23-Synchronous Generators

ECEGR 3500

Text: 12.5

Electrical Energy Systems

Professor Henry Louie

Overview

- Excitation
- Induced frequency
- Induced EMF
- Equivalent Circuit
- Armature Reaction
- Power Relationship
- Approximate Power Relationship

Introduction

- AC machines (generators, motors) have similar stators
- Rotors are different
 - Induction
 - Synchronous

In AC generators, the emf is induced in a stationary coil. The term "armature" refers to the windings in which the emf is induced and current flows when connected to a load.

Introduction

Advantages of armature windings in the stator:

- Larger coils can be used since they are located in the stator
- High power rated slip rings can be avoided
- Easier to cool stator than rotor
- Easier to construct the armature winding if it is in the stator
- Easier to electrically insulate the stator

Stator

- Houses armature windings
- Contains large gauge coils (low resistance)
- Conductors are symmetrically arranged to form a balanced poly-phase winding
- Induced emf can be in kV range
- Power ratings can be in MVA range

Armature Windings

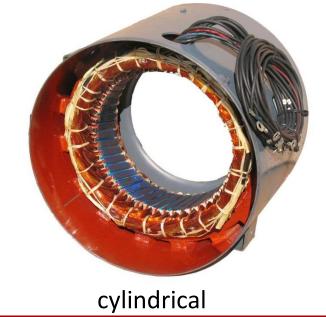
- Common for the armature (stator) windings to be three-phase
- Windings are identical, but displaced by 120° electrical
- Can be delta or wye connected (generators)
 - wye is common if higher voltage is needed
 - neutral point is grounded
- Windings are commonly double layer
 - Equal number of slots and windings

Salient vs Cylindrical

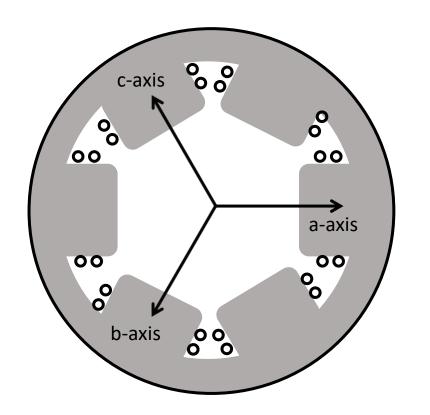
- Early machines used salient pole stators
 - Salient poles still used in rotors

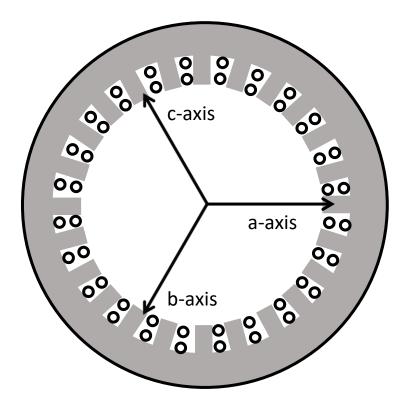
Modern machines use cylindrical stators

salient pole



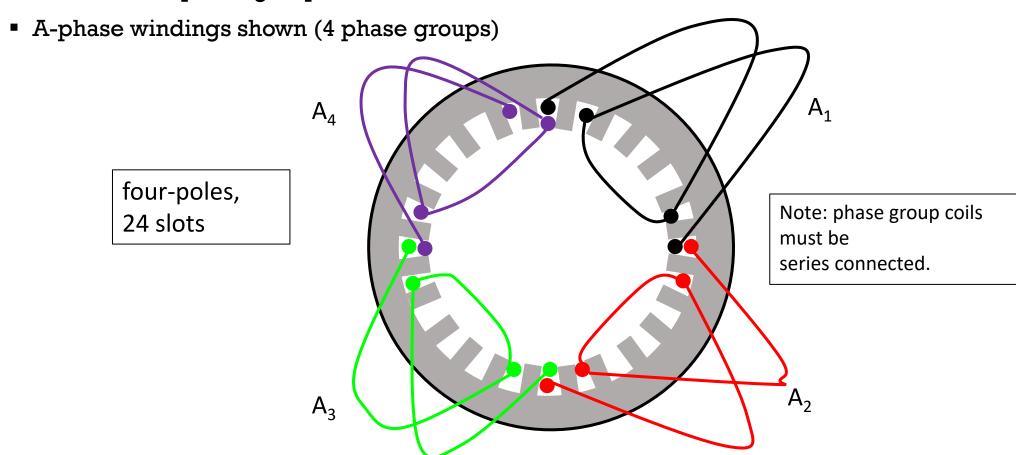
Salient-Pole vs Cylindrical





Armature Windings

Coils in each phase group are connected in series

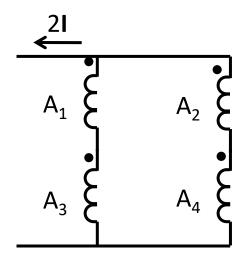


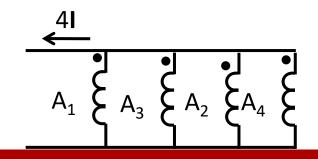
Dr. Louie

9

Winding Connections A1 A2 A3 A3 A4

low current, high voltage





high current, low voltage

Excitation

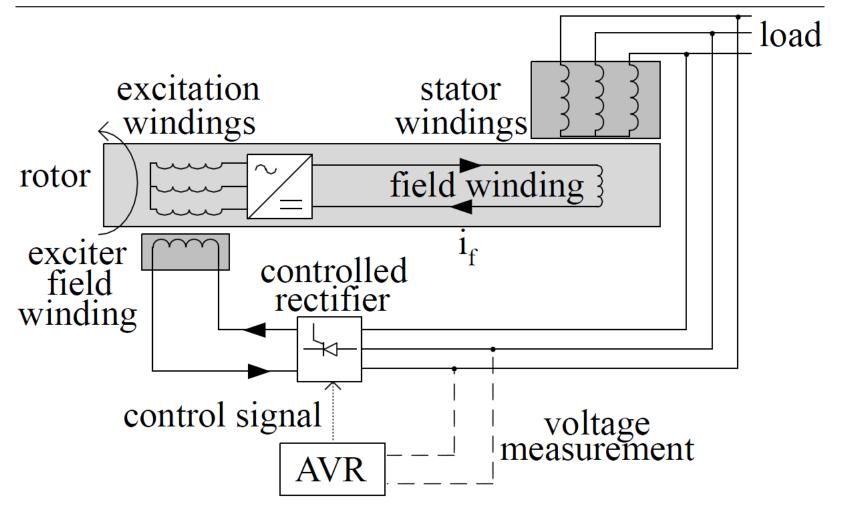
- Synchronous generators (motors) require revolving magnetic field
 - Permanent magnet
 - Field winding (dc)
- Exciter: supplies current to field winding (i_f)
 - DC generator
 - Brushless generator
 - Power rating: <3% of generator rating
- Field current is related to ϕ_p by k_f
- Automatic Voltage Regulator (AVR) controls the current to the field winding to maintain the desired terminal voltage

Excitation

load slip rings stator windings field winding rotor excitation windings brushes controlled rectifier control signal **AVR** voltage measurement

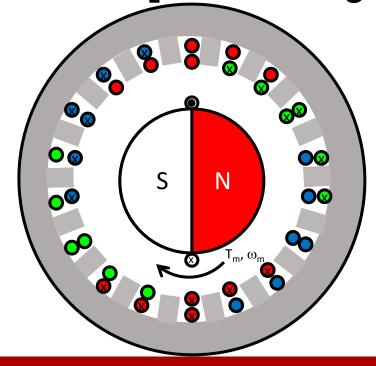
Voltage: 125 to 600VDC Automatically controlled (terminal voltage magnitude, reactive power)

Brushless Excitation



Induced Frequency

- 2-pole synchronous generator
- Balanced three-phase voltage induced

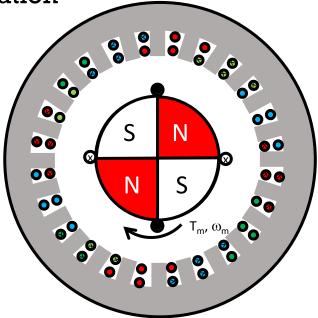


Two-pole machine: electrical frequency = mechanical frequency

Induced Frequency

- 4-pole synchronous generator
- Each coil "sees" two Norths and two Souths per rotation
 - Two electrical sinewaves for each mechanical rotation
- In general:

$$f = \frac{f_m P}{2} = \frac{N_m P}{120}$$



» Exercise

What is the fastest speed (in rpm) a generator shaft may rotate at and still produce 60Hz AC voltage?

» Exercise

What is the fastest speed (in rpm) a generator shaft may rotate at and still produce 60Hz AC voltage?

$$f = \frac{f_m P}{2} = \frac{P}{4\pi} \, \omega_m$$

$$60 = \frac{\mathsf{P}}{4\pi} \, \omega_{\mathsf{m}}$$

$$\frac{60\times 4\pi}{2}=\omega_{\text{m}}$$

$$\omega_{\rm m} = 377 \, {\rm rad/s} = 60 \, {\rm Hz} = 3600 \, {\rm rpm}$$

Prime mover shaft may rotate at higher speeds if a gearbox couples it to generator shaft

Induced EMF

- We next examine the induced emf in a synchronous generator
- Flux linking a single stator coil (ϕ_c): $\phi_c = \phi_p k_p \cos(\omega t)$
- Induced voltage in coil with N_c turns: $e_c = N_c \phi_p \omega k_p \sin(\omega t)$
- Maximum induced voltage: $E_m = N_c \phi_p \omega k_p$

 k_p : "pitch factor". A scalar value (<1) accounting for the span of the coil (1 for full pitch) Φ_p : flux per pole (Wb)

Induced EMF

■ RMS value of the induced emf:

$$\begin{split} E_{m} &= N_{c}\phi_{p}\omega k_{p} \\ |\mathbf{E}_{c}| &= \frac{1}{\sqrt{2}}E_{m} = \frac{1}{\sqrt{2}}2\pi fN_{c}k_{p}\phi_{p} = 4.44fN_{c}k_{p}\phi_{p} \end{split}$$

• Induced voltage in a phase group, accounting for the number of coils in series, pitch factor and the distribution factor, is:

$$|\mathbf{E}_{pg}| = nk_dE_c = 4.44nN_ck_pk_df\phi_p$$

 $|\mathbf{E}_{pg}| = 4.44nN_ck_wf\phi_p$
 $|\mathbf{k}_w \triangleq k_pk_d$ (winding factor)

 k_d : "distribution factor". A scalar value (<1) accounting for any overlap of the coils of the same phase (1 if the coils are in the same slot)

Induced EMF

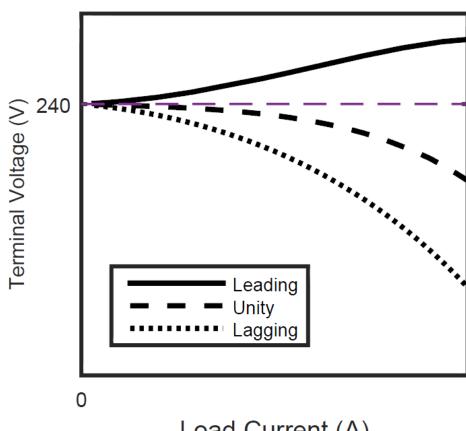
• If a generator has "a" parallel paths and P poles, then the emf per phase is:

$$|\mathbf{E}_a| = \frac{P}{a} 4.44 \text{nN}_c k_w f \phi_p$$

$$N_e \triangleq \frac{PnN_ck_w}{a}$$

- N_e: effective turns per phase
- We can then write: $|\mathbf{E}_a| = 4.44 N_e f \phi_D$

- Generator terminal voltage (V_a) of a synchronous generator depends upon the load
 - Terminal voltage may be greater or lesser than induced emf
 - Will usually be higher when the power factor is leading
 - Assumes generator is not grid-connected
- Terminal voltage is affected by:
 - Armature resistance voltage drop
 - Armature leakage reactance voltage drop
 - Armature reaction



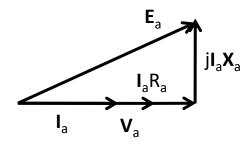
Load Current (A)

- Equivalent circuit
 - R_a: per-phase armature resistance (Ohm)
 - X_a: armature leakage reactance (Ohm)

field circuit $\begin{array}{c} R_f & jX_f \\ & \downarrow \\ &$

Equivalent Circuit
Phasor diagrams (compare magnitude of E_a, V_a)

$$\mathbf{E}_{a} = \mathbf{I}_{a}(R_{a} + jX_{a}) + \mathbf{V}_{a}$$



Unity power factor

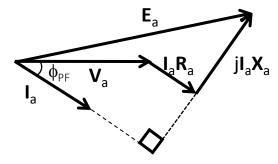
V_a: reference

I_a: in phase **V**_a (unity PF)

I_aR_a: in phase with I_a

jl_aX_a: 90° out of phase from l_a

 $E_a > V_a$



Lagging power factor

V_a: reference

 I_a : lags V_a (by ϕ_{PF})

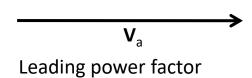
 I_aR_a : in phase with I_a

 jI_aX_a : 90° out of phase from I_a

 $E_a > V_a$

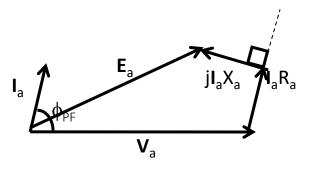
** Exercise

Draw the phasor diagram for a synchronous generator with a leading PF



» Exercise

Draw the equivalent circuit for a leading PF



$$\boldsymbol{E}_{a} = \boldsymbol{I}_{a} (\boldsymbol{R}_{a} + \boldsymbol{j} \boldsymbol{X}_{a}) + \boldsymbol{V}_{a}$$

Leading power factor

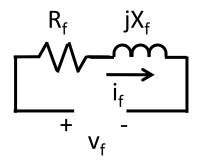
 V_a : reference I_a : leads V_a (by ϕ_{PF}) I_aR_a : in phase with I_a jI_aX_a : 90° out of phase from I_a $E_a < V_a$

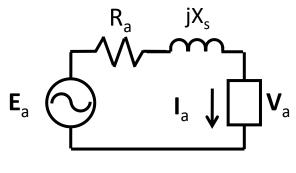
Possible for induced voltage to be greater than terminal voltage

Armature Reaction

- Flux in the armature is from two sources:
 - field winding
 - armature current (when connected to a load)
- Fluxes interact with each other
- Resulting distortion can have a profound effect on the operation of the machine

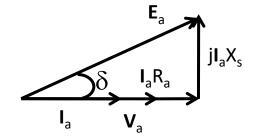
- Model armature reaction by the "synchronous reactance"
 - X_s: accounts for leakage reactance and armature reaction



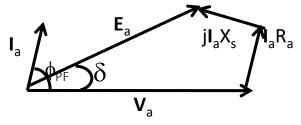


$$\boldsymbol{E}_{a} = \boldsymbol{I}_{a} (\boldsymbol{R}_{a} + \boldsymbol{j} \boldsymbol{X}_{s}) + \boldsymbol{V}_{a}$$

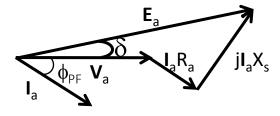
- Phasor diagrams of new per-phase circuit
 - δ : angle between \mathbf{E}_{a} and \mathbf{V}_{a} (induced voltage and terminal voltage), known as the *power angle* or *torque angle*



Unity power factor

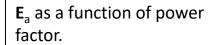


Leading power factor

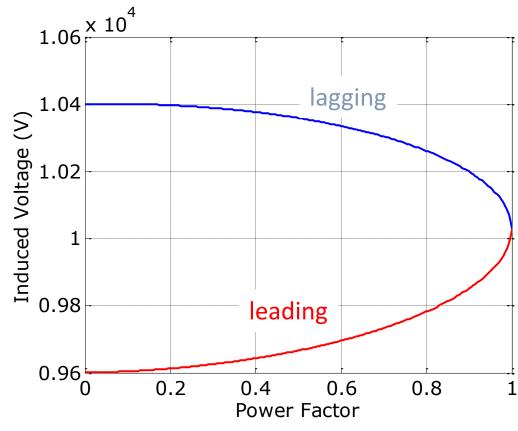


Lagging power factor

- δ is measured from \mathbf{V}_{a} to \mathbf{E}_{a}
- δ is positive for generators



Terminal voltage (V_a) held constant at 10kV.



** Example

A synchronous generator has a per-phase synchronous impedance of $0.2 + j4\Omega$. The generator supplies a per-phase load current of 100A at a lagging power factor of 0.866 lagging. The per-phase terminal voltage is 10kV.

Compute the per-phase induced voltage.

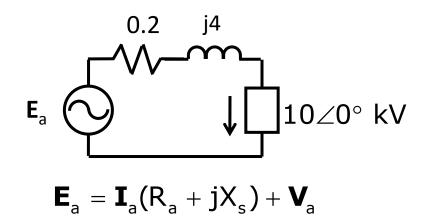
Compute the power angle.

» Example

■ Per phase armature current: I_a = 100∠ - 30° A

■ Solving the circuit: **E**_a = 10.2∠1.8° kV

■ Power angle: 1.8 degrees



Woltage Regulation

• The voltage regulation of a synchronous generator is:

$$VR = \frac{|\boldsymbol{E}_a| - |\boldsymbol{V}_a|}{|\boldsymbol{V}_a|} \times 100$$

- **E**_a: induced emf, also the no-load terminal voltage
- V_a: terminal voltage at full load (V)

Power Relationships

- Mechanical power supplied to the shaft of a synchronous generator by the prime mover
 - steam turbine
 - combustion turbine
 - dc motor
 - others

Power Relationships

• Mechanical power in:

$$P_{in,m} = T_s \omega_s$$

- T_s: shaft torque (Nm)
- ω_s : shaft speed (rad/s)
- Total power in: $P_{in} = T_s \omega_s + v_f i_f$
- Electrical power out: $P_o = 3 | \mathbf{V}_a || \mathbf{I}_a | \cos \phi_{PF} = 3 \operatorname{Re} \{ \mathbf{V}_a \mathbf{I}_a^* \}$
- Copper losses: $P_{cu} = 3 |\mathbf{I}_a|^2 R_a$

Power Relationships

- **Power output:** $P_o = 3 | \mathbf{V}_a || \mathbf{I}_a | \cos \phi_{PF} = 3 \operatorname{Re} \{ \mathbf{V}_a \mathbf{I}_a^* \}$
 - Requires knowledge (usually computation) of armature current
- Desired to have an equivalent expression of generator power output without having to compute armature current

Power Expressions

• From the equivalent circuit:

$$\mathbf{I}_{a} = \frac{\mathbf{E}_{a} - \mathbf{V}_{a}}{\mathbf{R}_{a} + \mathbf{j}\mathbf{X}_{s}} = \frac{\mathbf{E}_{a} - \mathbf{V}_{a}}{\mathbf{Z}_{s}}$$

Power output:

$$P_{o} = 3\operatorname{Re}\{\mathbf{V}_{a}\mathbf{I}_{a}^{*}\} = 3\operatorname{Re}\left\{\frac{\mathbf{V}_{a}\mathbf{E}_{a}^{*} - |\mathbf{V}_{a}|^{2}}{\mathbf{Z}_{s}^{*}}\right\}$$

$$=3Re\left\{\frac{\bm{V}_{a}\bm{E}_{a}^{*}\bm{Z}_{s}}{|\bm{Z}_{s}|^{2}}-\frac{|\bm{V}_{a}|^{2}\,\bm{Z}_{s}}{|\bm{Z}_{s}|^{2}}\right\}=3Re\left\{\frac{\bm{V}_{a}\bm{E}_{a}^{*}\bm{Z}_{s}}{|\bm{Z}_{s}|^{2}}-\frac{|\bm{V}_{a}|^{2}\,R_{a}}{|\bm{Z}_{s}|^{2}}-j\frac{|\bm{V}_{a}|^{2}\,X_{s}}{|\bm{Z}_{s}|^{2}}\right\}$$

• Above expansion uses: $\mathbf{Z}_{s} = |\mathbf{Z}_{s}| \angle \theta_{z}$

$$\mathbf{Z}_{s}^{*} = |\mathbf{Z}_{s}| \angle -\theta_{z}$$

Recall that dividing by a phasor means dividing by the magnitude and subtracting the angle

$$\frac{1}{\mathbf{Z}_{s}^{*}} = \frac{1}{\mathbf{Z}_{s}^{*}} \frac{\mathbf{Z}_{s}^{*}}{\mathbf{Z}_{s}^{*}} = \frac{|\mathbf{Z}_{s}| \angle - \theta_{z}}{|\mathbf{Z}_{s}|^{2} \angle - 2\theta_{z}} = \frac{|\mathbf{Z}_{s}| \angle \theta_{z}}{|\mathbf{Z}_{s}|^{2}} = \frac{|\mathbf{Z}_{s}| \angle \theta_{z}}{|\mathbf{Z}_{s}|^{2}}$$

Power Expressions

Continuing:

$$\begin{split} P_{o} &= 3 \operatorname{Re} \left\{ \frac{\mathbf{V}_{a} \mathbf{E}_{a}^{*} \mathbf{Z}_{s}}{|\mathbf{Z}_{s}|^{2}} - \frac{|\mathbf{V}_{a}|^{2} R_{a}}{|\mathbf{Z}_{s}|^{2}} - j \frac{|\mathbf{V}_{a}|^{2} X_{s}}{|\mathbf{Z}_{s}|^{2}} \right\} \\ &= 3 \operatorname{Re} \left\{ \frac{\mathbf{V}_{a} \mathbf{E}_{a}^{*} \mathbf{Z}_{s}}{|\mathbf{Z}_{s}|^{2}} \right\} - \frac{|\mathbf{V}_{a}|^{2} R_{a}}{|\mathbf{Z}_{s}|^{2}} \\ &= 3 \operatorname{Re} \left\{ \frac{\mathbf{V}_{a} \mathbf{E}_{a}^{*} (R_{a} + j X_{s})}{|\mathbf{Z}_{s}|^{2}} \right\} - \frac{|\mathbf{V}_{a}|^{2} R_{a}}{|\mathbf{Z}_{s}|^{2}} \\ &= 3 \operatorname{Re} \left\{ \frac{|\mathbf{V}_{a}||\mathbf{E}_{a}|(\cos \delta - j \sin \delta)(R_{a} + j X_{s})}{|\mathbf{Z}_{s}|^{2}} \right\} - \frac{3 |\mathbf{V}_{a}|^{2} R_{a}}{|\mathbf{Z}_{s}|^{2}} \\ &= \frac{3 |\mathbf{V}_{a}||\mathbf{E}_{a}|}{|\mathbf{Z}_{s}|^{2}} (R_{a} \cos \delta + X_{s} \sin \delta) - \frac{3 |\mathbf{V}_{a}|^{2} R_{a}}{|\mathbf{Z}_{s}|^{2}} \quad \text{Important result} \end{split}$$

Note:

$$\mathbf{E}_{a} = |\mathbf{E}_{a}| \angle \delta$$
 $\mathbf{V}_{a} = |\mathbf{V}_{a}| \angle 0^{\circ} = |\mathbf{V}_{a}|$

Power Relationships

Power balance equation:

$$P_{in} = T_s \omega_s + i_f v_f = 3 | V_a | I_a | \cos \phi_{PF} + 3 | I_a |^2 R_a + i_f v_f + P_r + P_{sI}$$

- P_r: rotational losses (W)
- P_{sl}: stray load losses (W)
- Constant losses grouped as: $P_c = i_f V_f + P_r + P_{sl}$

Power Relationship

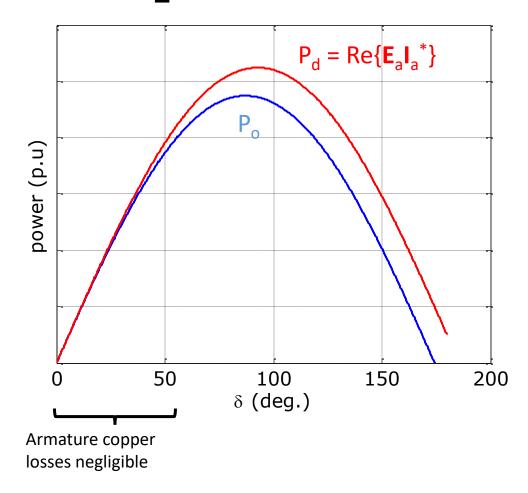
Generator efficiency:

$$\eta = \frac{3 |\mathbf{V}_{a}| |\mathbf{I}_{a}| \cos \phi_{PF}}{3 |\mathbf{V}_{a}| |\mathbf{I}_{a}| \cos \phi_{PF} + 3 |\mathbf{I}_{a}|^{2} R_{a} + P_{c}}$$

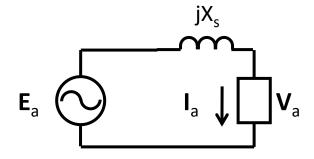
For maximum efficiency:

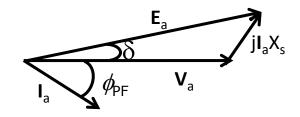
$$3|\mathbf{I}_{a}|^{2}R_{a}=P_{c}$$

Power Relationship



- Armature resistance is small
- Common to ignore it





Example lagging PF load

Computing the real power output:

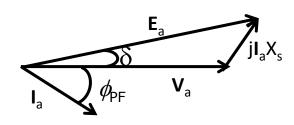
$$\begin{aligned} & \mathbf{E}_{\mathsf{a}} = \mid \mathbf{E}_{\mathsf{a}} \mid \angle \delta = \mid \mathbf{E}_{\mathsf{a}} \mid \cos \delta + j \mid \mathbf{E}_{\mathsf{a}} \mid \sin \delta \\ & \mathbf{I}_{\mathsf{a}} = \mid \mathbf{I}_{\mathsf{a}} \mid \angle -\phi_{\mathsf{PF}} = \mid \mathbf{I}_{\mathsf{a}} \mid \cos \phi_{\mathsf{PF}} - j \mid \mathbf{I}_{\mathsf{a}} \mid \sin \phi_{\mathsf{PF}} \end{aligned} \end{aligned}$$
 Euler's Identity
$$\mathbf{V}_{\mathsf{a}} = \mid \mathbf{V}_{\mathsf{a}} \mid \angle 0 = \mid \mathbf{V}_{\mathsf{a}} \mid + j 0$$

$$\begin{split} \boldsymbol{I}_{a} &= \frac{\boldsymbol{E}_{a} - \boldsymbol{V}_{a}}{j\boldsymbol{X}_{s}} = \frac{|\boldsymbol{E}_{a}|\cos\delta - |\boldsymbol{V}_{a}|}{j\boldsymbol{X}_{s}} + \frac{j|\boldsymbol{E}_{a}|\sin\delta - 0}{j\boldsymbol{X}_{s}} \\ &= \frac{|\boldsymbol{E}_{a}|\sin\delta}{\boldsymbol{X}_{s}} - j\frac{|\boldsymbol{E}_{a}|\cos\delta - |\boldsymbol{V}_{a}|}{\boldsymbol{X}_{s}} \end{split}$$

$$\mathbf{I}_{a} = \frac{\mathbf{E}_{a} - \mathbf{V}_{a}}{jX_{s}} = \frac{|\mathbf{E}_{a}| \cos \delta - |\mathbf{V}_{a}|}{jX_{s}} + \frac{J|\mathbf{E}_{a}| \sin \delta - U}{jX_{s}}$$
$$= \frac{|\mathbf{E}_{a}| \sin \delta}{X_{s}} - j\frac{|\mathbf{E}_{a}| \cos \delta - |\mathbf{V}_{a}|}{X_{s}}$$

$$|\mathbf{I}_{a}|\cos\phi_{PF} = \frac{|\mathbf{E}_{a}|\sin\delta}{X_{s}}$$
 (equating real parts)

$$P_o = 3 | \mathbf{V}_a || \mathbf{I}_a | \cos \phi_{PF} = \frac{3 | \mathbf{V}_a || \mathbf{E}_a | \sin \delta}{X_s}$$
 Important result



Example lagging PF load

$$\boldsymbol{V}_{\!a}=\!\boldsymbol{E}_{\!a}-j\boldsymbol{I}_{\!a}\boldsymbol{X}_{\!s}$$

Synchronous generator power output (approximate)

$$P_{o} = 3 | \mathbf{V}_{a} | | \mathbf{I}_{a} | \cos \phi_{PF} = \frac{3 | \mathbf{V}_{a} | | \mathbf{E}_{a} | \sin \delta}{X_{s}}$$

Assumes:

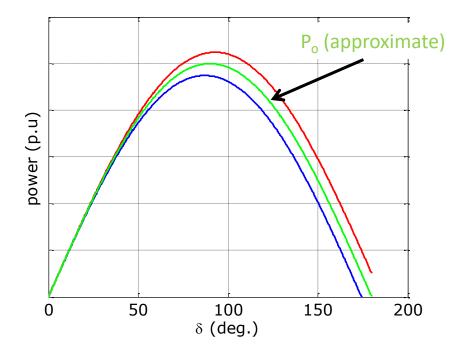
- Armature resistance is zero
- Constant speed
- Constant field current
- Cylindrical rotor

Power-angle relationship:

$$P_o = \frac{3 |\mathbf{V}_a| |\mathbf{E}_a| \sin \delta}{X_s}$$

• Maximum power:

$$P_{dm} = \frac{3 |\mathbf{V}_a||\mathbf{E}_a|}{X_s}$$



Power Relationship

Torque developed (approximate):

$$T_{d} = \frac{P_{d}}{\omega_{s}} = \frac{3 |\mathbf{V}_{a}| |\mathbf{E}_{a}| \sin \delta}{\omega_{s} X_{s}}$$

• Maximum torque (approximate):

$$T_{dm} = \frac{3|\mathbf{V}_a||\mathbf{E}_a|}{X_s\omega_s}$$

■ Maximum power and torque occur at $\delta = 90^{\circ}$

** Example

A 2-pole synchronous generator has a per-phase terminal voltage of 7.5 kV, a per-phase induced voltage of 7.9 kV and a synchronous reactance of 1Ω . If the power angle is 15 degrees, compute the total real power delivered to the load. Assume the rotational losses are 1MW.

» Example

A 2-pole synchronous generator has a per-phase terminal voltage of 7.5 kV, a per-phase induced voltage of 7.9 kV and a synchronous reactance of 1Ω . If the power angle is 15 degrees, compute the total real power delivered to the load. Assume the rotational losses are 1MW.

$$P_o = \frac{3|\mathbf{V}_a||\mathbf{E}_a|\sin\delta}{X_s} = 46MW$$

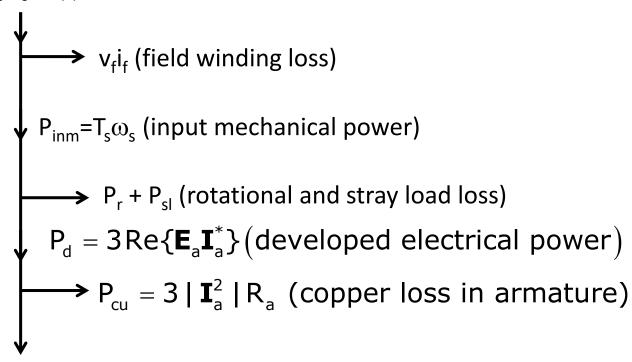
Rotational losses are not electric, so we do not need to subtract them.

Power Expressions

Several different forms of round-rotor power output:

$$\begin{split} P_o &= 3 \mid \boldsymbol{V}_a \mid \mid \boldsymbol{I}_a \mid \cos \phi_{PF} \\ &= 3 Re \{ \boldsymbol{V}_a \boldsymbol{I}_a^* \} \\ &= \frac{3 \mid \boldsymbol{E}_a \mid \mid \boldsymbol{V}_a \mid}{\mid \boldsymbol{Z}_s \mid^2} (R_a \cos \delta + X_s \sin \delta) - \frac{3 \mid \boldsymbol{V}_a \mid^2 R_a}{\mid \boldsymbol{Z}_s \mid^2} \\ P_o &= \frac{3 \mid \boldsymbol{V}_a \mid \mid \boldsymbol{E}_a \mid \sin \delta}{X_a} \quad \text{(valid only if } R_a \text{ can be ignored)} \end{split}$$

Power Relationship Summary P_{in} = T_sω_s +v_fi_f (total input power)



$$P_o = 3 | \mathbf{V}_a | | \mathbf{I}_a | \cos \phi_{PF} = 3 \text{Re} \{ \mathbf{V}_a \mathbf{I}_a^* \}$$
 (output electrical power)

$$= \frac{3 | \mathbf{E}_{a} | | \mathbf{V}_{a} |}{| \mathbf{Z}_{s} |^{2}} (R_{a} \cos \delta + X_{s} \sin \delta) - \frac{3 | \mathbf{V}_{a} |^{2} R_{a}}{| \mathbf{Z}_{s} |^{2}}$$

49

Power Relationship Example

Let:
$$v_f$$
=400V i_f = 250A $P_r + P_{sl}$ = 2MW \mathbf{Z}_s = 0.2 + j4 Ω δ = 30° \mathbf{V}_a = 10kV $|\mathbf{E}_a|$ = 11kV

$$P_{in} = T_{s}\omega_{s} + v_{f}i_{f} = 44.21MW$$

$$V_{f}=400V$$

$$i_{f} = 250A$$

$$P_{r} + P_{s|} = 2MW$$

$$\mathbf{Z}_{s} = 0.2 + j4\Omega$$

$$\delta = 30^{\circ}$$

$$\mathbf{V}_{a} = 10kV$$

$$|\mathbf{E}_{a}| = 11kV$$

$$P_{cu} = 3 |\mathbf{E}_{a}| |\mathbf{V}_{a}|$$

$$P_{cu} = 3 |\mathbf{V}_{a}|^{2} |\mathbf{R}_{a}| = 1.14MW$$

$$P_{cu} = 3 |\mathbf{V}_{a}|^{2} |\mathbf{R}_{a}| = 40.97MW$$

Summary

51

- Exciters are used to supply DC current to the rotor of synchronous generators
- Frequency of induced voltage increases with the number of poles for a fixed mechanical speed
- Leakage reactance and armature reaction can be combined into X_s , the synchronous reactance
- Approximate power delivered by a synchronous generator is:

Dr. Louie

$$P_{o} = 3 | \mathbf{V}_{a} | | \mathbf{I}_{a} | \cos \phi_{PF} = \frac{3 | \mathbf{V}_{a} | | \mathbf{E}_{a} | \sin \delta}{X_{s}}$$

