective Resistance
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Induction Motor Power

▪ Total input power to induction motor:

▪ Total stator copper loss: 

▪ Total stator core loss:

▪ Remaining power must be delivered to rotor (air-gap power):
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Induction Motor Power

▪ Total rotor copper loss:
• Percentage of air gap power consumed by electrical losses is s

▪ Mechanical power developed by the motor:

▪ Subtracting rotational losses yields total power output by the 
motor:
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Induction Motor Power Relationships
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Induction Motor Torque

▪ The total developed torque is:

▪ The total output torque is:
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Induction Motor Torque

▪ Torque is non-zero at starting (s =1)

▪ Torque is zero at synchronous speed (s = 0)
• I2 is zero 
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Approximate Circuit

▪ R1, X1 are designed to be minimized

▪ Rc, Xc designed to be maximized

▪ Per-phase circuit can be simplified (approximated)
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Approximate Circuit

Combine R1, X1 with R’2, X’2

• Req = R1 + R’2

• Xeq = X1 + X’2
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Approximate Circuit

▪ Further simplifications: 
• replace core resistance with constant power loss

• Assume rotational losses are constant
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Example

▪ A 60 Hz, 480-V, wye-connected induction motor has the 
following constants (referred to the stator)
• R1 = 0.322 ; R’2 = 0.196 ; X1 =0.675 ;

X’2 =0.510 ; Xc =12.5 

• Rotational and core losses: 1850 W

▪ The motor operates at a slip of 3% (3492 RPM). Compute the 
stator current and the power factor of the motor using the 
approximate model.
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Example
▪ A 60 Hz, 480-V, wye-connected induction motor has the 

following constants (referred to the stator)
• R1 = 0.322 ; R’2 = 0.196 ; X1 =0.675 ; X’2 =0.510 ; Xc =12.5 

• Rotational and core losses: 1850 W
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Example

▪ Compute stator current by KCL: I1 = Ic + I’2

▪ Compute the power factor: 

PF: cos(-36.420) = 0.805 (lagging)
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Example

Consider the motor in the previous example. 

Compute the input power and stator copper losses.
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Example

▪ The stator and copper losses are:
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Example

Consider the motor in the previous example. 

Compute the air gap power, power developed and power 
output of the motor.
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Example

Consider the motor in the previous example. 
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Example

Consider the motor in the previous example. 

Compute the torque developed and the output torque.
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Example

Consider the motor in the previous example. 

Compute the torque developed and the output torque.
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Summary

▪ Induction motors are the “workhorse” of the industry

▪ Synchronous revolving field induces current in rotor circuit

▪ Rotor rotates in direction of revolving field

▪ Rotor rotates at different speed than field

▪ Percent difference in speed is called “slip”
• Higher the slip, the slower the rotation of the rotor
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