FOUNDATION MATHS GCSE NON-CALCULATOR SAMPLE
 Envision Tuition
 MATHEMATICS TUTORS

Date:

Time: 90 minutes
Total marks available: 80
Total marks achieved: \qquad

Questions

Q1.

Write 7829 to the nearest 1000

Q2.

Work out $(-3)^{3}$

Q3.

Write 180 minutes in hours.
hours
(Total for question = 1 mark)

Q4.

Work out $20 \div(3+2)$

Q5.

What is 10% of $£ 50$?

£

Q6.
Margaret is going to have a meal.
She can choose one starter and one main course.

	Menu
Starter	Main course
Pate	Beef
Melon	Salmon
Ham	Lasagne

Write down all the possible combinations Margaret can choose.
\qquad
\qquad
\qquad
\qquad
(Total for Question is $\mathbf{2}$ marks)

Q7.

Stuart throws a biased coin 10 times.
He gets 7 Tails.
Maxine throws the same coin 50 times.
She gets 30 Tails.
Prasha is going to throw the coin once.
(i) Whose results will give the better estimate for the probability that she will get Tails, Stuart's or Maxine's?
You must give a reason for your answer.
(ii) Use Stuart's and Maxine's results to work out an estimate for the probability that Prasha will get Tails.

Q8.

8 identical pens cost £12
Work out the cost of 10 of these pens.
£ \qquad

Q9.

* The nth term of sequence A is $3 n-2$

The nth term of sequence B is $10-2 n$
Sally says there is only one number that is in both sequence A and sequence B.
Is Sally right?
You must explain your answer.

Q10.

Write these numbers in order of size.
Start with the smallest number.
2.5×10^{2}
0.0025
2.5×10^{-2}
2500

Q11.

The centimetre grid shows the plan and the front elevation of a cylinder.

Work out the volume of the cylinder.
Give your answer in terms of π
cm^{3}

Q12.

(a) Write down the coordinates of point B.
\qquad
(b) Find the coordinates of the midpoint of $A B$.
\qquad
..)
(c) On the grid, draw the line with equation $y=-3$

Q13.

Here is a number machine.

Complete this table for the number machine.

Input	Output
0.5	
2	15
3	
	33

Q14.

At the end of 2017
the value of Tamara's house was $£ 220000$ the value of Rahim's house was $£ 160000$

At the end of 2019
the value of Tamara's house had decreased by 20\% the value of Rahim's house had increased by 30%
At the end of 2019, whose house had the greater value?
You must show how you get your answer.

Q15.

The pie charts show information about the favourite animal of each student at school \mathbf{A} and of each student at school B.

There are 760 students at school B.

Henry says,
"The same number of students at each school have tigers as their favourite animal."
Is Henry correct?
You must show how you get your answer.

Q16.

Here is part of Jo's electricity bill

Electricity Bill	May 2012
J. Evans	
3 Hillside Ave	
London	CP Energy Connecting people Connecting places
$\mathbf{2 0 1 2}$	
Reading 1st Jan Reading 1st April 02792 units 03307 units	
Number of units used	515 units
Cost: 35p per unit	

Work out how much Jo has to pay for the units she has used.
£..........................
(Total for Question is $\mathbf{4}$ marks)

Q17.

* This formula is used to work out the body mass index, B, for a person of mass $M \mathrm{~kg}$ and height H metres.

$$
B=\frac{M}{H^{2}}
$$

A person with a body mass index between 25 and 30 is overweight.
Arthur has a mass of 96 kg .
He has a height of 2 metres.
Is Arthur overweight?
You must show all your working.

Q18.

Felicity asked 100 students how they came to school one day.
Each student walked or came by bicycle or came by car.
49 of the 100 students are girls.
10 of the girls came by car.
16 boys walked.
21 of the 41 students who came by bicycle are boys.
Work out the total number of students who walked to school.

Q19.

(a) What fraction of this shape is shaded?

Write your fraction in its simplest form.
(b) Shade $3 / 8$ of this shape.

Q20.

Matthew has a job.
His normal hourly rate of pay is $£ 10$
His overtime hourly rate of pay is $1 \frac{1}{2}$ times his normal hourly rate of pay.
Matthew is paid at the normal hourly rate for 7 hours work each day, Monday to Friday. He does not work on Saturday or Sunday.

Here is a table showing the number of hours of overtime he worked each day this week.

	Mon	Tues	Wed	Thur	Fri
Overtime (hours)	3	2	0	1	3

Work out Matthew's total pay for this week.

Q21.

The accurate scale drawing shows the positions of port P and a lighthouse L.

Scale: 1 cm represents 4 km .

Aleena sails her boat from port P on a bearing of 070°
She sails for $1 \frac{1}{2}$ hours at an average speed of $12 \mathrm{~km} / \mathrm{h}$ to a port Q.
Find
(i) the distance, in km , of port Q from lighthouse L,
(ii) the bearing of port Q from lighthouse L.
\qquad
distance $Q L=$
km
bearing of Q from $L=$
。

Q22.
*Here are the instructions to work out the time, in minutes, needed to cook a chicken.

> 25 minutes for each $\frac{1}{2} \mathrm{~kg}$ then add 15 minutes

Lawrence is going to cook a chicken.
The chicken has a weight of 2 kg .
Lawrence wants to finish cooking the chicken at 630 pm .
Work out the time he should start to cook the chicken.

Q23.
(a) Simplify $x^{2} \times x^{4}$
(b) Simplify $y^{8} \div y^{6}$

Q24.

Here is part of a bus timetable from Harrow Lane to Cartbridge Street.

Harrow Lane to Cartbridge Street

Harrow Lane	0802	0904	1012	1102	1204	1212
Elm Drive	0819	0921	1029	1119	1221	1229
Hamden Road	0832	0934	1042	1132	1234	1242
Swipe Crescent	0841	0943	1051	1141	1243	1251
Cartbridge Street	0850	0952	1101	1150	1252	1301

A bus goes from Harrow Lane to Cartbridge Street.
The bus leaves Harrow Lane at 0802
(a) At what time should the bus get to Cartbridge Street?
\qquad

Here is part of a bus timetable from Cartbridge Street to Harrow Lane.

Cartbridge Street to Harrow Lane

Cartbridge Street	1311	1414	1507	1611	1714	1807
Swipe Crescent	1320	1424	1516	1620	1724	1816
Hamden Road	1329	1433	1525	1629	1733	1825
Elm Drive	1343	1447	1539	1643	1747	1839
Harrow Lane	1353	1457	1549	1653	1757	1849

A bus goes from Cartbridge Street to Harrow Lane.
This bus leaves Hamden Road at 1329
(b) Work out how many minutes this bus should take to go from Hamden Road to Elm Drive.
\qquad

Peter lives in Harrow Lane. His grandmother lives in Swipe Crescent. Peter visits his grandmother. He goes by bus from Harrow Lane to Swipe Crescent. Peter wants to have at least 3 hours with his grandmother. He needs to be back at Harrow Lane by 1600
*(c) Plan Peter's journey to visit his grandmother and get back to Harrow Lane.
You must include the times of the buses.

Q25.
(a) Complete the table of values for $y=x^{2}-3 x+1$

x	-1	0	1	2	3	4
y		1	-1			

(b) On the grid, draw the graph of $y=x^{2}-3 x+1$ for values of x from -1 to 4

(c) Using your graph, find estimates for the solutions of the equation $x^{2}-3 x+1=0$
\qquad

Q26.

Here is a right-angled triangle.

Diagram NOT
accurately drawn

The shape below is made from 4 of these triangles.

(a) Work out the area of the shape.
(b) Work out the perimeter of the shape.

Mark Scheme

Q1.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :--- | :---: | :--- | :--- | :--- | :--- |
| | 8000 | B1 | cao | |

Q2.

Paper 1MA1: 1F				
Question	Working	Answer		Notes
		-27	B1 cao	

Q3.

| Question | Answer | Mark | Mark scheme | Additional quidance |
| :---: | :---: | :--- | :--- | :--- | :--- |
| | 3 | B1 | cao | |

Q4.

| Question | Answer | Mark | Mark scheme | Additional guidance |
| :---: | :---: | :---: | :--- | :--- | :--- |
| | 4 | B1 | cao | |

Q5.

Question		Working	Answer	Mark	Notes
		$50 \div 10$ or $10 / 100 \times 50=$	$£ 5$	1	B1

Q6.

| Question | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: | :--- |
| | | (P, B), (P, S), (P, L)
 (M, B), (M, S), (M,
 L)
 (H, B), (H, S), (H,
 L) | 2 | M1 for any 3 combinations with no
 incorrect combinations
 A1 for all 9 combinations with no
 duplicates or extras |

Q7.

Question	Answer	Mark	Mark scheme	Additional guidance
(i)	Maxine with bigger number of trials	C1	for Maxine with reason Acceptable examples She throws the coin more times than Stuart Not aceeptable examples Maxine throws it 50 times She gets more Tails Stuart (he)	
(ii)	$\frac{37}{60}$	B1	for $\frac{37}{60}$ oe	

Q8.

| Question | Working | Answer | Notes |
| :--- | :---: | :---: | :--- | :--- |
| | | 15 | M1
 A1
 For start to scaling process eg 12 $\div 8$ |

Q9.

5MB2F 01 November 2015					
	estion	Working	Answer	Mark	Notes
*		$\begin{aligned} & 1,4,7,10,13 \\ & 8,6,4,2,0 \end{aligned}$	Explanation	2	M1 for listing at least 3 terms of both sequences C 1 for Yes and explanation from fully correct working that 4 is in both sequences; numbers in A are increasing; numbers in B are decreasing

Q10.

5MB2H/01 June 2015				
Question	Working	Answer	Mark	Notes
		0.0025 2	M1 for converting all numbers to same form with at least one conversion correct A1 for fully correct order with correct	
		2.5×10^{-2} numbers in any correct form (SC B1 if one number incorrectly placed (S all 4 numbers listed in reverse order)		

Q11.

Question	Answer	Mark	Mark scheme	Additional guidance
	45π	P1	for (area of circle $=$) $\pi \times 3^{2}$	
		P1	for (volume $=$ [area of circle] $\times 5$	[area of circle] $\times 5=\pi \times 3^{2} \times 5$ or $\pi \times 6^{2} \times 5$ or $\pi \times r^{2} \times 5$
		A1	cao	

Q12.

Question	Working	Answer		Notes
a		$(4,5)$	B1	
b		$(1,4)$	B1	
c		Correct line	B1	

Q13.

		Working	Answer	Mark		Notes
	(a)		6	1	B1 cao	
	(b)		21	1	B1 cao	
	(c)		5	1	B1 cao	

Q14.

Question	Answer	Mark	Mark scheme	Additional guidance
	$\underset{\text { (supported) }}{\text { Rahim }}$	P1 P1 A1 C1	for start to the process to find 20\% for Tamara, eg 220000×0.2 oe $(=44000)$ or 30% for Rahim, eg 160000×0.3 oe $(=48000)$ OR for $1-0.2(=0.8)$ or $100-20(=80)$ or $1+0.3(=1.3)$ or $100+30(=130)$ for a complete process to find at least one new value, eg 220000 - " $44000 "$ (= 176000) or $160000+$ " $48000 "(=208000)$ OR $220000 \times$ " 0.8 " (=176000) or $160000 \times$ "1.3" $(=208000)$ for one correct value, 176000 or 208000 for correct conclusion supported by correct figures eg Rahim, 176000 and 208000	Build up processes are acceptable but must be complete and correct Award 0 marks for a correct answer with no supportive working.

Q15.

Question	Answer	Mark	Mark scheme	Additional guidance
	No with fully correct figures	M1	$\begin{aligned} & \text { for }(360-60) \div 2(=150) \text { or } \\ & \frac{60}{360} \times 480(=80) \text { oe } \end{aligned}$	Angle of 150° may be seen on diagram
		M1	(dep) for method to find required number of students in School A eg $\frac{" 150 "}{360} \times 480(=200)$ or ($480-$ " 80 ") $\div 2(=200)$	
		M1	for method to find required number of students in School B, eg $\frac{" 90 "}{360} \times 760 \quad(=190)$ or $760 \div 4(=$ 190)	ft the angle of 90 eg from $360-$ $160-110$ calculated incorrectly, or measured incorrectly from the diagram within the range 88 to 92
		C1	for No with correct figures Acceptable examples No, 200 and 190 He is wrong, School A has 10 more Not acceptable examples Yes.... No, School A had 20 more [incorrect figures]	

Q16.

Question	Working	Answer	Mark	Notes
	$\begin{array}{rr} 515 & 10 \times 515=5150 \\ \frac{35}{2575} & 10 \times 515=5150 \\ \frac{10 \times 515=5150}{15450} & 5 \times 515=\frac{2575}{18025} \end{array}$ 5 1 5 1 $1 / 5$ $0 / 3$ $1 / 5$ 3 8 $2 / 5$ $0 / 2$ $2 / 5$ 5 0 2 5 500 10 5 30 15000 300 150 5 2500 50 25$\begin{aligned} & 15000+2500+300+50+150+25 \\ & =18025 \end{aligned}$$3307 \quad 10 \times 3307=33070$	£180.25	4	M1 for 515×0.35 or 515 $\times 35$ This may be implied from an incomplete method of multiplication M1 for a complete method with relative place value correct. Condone one multiplication error, addition not necessary Or for a complete grid, condone one multiplication error, addition not necessary Or for sight of a complete partitioning method. Condone one multiplication error final addition not necessary M1 (dep on the previous M1) for addition of appropriate elements of the calculation

Q17.

Q18.

Question	Working					Answer	Mark	Notes
	e.g. $\begin{aligned} & 41-21(=20) \\ & 49-10-20(=19) \\ & 16+19=35 \end{aligned}$ OR $\begin{aligned} & (100-49)-(16+21)(=14) \\ & 14+10(=24) \\ & 100-(41+24)=35 \end{aligned}$					35	4	M1 for $41-21(=20)$ or M1 for $49-10$ - '20' (= 19) M1 for $16+$ '19' A1 cao OR M1 for $100-49(=51)$ M1 for '51' - 21-16 (= 14) and '14' $+10(=24)$ M1 for $100-\left(41+24{ }^{\prime}\right)$ A1 cao NB working may appear in table or diagram

Q19.

Question		Working	Answer	Mark	Notes
	(a)	$12 / 20$	$3 / 5$	2	M1 for a fraction equivalent to $12 / 20$ unsimplified A1 cao [SC: B1 for $2 / 5$ if M0 scored] (b)
	6 cells shaded	1	B1 for any 6 cells shaded		

Q20.

Question	Working	Answer	Mark	Notes
		485	5	M1 for a method to find weekly basic pay e.g. $7 \times 10(=70)$ and " 70 " $\times 5(=350)$ M1 for a method to find overtime rate e.g. $10+5$ or $1 \frac{1}{2} \times 10(=15)$ M1 for a method to find total overtime pay e.g. $(3+2+1+3) \times " 15$ " $(=135)$ M1 for a method to find total pay e.g. " 350 " + " 135 " A1 cao or M3 for method to calculate pay per day for 5 days e.g. Mon $70+45(=115)$, Tues $=70+30(=100)$, Wed $=70$, Thurs $=70+15(=85)$, Fri $=70+45(=115)$ (M2 for method to calculate pay per day for 3 or 4 days) (M1 for method to calculate pay per day for 1 or 2 days except Wednesday) M1 for totalling all five days e.g. " 115 " + " 100 " + " 70 " + " 85 " + "115" A1 cao or M1 for a method to find overtime hours e.g. $3+2+1+3(=9)$ and weekday hours $7 \times 5(=35)$ M1 for a method to find equivalent time on overtime e.g " 9 " + " 9 " -2 M1 for a method to find total equivalent time e.g. " 13.5 " + " 35 " M1 for a method to find total pay e.g " 48.5 " $\times 10$ A1 cao SC B2 for answer of 575

Q21.

Question	Answer	Mark	Mark scheme	Additional guidance
(i)	$\begin{aligned} & \text { Distance } \\ & \text { in the } \\ & \text { range } 20 \\ & \text { to } 23 \end{aligned}$	P1	for a process to draw a bearing of 070°, eg. a line drawn 70° from the North line at P	Accept a line of any length as long as the intention is clear.
(ii)	$\begin{aligned} & \text { Bearing } \\ & \text { in the } \\ & \text { range } 317 \\ & \text { to } 330 \end{aligned}$	P1	for a process to work out the distance $P Q$, eg. $12 \times 1.5(=18)$	
		P1	(dep previous P 1) for the process to use the given scale eg. " 18 " $\div 4(=4.5 \mathrm{~cm})$	Award P3 for Q shown in the correct place on the diagram. 4.5 scores 2 marks provided there is a link to $12 \times 1.5(=18)$
		A1 A1	(dep P3) for distance in the range 20 to 23 (dep P3) for bearing in the range 317 to 330	Award no marks if no supportive processes Award no marks if no supportive processes
				Award A0A0 if Q is not in the correct place

Q22.

Question	Working	Answer	Mark	Notes
*		435 pm	4	M1 for 4×25 ($=100$ (min)) M1 for " 100 " $+15(=115)(\mathrm{min})$ M1 for 630 - " 1 hr 55 min " C 1 for correct time with pm e.g. 435 pm or 1635 (oe) or M1 takes off 15 min e.g. $630-15(=615)$ M1 takes off $25 \min 4$ times e.g " 615 " $\rightarrow 550 \rightarrow 5$ $25 \rightarrow 500 \rightarrow 435$ or $630 \rightarrow 605 \rightarrow 540 \rightarrow 515 \rightarrow 450$ M1 takes off 15 min and takes off 25 min 4 times C 1 for correct time with pm e.g 435 pm or 1635 (oe)

Q23.

Paper: 5MB2F_01												
Question								Working	Answer	Mark		Notes
	(a)		x^{6}	1	B1 cao							
	(b)		y^{2}	1	B1 cao							

Q24.

Question	Working	Answer	Mark	Notes
(a) (b) $\text { (c) }{ }^{\star}$	$\begin{aligned} & 1343-1329 \\ & \text { e.g. } \\ & \text { HL to SC: } 1102- \\ & 1141 \text { Visit (at } \\ & \text { least } 3 \text { hours) } \\ & \text { SC to HL: } 1516- \\ & 1549 \\ & \text { [Note : there are } 9 \\ & \text { possible solutions] } \end{aligned}$	$\begin{gathered} 0850 \\ 14 \\ \text { A fully correct plan } \\ \text { showing departure } \\ \text { times and arrival } \\ \text { times of the two } \\ \text { bus journeys } \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 4 \end{aligned}$	B1 for 0850 or $850(\mathrm{am})$ or 10 to 9 B1 cao B1 for a departure time of 0802 or 09 04 or 1012 or 1102 from HL M1 (indep) for a correct arrival time at SC and a correct departure time from SC (or Cartbridge St) which allows for a stay of at least 3 hours in SC (the differencing does not have to be seen) OR for correctly adding 3 hours to a their arrival time at SC B1 for a departure time from SC of 13 20 (13 11 from CS) or 1424 (14 14 from CS) or 1516 (1507 from CS) C1 (dep on M1) for a complete correct plan which includes the departure and arrival times of the two bus journeys [Note: bus departure times may be identified by their starting times. Eg the 1507 from Cartbridge Street would be acceptable for the identification of the bus which arrives a HL at 15 49]

Q25.

Question	Answer	Mark	Mark scheme	Additional guidance
(a)	5,(1),(-1),-1,1,5	$\begin{aligned} & \mathrm{B} 2 \\ & \text { (B1 } \end{aligned}$	for all 4 values correct for 2 or 3 correct values)	
(b)	Graph drawn	B2 (B1	for a fully correct graph ft (dep on B1in (a)) for plotting at least 5 of the points from their table correctly)	Accept a freehand graph drawn that is not made of line segments Ignore anything drawn outside the required range
(c)		M1	for a correct method, eg marking intercepts with x-axis or one correct solution or both solutions given as a coordinates, eg $(0.4,2.6)$ or $(0.4,0)$ and $(2.6,0)$	ft their graph for this mark Accept these coordinates reversed
		A1	for answers in the range 0.3 to 0.5 and 2.5 to 2.7 or ft their graph with at least 2 solutions	

Q26.

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 1 / 2 \times 9 \times 12 \\
\& 54 \times 4
\end{aligned}
\] \\
Work with whole shape:
\[
\begin{aligned}
\& 12-9 \\
\& 4 \times(3+15)
\end{aligned}
\] \\
Work with 4 triangles:
\[
\begin{aligned}
\& 15+12+9=36 \\
\& 4 \times 36=144 \\
\& 144-(9 \times 8)=
\end{aligned}
\] \\
Work with single triangles:
\[
\begin{aligned}
\& 15+12+9=36 \\
\& 4 \times(36-18)=
\end{aligned}
\]
\end{tabular} \& \[
216
\]
\[
72
\] \& 3

3 \& | M1 for 9×12 or 108 seen or better |
| :--- |
| M1 (dep) for " 108 " $\div 2 \times 4$ oe |
| A1 cao |
| OR |
| SC B1 for 432 seen |
| M1 12-9 (=3) |
| M1 for $4 \times(" 3 "+15)$ oe |
| A1 cao |
| OR |
| M1 for $4 \times(15+12+9)(=144)$ |
| M1 for '144'-9×8 oe |
| A1 cao |
| OR |
| M1 $(15+12+9)-(2 \times 9)(=18)$ oe |
| M1 for $4 \times$ "18" oe |
| A1 cao |

\hline
\end{tabular}

