

Why use converters and controllers?

- Simple, improvised or non-engineered off-grid systems often do not use converters or controllers
- Converters and controllers can improve efficiency and utilization of components, and prolong their life

3

Converters & Controllers Found in Off-Grid Systems

copyright 2019 www.drhenrylouie.com

Converter	Basic Function
DC-DC converter	Increases or decrease output voltage relative to input voltage
Maximum power point tracker (MPPT)	Increases the power produced by PV arrays or WECS
Solar battery charger	Charges batteries directly from PV sources
AC battery charger	Converters AC produced by generators or other sources to DC and manages battery charging
Rectifier	Converts AC to DC
Automatic voltage regulator (AVR)	Adjusts excitation to synchronous generators
Electronic load controller (ELC)	Controls power to ballast load to regulate frequency
Inverter	Converts DC to AC
Grid-tied inverter	Converts DC to AC and synchronizes with AC bus
Bi-directional inverter	Allows power to be exchanged between DC and AC buses

copyright 2019 www.drhenrylouie.com

<section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

23

DC-DC Converters

Other converters use different topologies to achieve voltage gain or reduction

Converter	Relationship
Boost	$V_{\text{out}} = \frac{1}{1-D} V_{\text{in}}$
Buck	$V_{\rm out} = DV_{\rm in}$
Buck-boost	$V_{\text{out}} = \frac{-D}{1-D}V_{\text{in}}$

