\qquad

ENVISION TUITION 11 PLUS PAEPR

WWW.ENVISIONTUITION.COM

Date:

Time: 1 hour
Total marks available: 57
Total marks achieved:

Questions

Q1.
*

$A B C$ is a straight line.
$B D=B C$
Angle $A D B=80^{\circ}$
Angle $B D C=20^{\circ}$
Work out the size of the angle marked x.
Give reasons for your answer.

Q2.

$X Y W$ is a straight line.
Work out the size of the angle marked a. You must give reasons for your answer.

Q3.
$A B C D E$ is a pentagon.

Work out the area of $A B C D E$.
\qquad cm^{2}

Q4.

Here is information about the cost of sending a parcel to Europe by Parcel Link.

Next day delivery	$£ 19.00$ plus 70 p for each kg more than 5 kg
$\mathbf{3}$ day delivery	$£ 16.00$ plus 50 p for each kg more than 5 kg

Kate is going to send a parcel to Europe by Parcel Link.
The parcel weighs 12 kg .
Kate can send the parcel using next day delivery or using 3 day delivery.
(a) Work out the difference in the two costs.
£. \qquad

Adam sends a parcel to Europe by Parcel Link.
He uses 3 day delivery.
The cost is $£ 25$
(b) Work out how many kilograms Adam's parcel weighs.

Q5.

Here is part of a bus timetable from Harrow Lane to Cartbridge Street.

Harrow Lane to Cartbridge Street

Harrow Lane	0802	0904	1012	1102	1204	1212
Elm Drive	0819	0921	1029	1119	1221	1229
Hamden Road	0832	0934	1042	1132	1234	1242
Swipe Crescent	0841	0943	1051	1141	1243	1251
Cartbridge Street	0850	0952	1101	1150	1252	1301

A bus goes from Harrow Lane to Cartbridge Street.
The bus leaves Harrow Lane at 0802
(a) At what time should the bus get to Cartbridge Street?
\qquad

Here is part of a bus timetable from Cartbridge Street to Harrow Lane.

Cartbridge Street to Harrow Lane

Cartbridge Street	1311	1414	1507	1611	1714	1807
Swipe Crescent	1320	1424	1516	1620	1724	1816
Hamden Road	1329	1433	1525	1629	1733	1825
Elm Drive	1343	1447	1539	1643	1747	1839
Harrow Lane	1353	1457	1549	1653	1757	1849

A bus goes from Cartbridge Street to Harrow Lane. This bus leaves Hamden Road at 1329
(b) Work out how many minutes this bus should take to go from Hamden Road to Elm Drive.
\qquad

Peter lives in Harrow Lane. His grandmother lives in Swipe Crescent. Peter visits his grandmother. He goes by bus from Harrow Lane to Swipe Crescent. Peter wants to have at least 3 hours with his grandmother. He needs to be back at Harrow Lane by 1600^{*} (c) Plan Peter's journey to visit his grandmother and get back to Harrow Lane.
You must include the times of the buses.

Q6.

* This formula is used to work out the body mass index, B, for a person of mass $M \mathrm{~kg}$ and height H metres.

$$
B=\frac{M}{H^{2}}
$$

A person with a body mass index between 25 and 30 is overweight.
Arthur has a mass of 96 kg .
He has a height of 2 metres.
Is Arthur overweight?
You must show all your working.

(Total for Question is 3 marks)

Q7.

Babajan makes breakfast cereal.
She mixes nuts, raisins and oats in the ratio $3: 2: 5$ by weight.
On Monday, Babajan uses 60 grams of nuts.
(a) Work out the weight of raisins and the weight of oats she uses to make the breakfast cereal.
\qquad

On Tuesday, Babajan makes 300 grams of the breakfast cereal.
500 grams of nuts cost $£ 8$
(b) Work out the cost of the nuts used to make 300 grams of the breakfast cereal.
£ \qquad

Q8.

Here are five cards.

There is a whole number from 0 to 9 on each card.
The number on the last card is hidden.

The range of the five numbers is 6
(a) Write down the whole number on the last card.
\qquad

Here is a different set of five cards.

There is a different whole number from 0 to 9 on each card. The number on the last card is hidden.

The median of the numbers on the five cards is 4
(b) Which whole numbers could be on the last card?
\qquad

Q9.

The diagram shows a rectangle and a square.

Diagram NOT
accurately drawn

The perimeter of the rectangle is the same as the perimeter of the square.
Work out the length of one side of the square.

Q10.

Jim has a board made of squares.

Jim puts 50 p on every black square.
Sophie puts 20p on every white square.
Work out the total amount of money on the board.

Q11.

A school shop sells fruit bars for 50p each.
On Monday the shop sold 20 fruit bars.
On Tuesday the shop sold fruit bars with a total value of $£ 13.50$
The shop sold more fruit bars on Tuesday than on Monday.
(a) How many more?

The table shows all the things sold in the shop.

Snacks		Drinks	
Fruit bar	50 p	Lemon drink	50 p
Cereal bar	65 p	Water	75 p
Chocolate bar	$£ 1.20$	Fruit carton	95 p

Katie has two £1 coins and three 20p coins.
She has no other money.
She buys 3 cereal bars and a lemon drink.
*(b) Does Katie have enough money left to buy a fruit bar?
You must show all your working.

Q12.

Ed has 4 cards.
There is a number on each card.

The mean of the 4 numbers on Ed's cards is 10
Work out the number on the 4th card.

(Total for Question is 3 marks)

Q13.

Here is an equilateral triangle.

Diagram NOT

accurately drawn

The equilateral triangle has a perimeter of 24 cm .
Three of these equilateral triangles are used to make this trapezium.

Work out the perimeter of the trapezium. cm

Mark Scheme

Q1.

Q2.

		Working	Answer	Mark	Notes
$*$		85	4	M1 for (angle YXZ $=$) $360-300(=60)$ M1 for (angle $\mathrm{XYZ}=) 180-145(=35)$ A1 cao C1 (dep on M1) for full reasons and unambiguous notation for angles (may be shown in diagram) (angles around a point sum to 360 and angles on a straight line sum to 180 and angles in a triangle sum to 180)	

Q3.

Question		Working	Answer	Mark	Notes
	$\sqrt{5^{2}-4^{2}}=3$ $4 \times 8=32$ $32+\frac{1}{2}(3 \times 8)$	44	5	P2 for $\sqrt{5^{2}-4^{2}}$ or for a height of 3	
$\left(\right.$ P1 for $\left.5^{2}-4^{2}\right)$					
P1 for process to find one area					
P1 for a complete process to find the total area					
A1 cao					

Q4.

PAPER: 1MA0_1F				
Question	Working	Answer	Mark	Notes
(a)		4.40	3	M1 for a method to find the cost for
				one delivery method
				$\begin{aligned} & \text { eg } 19+7 \times 0.7(0)(=23.9(0)) \text { or } \\ & 16+7 \times 0.5(0)(=19.5(0)) \end{aligned}$
				M1 for a method to find the cost for
				both delivery methods and
				attempting to subtract eg 23.90 -
				19.50
				A1 cao Accept 4.4
				OR
				M1 for method to find the
				difference between the two delivery
				costs eg 19-16 (=3) and 70-50
				M1 for a method to find the "cost"
				using the differences
				eg " 3 "+7x"20"
				A1 cao Accept 4.4
(b)		23	3	M1 for $25-16(=9)$
				M1 for a method to divide "9" by
				$0.50(=18)$
				A1 cao
				OR
				M1 for starting with 16 and a method to add on 0.50 s
				M1 for starting with 16 and adding
				on 0.50 s to within 0.50 of 25
				A1 cao

Q5.

Question	Working	Answer	Mark	Notes
(a) (b) $\text { (c) }{ }^{\star}$	$\begin{aligned} & 13 \text { 43-13 } 29 \\ & \text { e.g. } \\ & \text { HL to SC: } 1102 \text { - } \\ & 11 \text { 41 Visit (at } \\ & \text { least } 3 \text { hours) } \\ & \text { SC to HL: } 1516- \\ & 1549 \\ & \text { [Note : there are } 9 \\ & \text { possible solutions] } \end{aligned}$	$\begin{aligned} & 0850 \\ & 14 \\ & \text { A fully correct plan } \\ & \text { showing departure } \\ & \text { times and arrival } \\ & \text { times of the two } \\ & \text { bus journeys } \end{aligned}$	1	B1 for 0850 or $850(\mathrm{am})$ or 10 to 9 B1 cao B1 for a departure time of 0802 or 09 04 or 1012 or 1102 from HL M1 (indep) for a correct arrival time at SC and a correct departure time from SC (or Cartbridge St) which allows for a stay of at least 3 hours in SC (the differencing does not have to be seen) OR for correctly adding 3 hours to a their arrival time at SC B1 for a departure time from SC of 13 20 (13 11 from CS) or 1424 (14 14 from CS) or 1516 (1507 from CS) C1 (dep on M1) for a complete correct plan which includes the departure and arrival times of the two bus journeys [Note: bus departure times may be identified by their starting times. Eg the 1507 from Cartbridge Street would be acceptable for the identification of the bus which arrives a HL at 15 49]

Q6.

| Question | Working | Answer | Mark | Notes |
| :---: | :--- | :--- | :---: | :---: | :--- |
| * | $96 \div 2^{2}$
 $=96 \div 4$
 $=24$ | No
 +
 calculations | 3 | M1 for $96 \div 2^{2}$ oe
 A1 for 24
 C1 dep on M1for "No" with a
 calculation to support their
 conclusion
 SC B1: for $96 \div 2$ and a correct
 conclusion seen |

Q7.

Question	Working	Answer	Mark	Notes
(a)		40,100	3	M1 method to find unit weight e.g. $60 \div 3(=20)$ M1 for complete method to find weight of one of the other ingredients e.g " 20 " $\times 2(=40)$ or " 20 " $\times 5(=100)$ A1 cao
(b)		1.44	3	M1 for a complete method to work out the weight of nuts needed $\begin{aligned} & \text { e.g. } 300 \div(3+2+5) \times 3(=90) \\ & \text { or } 300 \div(60+" 40 "+100 ") \times 60(=90) \end{aligned}$ M1 for a complete method to work out the cost eg $(800 \div 500) \times " 90$ " $(=144)$ A1 cao

Q8.

PAPER: 1MA0_1F							
Question	Working	Answer	Mark	Notes			
		2	1	B1 cao			
(a)		$0,1,2$	2	M1 for any two of 0, 1, 2 correct with no extras or for showing 3,4,6,7 as consecutive numbers in an ordered list (ignore numbers before or after 3,4,6,7 and allow an extra 4 written within the list 3,4,4,6,7). A1 fully correct answer in any order			

Q9.

| Question | Working | Answer | Mark | Notes |
| :--- | :--- | :--- | :---: | :---: | :--- |
| | $2+8+2+8=20$
 $20 \div 4=$ | 5 | 4 | M2 for $2+8+2+8$ oe or 20 seen
 or $(2+8) \div 2$ oe
 (M1 for the sum of 3 sides of the
 rectangle)
 M1 (dep) for the sum of 3 or 4
 sides of the rectangle $\div 4$
 or an attempt to evaluate $(2+8) \div$
 2 oe to get the length of one side
 A1 cao
 SC: B1 for an answer of 4 coming
 from $\sqrt{2 \times 8}$ oe |

Q10.

Q11.

Paper: 5MB2F_01
Quen

Question	Working	Answer	Mark	Notes
(a)		7	3	```M1 for \(£ 13.50 \div 50\) p oe or \(1350 \div 50\) oe or adding up (at least 16) 50ps working towards \(£ 13.50\) M1 for " 27 " -20 A1 cao or M1 for \(20 \times 50(=1000)\) and \(1350-\) " 1000 " (\(=350\)) oe or \(20 \times 0.50(=10.00)\) and \(13.50-\) " 10.00 " (=3.50) oe M1 for " 350 " \(\div 50\) or " 3.50 " \(\div 0.50\) A1 cao```
*(b)		$\begin{gathered} \text { No } \\ \text { eg only } 15 \text { p left } \end{gathered}$	4	M1 for $£ 1+£ 1+3 \times 20$ p ($=£ 2.60$) oe M1 for $3 \times 65 \mathrm{p}+50 \mathrm{p}(=£ 2.45)$ oe or "£ 2.60 " -3×65 p- 50 p oe A1 for $2.6(0)$ and 2.45 or $2.6(0)$ and 15p C1 (dep on M1) for a statement which includes "no" (oe) and a reference to figures such as $15 \mathrm{p}<50 \mathrm{p}$, needs extra 35 p etc. with figures shown using correct money notation and units.

Q12.

		Working	Answer	Mark	Notes
			7	3	M1 for 4×10 or 40 or $12+6+15+\mathrm{x} / 4$ or a correct equation M1 for a complete correct method A1 cao

Q13.

5MB2F 01 November 2015				
Question	Working	Answer	Mark	Notes
		40	3	M1 for $24 \div 3(=8)$
				M1 for " 8 " $\times 5$
				A1 cao
				OR
				M1 for $3 \times 24(=72)$
				M1 for " 3×24 " $-8-8-8-8$
				A1 cao

