

Levelized Cost of Energy

- Levelized Cost of Energy (LCOE): the cost of installing and operating a power plant over the course of its lifetime
 - Often expressed as \$/kWh
- Convenient for comparing different energy sources
- Discount rate applied to future costs
- Typically accounts for:
 - Installation
 - Financing
 - Operation and maintenance costs, including fuel
 - Salvage value
 - Total energy production

The LCOE is the minimum price that can be charged for electricity without losing money.

Simple Levelized Cost of Energy

- Consider a simplified LCOE (sLCOE) calculation
- sLCOE consists of three cost elements
 - Capital cost
 - Fuel costs
 - Operations and Maintenance costs

Capital Costs

 Capital costs are the "overnight" capital costs converted into an annuity across Y years (the operating lifespan of the project)

$$Cap = \frac{K}{\sum_{y=1}^{Y} (1+i)^{-y}} = \frac{K}{\frac{(1+i)^{Y}-1}{i(1+i)^{Y}}}$$
Overnight capital cost

Helpful to express K as \$/kW

Fuel Cost

Fuel cost is the cost per kilowatthour of energy

$$Fuel = \frac{p_{f} \times s_{f}}{\eta_{genset}}$$

 η_{genset} : efficiency of the gen set p_f : price of fuel, in \$/liter s_f : energy density of fuel, liter/kWh

Fuel Cost: Hybrid Renewable System

• If the gen set is expected to provide some fraction of the total energy, with rest supplied by a zero cost fuel (e.g. sunlight, wind), then the fuel cost is:

$$Fuel = \frac{p_{f} \times s_{f}}{\eta_{genset}} \times f$$

f: proportion of total energy supplied by the gen set, [0,1]

Operations and Maintenance (O&M) Costs

- Considers non-fuel operation and maintenance costs, divided as fixed and variable costs
- Fixed (O_f) : O&M costs that are incurred regardless of project operation, in \$/kW (related to the capacity of the project)
- Variable (O_v) : related to the actual energy production from the project, in k

Simplified Levelized Cost of Energy

The simplified levelized cost of energy (sLCOE) is:

$$sLCOE = \frac{Cap + O_f}{E_{annual}} + Fuel + O_v$$

Must divide Cap and O_f by the energy produced per year per kW of capacity to obtain the proper units of \$/kWh

Example

Consider an off-grid system whose overnight capital costs are \$18,000 for the distribution system and \$28,000 for the energy production system. The annual load is 3650 kWh. The system is supplied by a 4 kW PV array with a 1 kW back-up gen set. The gen set is expected to supply 5% of the energy.

Assume the project lifespan is 15 years. The discount rate is 3%.

Example: Capital Cost

The overnight capital cost is:

$$K = \frac{18,000 + 26,000}{5} = \$8,800 \text{ / kW}$$

$$Cap = \frac{K}{\frac{(1+i)^{Y}-1}{i(1+i)^{Y}}} = \frac{8,800}{\frac{(1+0.03)^{15}-1}{0.03(1+0.03)^{15}}} = \$737.15/\text{kW}$$

Example: Fuel Cost

 Assuming cost of diesel is \$1/liter, gen set efficiency is 25%, and energy density of diesel fuel is 30 MJ/liter:

Fuel =
$$\frac{p_f \times s_f}{\eta_{genset}} \times f = \frac{\$1/\text{liter} \times \frac{3.6 \text{ MJ/kWh}}{36 \text{ MJ/liter}}}{0.25} \times 0.05 = \$0.02/\text{kWh}$$

Example: O&M Costs

- Fixed (O_f): assume 1% of project overnight capital costs per year
 \$88/kW/year
- Variable (O_v) : assume to be \$0.01/kWh

Example: sLCOE

The sLCOE is therefore:

$$sLCOE = \frac{Cap + O_f}{E_{annual}} + Fuel + O_v = \frac{737.15 + 88}{3650 / 5} + 0.02 + 0.01 = $1.16 / kWh$$

Distribution Line Design Considerations

Thermal Limit

- Resistance causes distribution line to heat as current (power) flows down it
- Overheating can cause failure
- Heating is inefficient (losses)
- Larger conductors reduce power loss

Ampacity

Cross-sectional Area (Copper)	Ampacity (insulated, open-air)	Impedance (Ω/km)
13 mm ²	80 A	2.25 + j0.31
21 mm ²	105 A	1.40 + j0.31
34 mm ²	140 A	0.70 + j0.31

Thermal Limit: Single Phase Distribution

The current supplied by a line is found from:

$$| \boldsymbol{I}_{s} | = \frac{S_{load}}{| \boldsymbol{V}_{\phi} |}$$

I_s: current through line, A
 S_{load}: total load supplied by line, VA
 V_Φ: phase voltage, V

Here we have made the assumption that the voltage at the load is equal to the source voltage

Distribution Line Design Considerations

Voltage Drop Limit

- Impedance causes a reduction in voltage along distribution line
- Voltage drop increases with current (power) flow
- Limit voltage drop to less than 5-10%
- Larger conductors reduce voltage drop

Voltage Drop: Single Phase Distribution

- Consider a line serving H users
- All users consume the same power at the same power factor
- Users are located at the end of the line

Voltage Drop: Single Phase Distribution

• By KCL:

$$I_s = \sum_{h=1}^{H} I_{L,h} = I_L H = I_N$$

 The current on the neutral is equal to the current on the phase wire

Voltage Drop: Single Phase Distribution

• By KVL:

$$V_s = I_s Z_w + V_L + I_N Z_w = 2I_s Z_w + V_L$$

• The voltage drop is:

$$V_{\text{drop}} = |V_{s} - V_{L}| = 2 |I_{s}Z_{w}| = 2 |I_{L}|H|Z_{w}|$$

Example

Consider a distribution line serving 20 houses. The aggregate peak load is expected to be 2000 W with a power factor of 0.85. The houses are supplied by a low-voltage line at 230 V, with an impedance of

$$Z_{W} = 0.75 + j0.31 \Omega$$

Determine the voltage drop along the line.

Example

• The line current is:

$$|I_s| = \frac{S_{load}}{|V_{\phi}|}$$
 $|I_s| = \frac{2000 / 0.85}{230} = 10.23 \text{ A}$
 $|I_s| = \frac{2000 / 0.85}{230} = 10.23 \text{ A}$
 $|I_s| = \frac{2000 / 0.85}{230} = 10.23 \text{ A}$
 $|I_s| = \frac{2000 / 0.85}{230} = 10.23 \text{ A}$
 $|I_s| = \frac{2000 / 0.85}{230} = 10.23 \text{ A}$
 $|I_s| = \frac{2000 / 0.85}{230} = 10.23 \text{ A}$
 $|I_s| = \frac{2000 / 0.85}{230} = 10.23 \text{ A}$

This a 6.8% drop. If this exceeds the requirement, then use a cable with lower impedance (larger cross section)

Power Loss: Single Phase Distribution

The power loss is:

$$P_{\text{Loss}} = |I_{\text{s}}|^2 R_{\text{w}} + |I_{\text{N}}|^2 R_{\text{w}} = 2 |I_{\text{s}}|^2 R_{\text{w}} = 2 |I_{\text{L}}|^2 H^2 R_{\text{w}}$$

• From our example

$$P_{\text{Loss}} = |I_{\text{s}}|^2 R_{\text{w}} + |I_{\text{N}}|^2 R_{\text{w}} = 2 |I_{\text{s}}|^2 R_{\text{w}} = 146.5 \text{ W}$$

Contact Information

Henry Louie, PhD

Associate Professor

Fr. Wood Endowed Research Chair

Seattle University

hlouie@ieee.org

Office: +1-206-398-4619