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A B S T R A C T

Topological Interlocking Structures (TIS) are assemblies of interlocking building blocks that hold together solely
through contact and friction at the block interfaces and thus do not require any connective elements. This
salient feature makes them highly energy-absorbent, resistant to crack propagation, geometrically versatile,
and reusable. It also gives rise to failure mechanisms that, differently from ordinary structures, are governed
by multiple contact interactions between blocks and frictional slip at their interfaces. Commonly-used modeling
tools for structural analysis struggle to capture and quantify these unusual failure mechanisms. Here, we
propose a different approach that is well-suited for modeling the complex failure of slab-like TIS. It is based on
the Level-Set-Discrete-Element-Method, which was originally developed for granular mechanics applications.
After introducing the basic assumptions and theoretical concepts underlying our model, we show that it
accurately captures the slip-governed failure of slab-like TIS panels as observed in the literature, that it
can closely estimate the force–displacement curves, and that it is can be used to explore important features
governing the structural mechanics of TIS. The theoretical foundation, together with the results of this study,
provide a proof-of-concept for our new approach and point to its potential to improve our ability to model
and understand the behavior of interlocked structural forms.
1. Introduction

Topological Interlocking Structures (TIS) are assemblies of inter-
locking building blocks that hold together solely through contact and
friction at the block interfaces and thus do not require any connective
elements, see Fig. 1 left. This defining feature sets them apart from
ordinary structural forms and it is responsible for their unique behavior
and advantageous properties (Dyskin et al., 2005; Molotnikov et al.,
2007; Carlesso et al., 2012, 2013; Dyskin et al., 2019, 2012). In spite of
their attractive properties, TIS’ promising potential is yet to translate to
large-scale prevalence, likely because our ability to predict their failure
– a prerequisite for designing them safely – is far from fully developed.

Developing predictive capabilities for the behavior and failure of
TIS is challenging because TIS blocks are not connected by any me-
chanical means (e.g., adhesives or bolts) and the structural integrity
therefore relies on transmission of forces through the interfaces. These
interfacial forces are difficult to quantify and predict because the
interfacial contact conditions that govern them are: (a) geometrically
irregular and dynamically changing by nature (Djumas et al., 2017); (b)
highly dependent on local slip failures (Djumas et al., 2017; Mirkhalaf
et al., 2019; Koureas et al., 2022); (c) coupled with all other inter-
faces through the global response; and (d) sensitive to unavoidable
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geometrical imperfections (Mirkhalaf et al., 2019; Barthelat and Zhu,
2011).

As shown ahead, commonly-used models struggle to capture and
quantify the slip-governed failure of TIS, pointing to the potential ben-
efit of alternative modeling approaches. The main aim of this study is
to establish a proof-of-concept for a new computational approach, one
based on applying the Level-Set-Discrete-Element-Method (LS-DEM),
originally developed for granular applications, to structural analysis of
TIS, see Fig. 1.

The most commonly-used tool to model the behavior and failure of
TIS is the Finite Element Method (FEM), see Williams and Siegmund
(2021), Short and Siegmund (2019), Djumas et al. (2017), Mirkhalaf
et al. (2019), Schaare et al. (2008), Dalaq and Barthelat (2020) and
Dalaq and Barthelat (2019). This is a natural choice due to FEM’s
ability to handle arbitrarily shaped solids and to accurately resolve their
stress and deformation fields. In cases where the response was entirely
governed by a stick regime and the specimens were not loaded up to
failure, FEM obtained a very good agreement with experimental and
analytical results (Schaare et al., 2008; Short and Siegmund, 2019). In
the context of beam-like assemblies with few blocks, FEM was also able
to correctly capture the experimentally-observed slip-governed failure
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Fig. 1. Illustration of presented concept: Based on the similarities between TIS and granular media on the one hand, and LS-DEM unique ability to model the latter’s mechanics
on the other, we apply LS-DEM to model the complex failure of TIS, which common structural analysis tools struggle to capture.
mechanism and match well the global load displacement curves (Dalaq
and Barthelat, 2020). However, as stated in Dalaq and Barthelat (2020),
omputational-cost issues arise when modeling TIS with more than a
ew blocks using FEM, and this becomes problematic in the context of
lab-like TIS, which typically comprise dozens of blocks.

In spite of the computational challenges that the slip-governed
ehavior of slab-like TIS poses, FEM has been able to correctly cap-
ure and quantify experimentally-observed slip-governed failure of a
ynamically-loaded TIS panel made of tetrahedral blocks (Feng et al.,
015). This required calibrating two parameters — the contact stiff-
ess 𝑘𝑛 and the friction coefficient 𝜇. Reasonable agreement was also
btained in Rezaee Javan et al. (2017) in terms of the load–deflection
urves of dynamically-loaded TIS panels, but the failure mechanism
redicted by FEM were not shown. The most computationally challeng-
ng context is, arguably, the quasi-static regime. This is expressed, for
xample, by large over-prediction of the peak load (Mirkhalaf et al.,
019) and by divergence of the analyses from the experimental results
lose to failure (Djumas et al., 2017).

The Discrete Element Method (DEM) was originally designed to
odel dynamically-evolving contact and friction interactions between
ultiple spherical grains (Cundall and Strack, 1979). It relies on an ex-
licit dynamic framework, a rigid-body assumption, elementary block
hapes (mostly spherical, and generally convex), and a penalty-enforced
ontact between the blocks, properties that make it a natural frame-
ork to addressing the intricate behavior and failure of TIS.

DEM’s potential for TIS is, curiously, supported by Schaare et al.
2008), where excellent agreement with experimental results was ob-
ained using extremely coarse FEM meshes with only 8 elements per
lock (three orders of magnitude less than in Djumas et al. (2017)).
his suggests that a coarse representation of block deformation, one
hat is also possible in DEM as will be explained ahead, may suffice to
apture the essential features in TIS’ structural response.
2

DEM was used by Brugger et al. (2008, 2009) to model centrally
loaded slab-like TIS with cube shaped blocks, but this approach has not
been further explored. The limiting element in DEM as a general mod-
eling approach to TIS is the lack of geometrical generality necessary to
fully address the variety of TI blocks and their complex contacts.

Recently, a geometrically versatile DEM variant called Level-Set-
DEM (LS-DEM) (Kawamoto et al., 2016) was developed. LS-DEM is able
to represent arbitrary block geometries and resolve the complex contact
kinematics that arise between them through a node-based discretization
of block boundary. This makes LS-DEM a potentially attractive ap-
proach for TIS, see Fig. 1-right and Karapiperis et al. (2022). Recently,
LS-DEM’s original contact formulation has been adapted, enabling us to
use it for structural analysis (Feldfogel et al., 2022). However, LS-DEM
ability to realistically capture and predict the behavior and failure of
TIS as observed in experiments – a necessary validation test for a model
– has not yet been established.

Summarizing, efficient and reliable computational tools are indis-
pensable to modeling the slip-governed failure of TIS. Yet, capturing
this complex phenomenon still poses major modeling and compu-
tational challenges to FEM and DEM alike. The main objectives of
this manuscript are to present the concepts underlying LS-DEM as a
computational model for TIS and to show that it is a viable and useful
modeling alternative

2. Methodology

2.1. Assumptions

The modeling assumptions underlying our LS-DEM model involve
global considerations, the blocks, and the interfaces. Globally, the
structural response is defined by the 3D rigid body motions of the
blocks, which are governed by Newton’s generalized laws of motion.
Accordingly, the total number of degrees of freedom equals the number
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Fig. 2. Contact modeling — (a) the continuum-based approach; and (b) LS-DEM’s discretized nodal forces (penetrations are grossly exaggerated for illustrative purposes).
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f blocks times six (the number of rigid body degrees of freedom), and
t is smaller by three orders of magnitude compared to FEM models
eported in the literature, see, e.g. Djumas et al. (2017). The energy
issipation mechanisms comprise sliding friction, restitution losses, and
lobal damping.

The blocks are assumed to be unbreakable rigid bodies; their mass
orresponds to their true material density (no mass scaling); and the
orces acting on them comprise gravity, contact and friction interface
orces by adjacent blocks, support reactions by Dirichlet boundaries,
nd damping forces.

The interfaces are assumed to be adhesion-less, so only normal com-
ressive forces and tangential friction forces are considered; contact
s enforced in a linear-penalty sense. A regularized Coulomb law is
dopted, whereby the shear traction is given as:

= 𝛥𝒔
||𝛥𝒔||

min(𝑘𝑡||𝛥𝒔||, 𝜇||𝝈||) (1)

where 𝑘𝑡 denotes a shear penalty parameter with units of traction per
unit displacement, analogously to 𝑘𝑛, 𝜇 is the friction coefficient, with
o distinction being made between static and kinetic friction, and 𝝈 is

the normal traction at the contact region.

2.2. Mathematical formulation

The mathematical formulation of LS-DEM has been detailed else-
where (Kawamoto et al., 2016; Feldfogel et al., 2022) and it is not
epeated here in full for the sake of brevity. Nevertheless, the adapted
ontact formulation introduced in Feldfogel et al. (2022) and adopted
ere is briefly described for completeness.

As illustrated in Fig. 2(a), we adopt a continuum-based contact
pproach wherein contacting block surfaces are thought of as elastic
oundations, exerting equal and opposite normal compressive tractions
𝑖
𝑛 proportional to the penetrations 𝑑𝑗,𝑖 at each contact point. Accord-
ngly, the penetration stiffness 𝑘𝑛 has dimensions of traction per unit
enetration and it is analogous to the elastic foundation modulus.

In LS-DEM, the block surfaces are discretized by seeding nodes
cross them, as schematically shown on block i in Fig. 2(b). Accord-
ngly, the continuous contact tractions in Fig. 2(a) are represented by
iscrete nodal forces, shown as red arrows in Fig. 2(b). The nodal force
𝑖
𝑛,𝑎 at contact node 𝑎 reads1:

𝑖
𝑛,𝑎 = 𝑘𝑛 ⋅ 𝑑

𝑗,𝑖
𝑎 ⋅ 𝐧̂𝑗,𝑖𝑎 ⋅ 𝐴𝑎 (2)

1 To avoid redundant symbols, 𝑘∗𝑛 from Feldfogel et al. (2022) has been
denoted here by 𝑘𝑛, with the understanding that its dimension is still traction
per unit displacement and not force per unit displacement as in the original
LS-DEM formulation.
3

a

where the subscript 𝑎 represent the 𝑎’th contact node and where 𝐴𝑎
s the nodal tributary area. Note that the method allows for robust
reatment of corners, as encountered at the edges of blocks. This is due
o the computation of normals (gradients of the level set function) by
eans of trilinear interpolation from the nearest points in the level set

rid. The interested reader is referred to Kawamoto et al. (2016) for
ore details.

.3. Modeling deformability with rigid blocks

Under the rigid body assumption used in LS-DEM, it is not possible
o directly account for the in-plane deformability of the blocks, which
overns the stiffness and capacity of TIS. Instead, we account for
his deformability indirectly through the block penetrations and the
ommensurate penetration stiffness 𝑘𝑛, as explained next.2

Beginning with the simple case of two-blocks of total length 𝐿
nder in-plane compressive traction 𝜎 depicted in Fig. 3(a), the total
hortening is the sum of elastic shortenings of the blocks 𝛥 = 𝜎⋅𝐿

𝐸 ,
see Fig. 3(b). In models where contact between deformable blocks is
imposed in a penalty sense (one of the two most popular approaches
in FEM, alongside the more accurate Lagrange multiplier methods),
the total shortening depicted in Fig. 3(c) is the sum of the elastic
deformations and the interface penetration thus 𝛥𝐹𝐸𝑀 = 𝜎⋅𝐿

𝐸 + 𝜎
𝑘𝑛

. In
ur LS-DEM model, the total shortening depicted in Fig. 3(d) equals
he interface penetration 𝛥𝐿𝑆𝐷𝐸𝑀 = 𝜎

𝑘𝑛
. By equating 𝛥𝐿𝑆𝐷𝐸𝑀 to 𝛥

and solving for 𝑘𝑛 we obtain 𝑘𝑛 = 𝑘𝑑𝑒𝑓𝑛 = 𝐸
𝐿 , a value that yields

the same elastic shortening and therefore the same effective in-plane
deformability. In this simplified approach, 𝑘𝑛 has a dual function of
penetration stiffness and a correlate of the elastic modulus.

In assemblies with 𝑀+1 blocks, see Fig. 3(e), the total shortening is
again 𝛥 = 𝜎⋅𝐿

𝐸 , Fig. 3(f), but 𝛥𝐿𝑆𝐷𝐸𝑀 =
∑ 𝜎

𝑘𝑛
= 𝑀 ⋅ 𝜎

𝑘𝑛
, where 𝑀 is the

umber of interfaces across which penetrations occur, Fig. 3(g). Equat-
ng 𝛥 and 𝛥𝐿𝑆𝐷𝐸𝑀 and solving for 𝑘𝑛 yields the general closed-form
xpression:

𝑛 = 𝑘𝑑𝑒𝑓𝑛 = 𝑀 ⋅ 𝐸
𝐿

(3)

2 It is tacitly assumed in the following derivation that the in-plane action
s the most dominant factor governing the response of TIS panels and that the
ffects of shear deformations can be neglected as secondary. This approach
ollows the thrust-line model (Krause et al., 2012; Khandelwal et al., 2013;
hort and Siegmund, 2019) which also neglects the effects of shear and
onsiders the global in-plane action as the only load transfer mechanism.
lso, by virtue of Saint-Venant’s principle, we (similarly to the thrust-line
odel) neglect the effect of stress concentrations near contact regions on the

ll-important global in-plane deformability.
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Fig. 3. Methodology — the in-plane deformability is accounted for in LS-DEM through interfacial penetrations: (a–d) a two-block case. (e–g) the multi-block case.
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Unlike the penetration stiffness in common FEM/DEM/LS-DEM ap-
lications, 𝑘𝑛 in Eq. (3) is an explicit correlate of 𝐸 which requires
o calibration. As such, it is considered to be a structural property
nvolving the total number of blocks, the total length, and assuming
common 𝐸 to all the blocks. Cases involving blocks made of different
aterials or blocks with significantly different dimensions may require

econsidering 𝑘𝑛 as a block-wise property, and are therefore beyond the
resent scope.

.4. Limitations

The three main limitations of our model are that (a) it is only
pplicable to blocks made of relatively rigid materials for which 𝑘𝑛 is
ufficiently large and the penetrations sufficiently small; soft materials
ith very small 𝐸 and 𝑘𝑛 may induce too large penetrations that

ould overly distort the actual (penetration-less) kinematics; (b) it
oes not account for material non-linearity, specifically fracture, which
ometimes plays a role in TIS’ failure; and (c) it does not resolve the
ulk stresses.3

. Set-up and numerical model

All the numerical examples in this manuscript consider centrally-
oaded square TIS panels studied in Mirkhalaf et al. (2019). No ex-
eriments were done in this study. This experimental benchmark was
hosen because (a) centrally loaded slab-like TIS are the most common
IS studied in the literature; (b) it contains detailed experimental

nformation and ample data for comparison and validation; and (c) the
olyhedral blocks used in Mirkhalaf et al. (2019) have planar faces
nd therefore they interact across matching planes. Such interfaces
epresent the simplest form of conforming contacts, as distinct from
he non-conforming contact typically modeled with discrete element
ethods. As such, they are a natural starting point for a future investi-

ation of more complex cases of conforming contacts that characterize
IS with curved-face (e.g., osteomorphic) blocks (Dyskin et al., 2003;
jumas et al., 2017, 2016; Estrin et al., 2021).

Fig. 4(a) shows the truncated polyhedral block used in Mirkhalaf
t al. (2019) and its xz and yz cross-sections. The bottom face of the

3 Nevertheless, bulk stresses can be estimated at post-processing by solving
he continuum problem of blocks loaded by the contact surface tractions which
ur model provides. This can be done using any continuum model, e.g., FEM.
4

A

blocks is a square with side length 𝑙, and the angle of inclination of its
sloping lateral faces is 𝜃. Fig. 4(b) shows the basic 5-block cell formed
by surrounding a block by four similar ones rotated with respect to it by
90◦ about the 𝑧 axis. Fig. 4(c) shows an entire panel with the contour
of a basic cell around the central block marked in black. The panels’
dimensions are 50 × 50 × 3.18 mm, and they consist of boundary blocks
along the edges and internal blocks. The boundary blocks are either
halves or quarters (in the four corners) of the internal blocks in a way
that the assembled panel’s convex hull is a straight parallel-piped.

Panels with identical overall dimensions but with three block sizes
– medium, large, and small – are considered. The medium-block panel,
depicted in Fig. 4(c), has 5 × 5 internal blocks with 𝑙 = 8.33 mm, and it
is referred to as the 5 × 5 panel. The large- and small-block panels are
referred to, respectively, as the 3 × 3 and 7 × 7 panels, see Fig. 4(d).

The panels in Mirkhalaf et al. (2019) were confined by a stiff
peripheral frame that held the boundary blocks in place without pre-
compression. They were quasi-statically loaded by a pin indenter that
pushed the central block in the negative z direction at a rate of
0.01 mm/sec. The force 𝑃 exerted by the indenter on the panel and
the corresponding indenter displacement 𝛿 are indicated by a yellow
arrow in the -z direction in Fig. 4(c). Fig. 4(e) shows an experimental
𝑃 −𝛿 curve, with the main global response parameters indicated in red.

Turning to the LS-DEM model, the blocks were positioned and ori-
ented in the initial undeformed configuration of the panel as illustrated
in Fig. 4(c), and the boundary conditions were affected by fixing the
boundary blocks. Next, the assembly was subjected to gravity until
it reached a relaxed state, i.e., until the kinetic energy lowered to
effectively zero. The relaxed positions and rotations of the blocks were
then taken as the initial conditions for the main loading phase — the
indentation. For the indentation loading, the 2.5 mm spherical tip of the
indenter was prescribed a constant velocity in the negative z direction,
see Fig. 4(c,d). To expedite the analyses, the loading speed was taken
as high as possible, but always low enough to avoid inertial effects.
The loading rate values ranged between 3–6 mm/s. The density of the
alumina-silicate blocks was taken equal to 2.5 ⋅ 10−6 kg

mm3 , and a friction
oefficient 𝜇 = 0.23 was used, in accordance with the data in Mirkhalaf
t al. (2019).

Numerical tests detailed in Feldfogel et al. (2022) were carried out
o determine the refinement of the surface discretization and of the
evel-set geometrical representation of the blocks necessary for numer-
cal convergence of the results. The converged surface discretization
nd Level-set parameters was found to be 0.06 mm and 0.025 mm,
nd these values were used for all the analyses in this manuscript.
dditional computational details are given in Appendix.
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Fig. 4. Configuration — (a) a typical internal block with 𝜃 = 10◦, its two cross-sections, and its LS-DEM surface discretization; (b) a basic five-block interlocked cell; (c) The full
5 × 5 panel and its boundary conditions; (d) the 3 × 3 and 7 × 7 panels; (e) a typical load displacement curve; and (f) a typical strip to determining 𝑘𝑑𝑒𝑓𝑛 from Eq. (3).
4. Validation

We validate the LS-DEM model in the context of the FEM simula-
tions and experimental results reported in Mirkhalaf et al. (2019). For
this, we consider the three cases analyzed in Mirkhalaf et al. (2019)
with FEM, namely the 3 × 3, 5 × 5, and 7 × 7 panels with 𝜃 =
2.5◦. Specifically, we compare the load–deflection response as obtained
in FEM and LS-DEM, and examine the latter’s ability to capture the
experimentally-observed evolution of the failure mechanism, and the
internal force chains.

Starting with the ultimate deflection, it is somewhat overestimated
by both FEM and the LS-DEM simulations, see Fig. 5(a). LS-DEM is,
however, generally closer to the experimental benchmark, especially
for the 3 × 3 panel. Continuing with the peak-load estimates, both
LS-DEM and FEM considerably over-estimated the peak load in all
three cases, see the specific over-estimation (error) factors in Table 1.
To allow comparison of the shape of the load–deflection curves, the
FEM and LS-DEM loads were normalized by the over-estimation factors
in Table 1 so that they matched the experimental peak-load. The
normalized LS-DEM curves in all three cases are a bit closer to the
experimental reference compared with the normalized FEM curves.
These results show that, in spite of using a fraction of the degrees of
freedom, LS-DEM is comparable with FEM in terms of estimating the
global response parameters.

Turning to LS-DEM’s ability to capture the failure mechanisms,
Fig. 5(b) shows that, for all three assemblies, the model captures the
failure mechanism observed in the experiments (Mirkhalaf et al., 2019),
namely one where the central block gradually slips out of the assembly.
In terms of the load transfer mechanism, Fig. 5(c) shows an arch-
like internal forces chains in accordance with the thrust-line analogy
for slab-like TIS (Khandelwal et al., 2012, 2013; Short and Siegmund,
2019). These results support the physical modeling concepts described
in Section 2 and the LS-DEM model in general.

Notwithstanding the ability of LS-DEM to capture the
xperimentally-observed failure mechanisms and the internal force
hains, the ability to estimate the peak load without parameter cal-
bration is far from predictive, see Table 1. As a first step towards
etter predictive capabilities, we focus in the next section on physical
spects that cause peak-load over-estimates and on heuristic strategies
o account for them and thereby to get closer estimates of the structural
esponse.
5

Table 1
Factors of error of adapted LS-DEM and FEM relative to Mirkhalaf et al. (2019)
experiments in the geometrically perfect case.

Response parameter Assembly Overestimation factor

index FEM (Mirkhalaf
et al., 2019)

LS-DEM with 𝑘𝑝𝑒𝑟𝑛

Peak load [N]
3 × 3

14–15
7.1

5 × 5 3.7
7 × 7 3.4

Loading energy [N mm]
3 × 3

9–13
6.2

5 × 5 5.6
7 × 7 6.0

5. Two avenues towards improved predictive modeling

5.1. Accounting for initial gaps between the blocks

The over-estimation of the peak load by the FEM simulations was
attributed in Mirkhalaf et al. (2019) to the presence of ‘‘small gaps
between the blocks resulting from statistical variations in the shape
of blocks, an effect which has been previously found to significantly
affect the mechanical performance in similar materials (Barthelat and
Zhu, 2011)’’. Following this reasoning, with which we concur, we
next present and test a simplified modeling approach to account in an
approximate way for the effect of gaps.

5.1.1. A simplified approach to accounting for the global effects of gaps
From a structural mechanics perspective, the presence of gaps re-

duces TIS’s global stiffness and carrying capacity because they reduce
the in-plane stiffness. Under in-plane compression, the gaps reduce
without exerting tractions, leading to total deformation that is always
larger than when there are no gaps. Based on the fact that gap reduction
and block deformation contribute to the global deformation in-series,
we heuristically consider the penetration stiffness in the geometrically
imperfect case 𝑘𝑖𝑚𝑝𝑛 to be a resultant spring of two springs in series
— 𝑘𝑑𝑒𝑓𝑛 (which represents the blocks’ deformability, see Eq. (3)) and
𝑘𝑔𝑎𝑝𝑠𝑛 (which represents the contribution of gap closure to the in-plane
deformability) thus:

𝑘𝑛 = 𝑘𝑖𝑚𝑝𝑛 =
𝑘𝑑𝑒𝑓𝑛 ⋅ 𝑘𝑔𝑎𝑝𝑠𝑛

𝑘𝑑𝑒𝑓𝑛 + 𝑘𝑔𝑎𝑝𝑠𝑛

(4)

In general, the magnitude and distribution of initial gaps is not
known a-priori and so there is no close form expression for 𝑘𝑔𝑎𝑝𝑠 as the
𝑛
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irections are represented by the inclination of the cylinders axis and their magnitude is represented by the cylinders width.
f
t
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w
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ne for 𝑘𝑑𝑒𝑓𝑛 . Therefore, when the effect of gaps is taken into account
sing Eq. (4), the 𝑘𝑔𝑎𝑝𝑠𝑛 component of 𝑘𝑖𝑚𝑝𝑛 requires calibration.

.1.2. Calibration of the gap parameter 𝑘𝑔𝑎𝑝𝑠𝑛
We calibrated 𝑘𝑔𝑎𝑝𝑠𝑛 in the context of the 𝜃 = 5◦ 5 × 5 panel

rom Mirkhalaf et al. (2019), keeping 𝑘𝑑𝑒𝑓𝑛 as before at 2.25 GPa/mm.
omparing the experimental and LS-DEM load–deflection curves in
ig. 6, the 𝑘𝑔𝑎𝑝𝑠𝑛 = 0.49 GPa/mm and 𝑘𝑔𝑎𝑝𝑠𝑛 = 0.65 GPa/mm curves
nvelope the experimental one, with the former value closer in terms of
eak load, loading energy, and ultimate displacement. Comparing the
6

e

ailure mechanism, the 𝑘𝑔𝑎𝑝𝑠𝑛 = 0.65 GPa/mm case correctly captures
he localized failure observed in the Mirkhalaf et al. (2019) experi-
ents, whereas the 𝑘𝑔𝑎𝑝𝑠𝑛 = 0.49 GPa/mm case does not. Based on this,
e chose the 𝑘𝑔𝑎𝑝𝑠𝑛 = 0.65 GPa/mm case as the best fit 𝑘𝑔𝑎𝑝𝑠𝑛 . As an
dditional check on the validity of the choice of 𝑘𝑔𝑎𝑝𝑠𝑛 = 0.65 GPa/mm,
e plotted the internal force chains obtained with it and found that,

imilarly to what we found for the closed-form 𝑘𝑛 used in Section 4,
hey are similar to those obtained in FEM simulations (Khandelwal
t al., 2012) and are inline with the thrust-line model (Khandelwal
t al., 2012, 2013; Short and Siegmund, 2019).
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Fig. 6. Calibration of the gap parameter 𝑘𝑔𝑎𝑝𝑠𝑛 : (a) 𝑃 − 𝛿 curves of the 𝜃 = 5◦ 5 × 5 panel with varying 𝑘𝑔𝑎𝑝𝑠𝑛 ; (b–c) failure mechanism snapshots for selected 𝑘𝑔𝑎𝑝𝑠𝑛 ; (d–g) resultant
contact forces between the block for 𝑘𝑔𝑎𝑝𝑠𝑛 = 0.65 GPa/mm at selected 𝛿’s, represented by cylinders. The forces direction is represented by the inclination of the cylinders axis and
their magnitude is represented by the cylinders width and color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 7. Comparison between the LS-DEM prediction with calibrated gap parameter to the experimental benchmark results from Mirkhalaf et al. (2019) for the eight test panels
(a–d) and (f–i).
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5.1.3. Evaluating the validity of 𝑘𝑔𝑎𝑝𝑠𝑛 and the importance of gaps
To ensure that the calibrated 𝑘𝑔𝑎𝑝𝑠𝑛 = 0.65 GPa/mm is valid be-

yond the calibration case, we analyzed with it eight test panels –
the remaining combinations of the 3 × 3, 5 × 5, and 7 × 7 panels
with 𝜃 = 2.5◦, 5◦, 7.5◦ – and compared the results to the experimental
benchmark (Mirkhalaf et al., 2019). We used the same 𝑘𝑔𝑎𝑝𝑠𝑛 for the
3 × 3, 5 × 5, and 7 × 7 panels because, for the same level of geometrical
imperfection at the block level, the global effect of gaps is independent
of the number of blocks.4

Fig. 7 depicts the 𝑃 − 𝛿 curves of the nine panels, obtained with the
calibrated 𝑘𝑔𝑎𝑝𝑠𝑛 = 0.65 GPa/mm. The error factors for all the cases are
summarized in Table 2.

4 To see why, consider an imperfection of 0.001 of the side length of the
lock resulting in a gap of the same magnitude at the block level. For the 3 × 3
lock with side length 12.5 mm, this translates to a gap of size 0.0125 mm
t the block level, and to a cumulative gap along of 4 × 0.0125 = 0.06 mm

(the 3 × 3 has 4 active interfaces). The same calculation for the 7 × 7 panel
yields half of the gap at the block level (because the side length is half) but
the same cumulative gap (because there are twice the number of interfaces).
In other words, the effect of different gaps at the block level on the global
in-plane deformability is exactly off-set by the number of interfaces such that
8

the effect of gaps is independent of the number of blocks.
Fig. 7 and Table 2 show that, with the calibrated 𝑘𝑔𝑎𝑝𝑠𝑛 , the model
s quantitatively much closer to the experimental peak load compared
ith the non-calibrated models, see Table 1. Qualitatively, it captures

he increase in peak load and loading energy with block size for all 𝜃’s,
atches the initial stiffness across the different block sizes and 𝜃’s (to
lesser degree in cases a,b,d), captures the negative stiffness phases in

d,f,h,i) and the load drops (c,d,e,f,i) at final stages of failure. In terms
f the failure mechanism, with the exception of case (g), the model
ell captures the experimentally-observed slip-governed failure across

he eight test panels. These results show that, even with a very crude
pproach of accounting for the effects of gaps, the predictive ability
f the model is considerably better. They thus support the notion that
eometrical imperfection and commensurate initial gaps negatively
nfluence the carrying capacity of TIS and that accounting for them is
ey to obtaining better predictive capabilities.

Fig. Fig. 8 depicts the failure mechanism for the eight validation
cases corresponding to the 𝑃 − 𝛿 curves in Fig. Fig. 7(a-d,f-i). It shows
that, in most cases, the calibrated model correctly captures the experi-
mentally observed slip-governed failure mechanism, with the central
block slipping out of the assembly and with some upward rebound
Mirkhalaf et al. (2019). Lesser agreement is obtained in cases (c) and
(h), where more than one block eventually fall off, and a stick-governed
failure different from the experimentally reported one was obtained in

case (g).
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Fig. 8. Failure mechanism snapshots of the eight validation panels.
We note that the better quantitative agreement of the calibrated
model compared with the non-calibrated FEM and LS-DEM models
comes at the expense of performing a problem-specific set of initial
analyses to calibrate 𝑘𝑔𝑎𝑝𝑠𝑛 , which is a disadvantage for a predictive
model. Also, the quantitative agreement of the calibrated model for dif-
ferent TIS configurations may be better or worse then that reflected in
Fig. 7 and Table 2. This, together with the fact that our simple approach
only accounts for the effects of gaps in a global and approximate sense,
points to the need for more in-depth studies on the effects of gaps in
various TIS configurations.
9

5.2. Accounting for ‘Second-order’ effects

5.2.1. Additional, non-gap-related, causes for model-experiment discrepan-
cies

Notwithstanding the closer estimates of the structural response
when the effects of gaps are accounted for (see Fig. 7 and Table 2),
there are still noticeable discrepancies between the experimental results
and the model predictions. These can be attributed to the compliance
of the peripheral boundary element and small in-plane slipping failures
between the peripheral element and the boundary blocks, factors not
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Fig. 9. The discrepancies between analyses and experiment can be reduced by simple modifications in the friction model: (a) 𝑃 − 𝛿 curves with smaller-than-nominal 𝜇’s; (b) 𝑃 − 𝛿
curves from 8 realizations with randomly generated 𝜇’s; (c,d) failure mechanism snapshots for selected 𝜇’s. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Table 2
Error factors in validation of calibrated model — the errors are smaller than FEM’s
by an order of magnitude, reasonable in absolute terms, and similar in the calibration
panel and the validation panels, supporting the model’s validity.

Assembly 𝜃◦ 𝑃 𝑒𝑥𝑝
𝑚𝑎𝑥∕𝑃 𝑚𝑜𝑑𝑒𝑙

𝑚𝑎𝑥 𝐿𝐸𝑒𝑥𝑝
𝑚𝑎𝑥∕𝐿𝐸𝑚𝑜𝑑𝑒𝑙

𝑚𝑎𝑥

7 × 7
2.5

0.85 1.02
5 × 5 1.36 1.42
3 × 3 1.66 1.44

7 × 7
5

0.88 1.25
5 × 5 1.40 1.84
3 × 3 1.74 2.13

7 × 7
7.5

1.24 1.92
5 × 5 1.21 1.37
3 × 3 1.58 2.22

Average error factors 1.32 1.62
Standard deviation 0.32 0.42
Standard deviation [%] 24 26

accounted for in our model. Such factors may explain the markedly
smaller initial stiffness and unexplained stiffening in cases (a,b,d),
indicated by green circles in Fig. 7. This reasoning is supported by the
fact that good agreement with the experiments was obtained in cases
(c),(e),(f),(g, after the initial early load drop), (h) and (i), and that in
all of these cases the variations in the (experimental) initial stiffness
were relatively small.

In addition to the discrepancies discussed in the preceding para-
graph, we see in Fig. 7 that, in the LS-DEM model, the load/stiffness
drops that follow the initial linear response (and which are indicated
by blue five-point stars in the figure) always occur later than in the
experimental curves, which explains the general overestimation of
the peak-load, even when the effects of gaps are taken into account.
We attribute the delayed stiffness/load drop transition of the model
10
to friction-related factors like frictional instabilities and to friction
strength variability, factors which simplistic friction models such as a
bi-linear Coulomb’s law (to our knowledge, the only one hitherto used
in the TIS literature) do not account for. That such factors play a role
in TIS’ structural response is suggested by the sharp, and otherwise
unexplained load/stiffness drops in Fig. 7(d–i). Next, we examine the
possible effects of friction-related factors using simple approximate
strategies to account for their effects.

5.2.2. The effects of friction-related instability and variability
The effect of friction-instabilities-induced load drop upon sliding

initiation can be roughly approximated by assuming smaller friction
coefficients than the nominal one. The effects of 𝜇 variability can be
examined by attributing a random distribution of friction coefficients
to the blocks. Fig. 9(a) shows that smaller friction coefficients are in
a closer agreement with the experimental curve. However, while the
failure mechanism for the 𝜇 = 0.21 remains correct, see Fig. 9(d), the
better 𝑃 − 𝛿 agreement with 𝜇 = 0.19 comes at the expense of losing
the correct failure mechanism, see Fig. 9(c).

Fig. 9(b) illustrates the effect of introducing 𝜇 variability to the
model. The eight thin colored lines correspond to eight realizations
of the model wherein the 𝜇’s for the different blocks were obtained
randomly from a normal distribution with mean 0.23 (the nominal
value) and standard deviation (std) 0.06. It can be seen that the average
realization enveloped by the eight realizations is much closer to the
experimental benchmark than the reference analysis with deterministic
𝜇 = 0.23.

Fig. 9(a,b) suggests that friction-related effects may play an impor-
tant in the structural response of TIS. This points to the need to better
understand and study them on the one hand, and to the improved
predictive power gained by accounting for them in models on the other.
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6. Conclusion

We have presented a new modeling approach for topologically in-
terlocked structures, based on the Level-Set-Discrete-Element-Method.
This approach aims at facing the modeling challenges posed by the
unique behavior and failure of these structures within a Discrete El-
ement framework, as an alternative to the commonly-used FEM ap-
proach.

After outlining the theoretical basis of our approach, we have
shown that, without parameter calibration, our model can capture
the experimentally-observed slip-governed failure mechanisms and the
arch-like internal load transmission paths in centrally-loaded slab-like
TIS. Next, in an attempt to identify paths towards more predictive mod-
eling, we applied the new model to explore the effects of initial gaps
and friction-related phenomena on TIS structural response, described
simple modeling concepts to account for them, and showed that this
improved the agreement with experimental benchmarks.

The theoretical basis and the ability of our model to describe and
quantify the behavior of topologically interlocked structures establish
an initial proof-of-concept of our new Level-Set-DEM approach. Future
research will focus on further examining the validity of our new ap-
proach in different TIS configurations and on refining the work towards
calibration-free and predictive computational models.
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ppendix. Computational information

The c++ LS-DEM code used for the analyses in this manuscript was
un on the ETH Euler cluster. A typical analysis of the 5 × 5 assembly
49 blocks + the spherical indenter tip) with the most refined surface
iscretization with a distance of 0.06 mm between surface nodes took
pproximately 50 CPU hours to run, without parallelization and code
ptimization. The preprocessing stage, where the Level-Set geometrical
epresentations of the blocks are calculated, and which only has to be
one once per structure, took about 8 h. The 100,000 time-increments
f the relaxation under gravity took about 7 h, and the 500,000 time-
ncrements of indentation loading took about 35 h. The time step
𝑡𝐿𝑆𝐷𝐸𝑀 required for numerical stability of the explicit formulation
as about 1 ms. Analyses with less refined discretizations that yielded
11

esults fairly close to the converged ones took only a few hours.
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