High Definition Audio
for the Digital Home

Proven Techniques for Getting It Right the First Time
David Roach, Scott Janus, and Wayne Jones

Updated to include version 1.0a spec,
| audio support for Windows 7 and Mac OS' X, plus
o Windows Hardware Quality Labs (WHQL) logo testing.

V'._ a —)

Intel
PRESS

Books by Engineers, for Engineers

High Definition Audio
for the Digital Home

Proven Techniques for Getting It Right
the First time

Updated to include version 1.0a spec, audio support for Windows 7 and
Mac OSt X, plus Windows Hardware Quality Labs (WHQL) logo testing.

David Roach

Scott Janus
Wayne Jones

Intel

PRESS

Copyright © 2006, 2012 Intel Corporation. All rights reserved.
ISBN 1-934053-30-9

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is
sold with the understanding that the publisher is not engaged in professional setvices. If professional advice or other
expert assistance is required, the services of a competent professional person should be sought.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property
rights that relate to the presented subject matter. The furnishing of documents and other materials and information does
not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other
intellectual property rights.

Intel may make changes to specifications, product descriptions, and plans at any time, without notice.

Fictitious names of companies, products, people, characters, and/or data mentioned herein are not intended to represent
any real individual, company, product, or event.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear
facility applications.

Intel, the Intel logo, Celeron, Intel Centrino, Intel NetBurst, Intel Xeon, Itanium, Pentium, MMX, and VTune are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

T Other names and brands may be claimed as the property of others.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,

including the performance of that product when combined with other products.

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks

This book is printed on acid-free paper.

Publisher: Richard Bowles

Program Manager: Stuart Douglas

Text Design & Composition: Wayne Jones

Graphic Art: Wayne Jones (illustrations), Wayne Jones and Ted Cyrek (cover)

Library of Congtess Cataloging in Publication Data:

10987654321

Updated June 2012

Printed in the United States of America

To Phil Pompa and Rich Bowles, who came up with the concept and put
the wheels in motion to make it happen

iv B High Definiion Audio for the Digital Home

Contents

Preface

Chapter 4 Introduction to Intel High Definition Audio

Hardware 2
Controller 3

Link 4

Topology 5

Data and Timings 7
Codec 8

Introducing...the Widget 9
Widgets in Practice 14
Command and Data Flow 16
Verbs 16
Responses 19
Hardware Volume Scaling 20
Pin Widget Control 24
Standard Packaging 25
Pins, Pin Widgets, and Ports 26
Verb Tables 29
Sending Verb Tables to the Codec 31
Muting and Startup Work-arounds 32
Pin Configuration Registers 35
Associations and Sequences 42
Resource Sharing 48
Resource Allocation 54
Unsolicited Response 55
Jack Detection 55
Modifying the Pin Configuration in the BIOS 56

vi B High Definition Audio for the Digital Home

System Bring-up Trick Using the Microsoft UAA class driver for
Intel® HD Audio 57
Display-based Audio 58
Data Island Packets 60
HDCP 61
Low Power Enhancements 63

Chapter 12 Windows' 7 and Mac OS' X

Mac OS X and HD Audio 65

Extending the Windows 7 HD Audio Class Driver 66
How Custom APOs Interact with System APOs 68
Using a Custom INF File with the Class Driver 70
Replacing the Enhancements Tab 71

New Audio Communications Features in Windows 7 72
Follow-Me Endpoint Heuristics 73
Dynamic Stream Redirection and Dynamic Format Change 73
Updated Volume Control Experience 74
Capture Monitor 74
Multi-Channel HDMI and DisplayPort support 75
Exclusive Mode 76
Low Power Enhancements 79
Virtualized 8253 Timer 79
System-wide Attenuation or Ducking 80
Event-Driven WaveRT 81
HDCP and SCMS Copy Protection Support 81
Windows Media Player OCX Device Selection 81
Windows Performance Analysis Tools 81

Echo Cancellation and Microphone Arrays 83

HDAU - HD Audio Tool 85

Windows 7 Driver Installation 88
How to Install/Remove Drivers Using Device Manager 88
How to Install/Remove Drivers Using Sound Control Panel 89
Driver Install Frameworks 89
Using SetupAPI.Device.log to Debug Driver Installations 90
Popular Audio Registry Key Locations 91

Contents W vii

Chapter 13 Windows® Logo Testing for HD Audio

Microsoft Windows Hardware Quality Lab (WHQL) Logo
Process 93
The WLK Includes the Driver Test Manager (DTM] 94
Windows Quality Online Services (WinQual) 95
Driver Submission Process—What Files Are Submitted 95
WIK Errata 96
Third-Party Audio Fidelity Testing 97
Test Signing 97
Audio Fidelity Requirements 97
In-Box Class Drivers 98
Test Duration 98
DTM System 98
Components of a DTM System 100
What Tests Are Run: Current Audio Fidelity Testing 102
Starting DTM Controller 104
DTM Studio Job Monitor 105
Creating a Machine Pool 106
Adding systems to the pool 106
What to do when you can't get a heartbeat 106
Choosing Tests to Run 107
Running Tests 108
Viewing errors, using DTM console or Log Viewer 111
Running Tests Outside the DTM “Shell” 112
How to Locate Tests that Run from Outside the Shell 113
Failures 113
Jacks Not Populated 113
Noise Failures 114
Summary 114

vii Il High Definition Audio for the Digital Home

Preface

The first edition of this book was published in 2006. In the five years since
then, both Windowst Vista and Windows 7 have been released, and
Intel® High Definition Audio (Intel® HD Audio) has become the standard
built-in audio solution for both Macintosht and Windows-based
computers.

This update to the book consists of three chapters. We simply added
new material to Chapter 4 covering recent updates to the High Definition
Audio Specification version 1.0a, which was released June 17, 2010.

Chapter 12 and Chapter 13 stand on their own and are added to the
end of the book. Chapter 12 discusses audio support for Windows 7 and
for Mac OST X, while Chapter 13 goes into detail on how to run the
Windows Hardware Quality Labs (WHQL) logo testing that is required for
systems that support Windows 7.

Chapter

Introduction to
Intel®
High Definition
Audio

Those parts of the system that you can bit with a hammer
(not advised) are called bardware;, those program
instructions that you can only curse at are called software.

—Unknown

his chapter introduces the information needed to understand the

hardware components that make up an audio subsystem in a modern
PC, after the shift to chipset-based audio. It also addresses the attributes
and constraints of several key hardware components such as converters
and analog amplifiers. Finally, the Intel® High Definition Audio interface
is introduced and explored in some detail.

In 2004, Intel announced an Audio Codec 97 (AC97) replacement
known as Intel® High Definition Audio Gntel® HD Audio). Introduced in
1997, the AC97 standard allowed sound-processing tasks such as sample
rate conversion and mixing to be handled by the CPU. Logic known as
the AC97 digital controller was added to the Southbridge or ICH
chipset, as shown in Figure 4.1.

2 B High Definition Audio for the Digital Home

ICH —p| Speakers
AC97
Analog
ACOT Digital |iq Codec
Controller
lg—— Microphone

Figure 4.1 Addition of AC97

AC97 was originally known as soft audio or bhost audio because it
offloaded many of the sound-processing tasks from dedicated hardware
to software that is run on the general purpose CPU. Intel HD Audio is
thematically similar to AC97 but includes support for many new features.
For instance, Intel HD Audio can support 32-bit, 192-kilohertz surround
sound out as well as multitasking, which is the ability to support multiple
audio inputs and outputs simultaneously.

Quite a bit of the AC97 infrastructure is retained for Intel HD Audio.
It uses the same five-wire serial link between controller and codec, as
well as the same 48-pin package for the audio codec. Much of the analog
circuitry in the codec remains the same, though better Intel HD Audio
codecs have improved the audio fidelity of these circuits. While the Intel
HD Audio specification allows for up to 16 input and output streams;
today’s chipsets typically support four input and four output streams. A
separate DMA engine is required for each stream.

3 Hardware

The three key types of physical components in an Intel HD Audio
solution are an Intel HD Audio Controller, an Intel HD Audio Link, and
an Intel HD Audio Codec, as shown in Figure 4.2. The controller has
responsibility for moving data to and from system memory via a memory
controller. The link is the bi-directional interconnection across which
audio data and commands flow. The codec interprets the commands and
sends or receives data to or from an attached acoustic device—that is, a
speaker or microphone.

Chapter 4: Introduction to Intel® HD Audio I 3

Figure 4.2 Intel ® HD Audio Components

Multiple codecs can be attached to a single link. More rarely, a single
system could have multiple controllers, each of which would have its
own associated link and attached codecs. This situation might occur if a
soundcard with an Intel HD Audio controller is inserted into a PCI or PCI
Express slot.

Controller

An Intel HD Audio controller provides a capability for the system to
discover and enumerate multiple Intel HD Audio devices connected to
the Intel HD Audio link. It provides a capability to relay instructions to
and from each codec, and it contains the Direct Memory Access (DMA)
engines that stream audio data to and from the codec(s).

An Intel HD Audio Controller usually contains four or more DMA
engines. DMA refers to copying data from one memory location to
another without having to go through the CPU. In this case, the transfer
goes from system memory to a codec or goes from a codec to system
memory (sce Figure 4.3). DMA transfers are faster than non-DMA
transfers.

4 M High Definition Audio for the Digital Home

Figure 4.3 Controller DMA Engines

A DMA transfer from system memory to a codec is handled by a signal
known as Serial Digital Out (SDO). DMA transfers in the opposite
direction are handled by a Serial Digital In (SDI) signal. Controllers must
provide support for at least one SDO line, up to a maximum of four, and
at least one SDI line, up to a maximum of fifteen. The SDO and SDI lines
are used to carry both commands and audio sample data, as explained in
more detail in the “Command and Data Flow” section. In addition to the
SDO and SDI lines, the controller must support bit clock (BCLK), frame
synchronization (SYNC), and reset (RST#) signals.

The controller also contains a standardized set of memory-mapped
registers that allow for command and control of the data streams and the
codecs. The standardized nature of a controller’s register makes it
straightforward to write a universal Intel HD Audio Controller software
driver that works for multiple instantiations of controllers, even if they
are produced by different manufacturers, something Microsoft is utilizing
for their Windows class driver initiative, Universal Audio Architecture.

M Link

The link itself, which connects a controller with one or more codecs, is a
physical electrical interface consisting of the BCLK, SYNC, and RST#

Chapter 4: Introduction to Intel® HD Audio Bl 5

signals. It also consists of one to four SDO signals, denoted SDOSDO,
respectively, and one to fifteen SDI signals, and denoted SDI-SDI_
respectively.

Topology

The SDO lines can be multipoint; that is, a single SDO line can be
attached to multiple codecs. In a configuration like the one in Figure 4.4,
multiple codecs could receive the same audio data, thus allowing, for
instance, a set of headphones and separate stereo speakers to receive the
same program. However, the same physical topology could be used to
send different programs to the headphones and speakers. The data sent
from the controller can be targeted at a specific codec.

Unlike SDO, the SDI lines are point-to-point. Each attached codec’s
SDI must be wired to a unique SDI on the controller. Given that each
codec must have at least one SDI, a practical upshot of these constraints
is that the maximum number of codecs that can be attached to a
particular link is limited by the number of SDIs the controller supports.

In this example, the controller’s single SDO is wired to every codec’s SDO.
However, every SDI has a unique path—a fundamental requirement of the
specification. More than one SDI line is optional for any particular system.

Figure 4.4 Sample Link Topology

Most, if not all, Southbridge chipsets that incorporate Intel HD Audio
have at least four SDI pins, allowing up to four Intel HD Audio devices to
be used in a system. The SDI pin that the codec is attached to determines

6 B High Definition Audio for the Digital Home

the Codec ID used to address a specific codec. SDIO is attached to Codec
ID 0, SDI1 is attached to Codec ID 1, and so on. Intel recommends that
SDI#2 be used for codecs mounted on the motherboard, and that SDI#0
be used for a modem codec, if present. SDI#1 and SDI#3 are reserved for
future usage models.

To allow for future expansion, both the output and input data rates
for Intel HD Audio are scalable. A single SDO or SDI provides the basic
throughput, but bandwidth scaling is achieved by attaching multiple
SDO or SDI lines to a codec (see Figure 4.5). The data bandwidth is
essentially increased by the number of lines. For instance, four SDO lines
offer roughly four times the bandwidth of a single SDO line. While
technically feasible under the specification, no OS currently supports
bandwidth scaling.

In this example, all four types of bandwidth-scaling codecs are attached to a
link. Although the multiple in/out codecs only show two associated lines, it is
possible to build systems with larger numbers of connections.

Figure 4.5 Bandwidth Scaling

With bandwidth scaling in mind, codecs can be classified into four
categories:

B Single-SDO, single SDI
B Multi-SDO, single SDI
B Single-SDO, multi-SDI
B Multi-SDO, multi-SDI

Chapter 4: Infroduction to Intel® HD Audio Il 7

Even in the case of a multi-SDI codec, the SDI lines remain point-to-point.
Each SDI on the codec must be attached to a unique SDI on the
controller.

In all systems, even those using bandwidth scaling, SDO, must be
attached to all codecs on the link. This restriction ensures the basic
operation of the system in the scenario of codecs that support scaling
running with software that does not. The number of permitted SDO lines
is 1,2, or 4.

When building a system using codecs that are multi-SDO or multi-
SDI, it is very important to attach all of the SDO and SDI lines from the
codec to the controller. Failure to do so could result in reduced codec
performance.

Data and Timings

The Intel HD Audio Link is isochronous, meaning that it can provide data
at a predictable and fixed rate, rather than in bursts like most networks.
The isochronicity is achieved in part from the use of a fixed bus clock
(BCLK) that runs at 24.000 megahertz. Data transfers on the bus are
broken into frames, each of which is exactly 20.833 microseconds. The
frames are designated by the frame sync (SYNC) signal’s falling edge,
shown in Figure 4.6. Each frame ends with a SYNC signal going high for
exactly four BCLK cycles, an event known as the frame sync.

Figure 4.6 Link Signals

8 M High Definition Audio for the Digital Home

SDO is double-pumped, meaning that a unique bit of data can be
sent on both the rising and falling edge of the reference clock (BLCK).
Given that BLCK runs at 24 megahertz, a single SDO signal can convey
48 megabits per second. Each bit is contained within a timing window
known as a cell. For SDO, each frame consists of 1,000 cells.

SDI is single-pumped. Only one bit is transferred per clock cycle. As
such, SDI has half the bandwidth of SDO, or 24 megabits per second.
Similarly, SDI has only 500 cells per frame.

The data within a frame can contain commands, status, and audio
samples. The detailed structure of a frame will be examined more closely
in the “Frame Format” section in this chapter.

M Codec

Intel HD Audio Codecs are modular. They consist of a hierarchy of
standardized modules. The number and types of modules, plus their
connectivity, may vary from one codec to another. The codec
architecture includes a discovery and addressing scheme that allows for a
single driver to easily support a wide variety of codecs.

A node is either a single module within a codec or it is a collection of
a module and all its children modules that are connected below it in the
hierarchy, as shown in Figure 4.7. Each node has a unique address,
known as a node ID (NID). An NID is usually 7 bits, but 15-bit NIDs can
be used for very complex systems. Each node has a set of read-only
capabilities, and each can be controlled and configured using commands
targeted at that node.

Chapter 4: Infroduction to Intel® HD Audio Il 9

Figure 4.7 Codec Node Hierarchy

The root node is the node at the top of the hierarchy. It has an NID
of zero. The root node has no other function than to serve as a pointer to
the downstream nodes. The root node points to one or more function
group nodes. A function group node is a collection of modules that
perform a dedicated function and are designed to be controlled by a
single driver.

The two basic function group types in use today are audio and
modem; other function groups may be defined in the future. The
remainder of this chapter focuses on the audio function group (AFG).
The modem function group is outside the scope of this book. Some
newer audio codecs support both audio and modem function groups in
the same die, but each has it’s own SDI pin on the codec, and they are
treated as totally separate units.

Introducing...the Widget

Below each function group node is a collection of modules known as
widget nodes or widgets. Widgets can be interconnected in many
different ways, allowing a single AFG to support an arbitrary number of
audio input and output channels.

A widget whose inputs are connected to the outputs of other
widgets must contain a connection list that consists of the NIDs of the

10 M High Definition Audio for the Digital Home

attached widgets. The connection list refers to the hard-wired topology
of the interconnected widgets. If the connection list length is greater
than one, the widget would have a connection selector that allows the
runtime selection of input(s) to be used by the widget.

Thus, connection lists are always built from right to left in terms of
conventional left-to-right audio flow. For output devices, you start with
the output port and follow the connection list towards the Intel HD
Audio bus. For input devices, you start with the ADC where it is attached
to the Intel HD Audio bus and follow the connection lists widget by
widget until you reach an input port.

Widgets are either 1-channel (mono) or 2-channel (stereo). An AFG
as a whole can support greater than 2-channel sound by using multiple
widgets.

The types of standardized audio widgets are:

B Audio Output Converter (AOC) Widget

Audio Input Converter (AIC) Widget
Pin Widget

Mixer Widget

Selector Widget

Power Widget

Volume Knob Widget

B Beep Generator Widget

An Audio Output Converter Widget converts audio data coming in over
the link into an analog or digital audio format more suitable for
transmission to an acoustic device. The key component of an AOC
widget is a DAC for analog outputs or a digital formatter for digital
outputs, such as S/PDIF. The widget may contain either an optional
processing node or an optional amplifier with a mute capability or both,
as shown in Figure 4.8. The data input to an AOC widget is always
attached directly to the link.

Chapter 4: Introduction to Intel® HD Audio I 11

Figure 4.8 Audio Output Converter Widget

As you might guess, the Audio Input Converter Widget is the
converse of the AOC. It converts analog or digital external formats into a
digital format compatible with the link. As such, the main component of
an AIC is an ADC or a digital sample formatter. An AIC may also contain
an optional processing node and/or an optional amplifier with mute
capability (Figure 4.9). The data output of the AIC attaches directly to
the link.

Figure 4.9 Audio Input Converter Widget

The Pin Widget shown in Figure 4.17 is a mechanism for sending to
or receiving audio signals from a physical audio connector or sending
them to a hard-wired connection to a dedicated acoustic device, such as
a built-in speaker or a microphone integrated in a laptop bezel. The Pin
Widget also supports other signals that are associated with the
connector, such as jack sense—it detects the presence and type of the
acoustic device that is plugged into the connector and VRefOut —used
to switch microphone bias voltage on and off. The Pin Widget may
contain optional outgoing and ingoing amplifiers. Alternatively, the Pin
Widget is referred to as the Pin Complex Widget.

12 B High Definition Audio for the Digital Home

The Pin Widget is also very important because it can be used to
convey detailed information about the associated connector. For
instance, the type of connector, its location on the PC, and the color of
the connector can all be communicated by the pin widget to the
software stack. When such information is made available, very user-
friendly interfaces can be designed which show computer users on-
screen what connections are active or available on their computer. See
“Pins, Pin Widgets, and Ports” later in this chapter for more detail on pin
configurations.

The Mixer Widget, also known as a Summing Amplifier Widget, is
used to combine multiple signals into a single signal (see Figure 4.10).
The number of inputs can vary. The relative intensity of the different
inputs can also be altered.

Figure 4.10 Mixer Widget

The Selector Widget is used to select a single signal from a multitude,
as can be seen in Figure 4.11. Sometimes, the Selector Widget is referred
to as a multiplexer widget (Mux for short). As it passes through the
Selector Widget, the signal can be processed, amplified, or muted, if
such optional capabilities are supported by the widget.

Chapter 4: Introduction fo Intel® HD Audio J 13

Figure 4.11 Selector Widget

Since most widgets already have implicit selection mechanisms via
their connection lists and connection selector controls, the Selector
Widget is not needed in most designs and has rarely appeared in actual
codecs. However, a l-input selector could be used to insert a
processing/amplifier widget arbitrarily into a widget hierarchy.

The Power Widget provides a single point of control for power
management of a subset of the widgets in an Audio Function Group,
independent of the power management of the AFG as a whole. The
Power Widget’s connection list contains a static list of all the widgets
under its control. The power state of those widgets can then be set
independently of the AFG’s power state, with the constraint that the
Power Widget can never be at a higher power state than the AFG.

The Volume Knob Widget is used to report the state of a physical
volume control. The control could either be absolute, as would be the
case for a thumbwheel potentiometer, or it could be relative, as would
be the case for + and - pushbuttons. The Master Volume in Windows'
XP section of Chapter 8 includes details on how the Volume Knob
Widget can be used with the Windows operating system.

The Beep Generator Widget is used to...generate a beep! The beep is
derived from the 48kilohertz reference clock on the link. A variety of
frequencies can be created by specitying a divisor to be applied to the
48-kilohertz reference. The Beep Widget is not explicitly attached to
other widgets via connection lists. Indeed, a Beep Widget is forbidden
from appearing on the connection lists of other widgets. Instead, when
the Beep Widget is activated, the tone that it generates must be applied
to all active output pin widgets. The beep can either replace or be
blended with other signals that might already be active on those pins.

14 B High Definition Audio for the Digital Home

Widgets in Practice

From the eight simple building blocks listed above, complex codecs can
be readily constructed. Figure 4.12 shows an example of the widgets
that are used in a real-world codec. This codec supports S/PDIF in and
out, eight channels of analog out, multiple stereo inputs, IS out, ADAT
out, and PC Beep.

Chapter 4: Introduction to Intel® HD Audio Bl 15

Figure 4.12 Sample Widget Diagram

16 M High Definition Audio for the Digital Home

M Command and Data Flow

As mentioned, SDO and SDI carry both commands and audio data. The
commands and their associated responses are low-bandwidth; the audio
data is high-bandwidth. The two forms of data are interleaved, but the
outbound protocol is slightly different than the inbound protocol.

To understand how these forms are multiplexed together, it is
important to first understand the concept of a stream. A stream is a
connection between a DMA buffer in the controller and a codec. A
stream contains one or more audio channels from the same audio
program. For instance, a stereo program would contain two channels.

Streams can either be output streams conveyed over SDO or input
streams conveyed over SDI. Given the multipoint topology of SDO, it is
not surprising to learn that output streams can be broadcast to multiple
codecs. For instance, the same audio stream can be rendered
concurrently on both headphones and speakers.

Verbs

These streams transport audio samples in both directions across the link.
Although the audio samples take up the majority of the link bandwidth,
they are useless without ancillary control data that is used to modify and
direct the flow of the audio samples. The command information
originates from the controller, which issues 32-bit commands known as
verbs. Figure 4.13 shows the structure of verbs.

Figure 4.13 Verb Structure

The verb contains a 4-bit codec address that indicates the codec to
which the command is targeted. A value of all ones in this field (Fh) is
reserved to verbs that are intended to be broadcast to all codecs on the
link. However, no such broadcast verbs have been defined in the current
revision of the specification.

The verb also contains an 8-bit node address, which indicates the
node at which the verb is targeted. Two different node-addressing

Chapter 4: Introduction to Intel® HD Audio Il 17

schemes are supported: direct and indirect. If bit 27 of the verb is 0O, the
node ID (NID) is a direct address. Otherwise, it is an indirect address.
However, an indirect addressing scheme has not yet been specified, so in
practice, all verbs use direct addresses. The 7-bits allow a single codec to
contain 127 nodes.

The final 20 bits of the verb command the actual command and its
parameters. Verbs either have a 4-bit command identifier with a 16-bit
payload or a 12-bit command identifier with an 8-bit payload. Not all
types of widgets need to support all verbs. Table 4.1 is a summary of the
verbs and whether or not they are required for the different widgets.
Many verbs have get and set variations.

Table 4.1 Required Support for Verbs
o g o
ol 5 c
= | O > P o o d o 2
°ls|s | 8| 2|24+ o 3
c 2 o L > o
ol 5|2 5| O ED E‘_‘s 3 o g &
o — — —] o (@) o — —
ol 8] 5| % ol 5| 2@ & g S| €| 9 B
() [o S L o) > Qo [R oA =| ¥ Sl A
s | o | 8| & = o| €| g g7 51 3 o & ¢
8 Q Z| o % ool ol o| 839 88 .| | 3| € Ol 5
Required Verb Cls|l 5| v|22| 55| 9995 g 38| 2l 5| § T
© © ol 3| e &2 5| 5| £9 = a 2 o 3l 3| O &
Support O lon|lelgz|l=z|>50|l x| x|ladgdal 5 on|ld >|a >
Getparameter FOO R R R R R R R R R R R R R R
ConnectionSelect | FO1 | 701 C C C c
GetConnectionList | F02 R R R |R| RIR|R
Entry
Processing State | FO3 | ## c|¢c c c c
Coefficient Index D c| ¢ c c c
Processing C 4 c|cC C c c
Coefficient
Gain/Mute
Stream Format A 2 R|R
Digital Converter 1 | FO | 70 c|cC
D D
Digital Converter 2 | FO | 70 c|C
D E
Digital Converter 3 | FO | 73 c|cC
D E
Digital Converter 4 | FO 70F c c

18 M High Definition Audio for the Digital Home

D
Power State Fo5 | 705 c c
Channel/Stream FO6 | 706
1D
SDI Select FO04 | 704
Pin Widget Control | FO7 | 707 R R
Unsolicited Enable | F08 | 708 c c
Pin Sense Fo9 | 709 c c
EAPD/BTL Enable | go 70 C
C C
All GPI Controls F10 | 710
F1 71
A A
Beep Generation | FO 70
Control A A
VolumeKnobContr | FOF | 70F
ol
SubsystemID,Byte | F20 | 720
0
SubsystemID,Byte | F20 | 721
1
SubsystemID,Byte | F20 | 722
2
SubsystemID,Byte | F20 | 723
3
ConfigDefault,Byte | F1 71 R R
0 C C
ConfigDefault,Byte | F1 71 R R
1 C D
ConfigDefault,Byte | F1 71 R R
2 C E
ConfigDefault,Byte | F1 71F R R
3 C
Stripe Control F24 | 724
Converter F2 72
Channel Count D D
DIP-Size F2 R

Chapter 4: Introduction to Intel® HD Audio I 19

ELD Data F2F R
DIP-Index F30 | 730 R
DIP-Data F31 | 731 R
DIP-XmitCtrl F32 | 732 R
Content Protection | F33 | 733 C
Control
ASP Channel | F34 | 734 R
Mapping
RESET TF R R

F
R: Required.

C: conditional; required only if respective optional capability is declared to be available
X: required if codec supports multiple SDI signals.

Responses

Verbs are synchronous commands. For every verb that is issued from a
controller to a codec, that codec must generate a 36-bit response on the
following frame. The format of the response is shown in Figure 4.14. Bit
35 is the Valid bit. It must be set to 1 in order for the controller to
process the response.

Figure 4.14 Response Structure

The lower 32 bits of a response is a data payload. Responses to Set
commands typically have a payload of all zeros, whereas responses to
Get commands typically contain the information requested by the verb.

Bit 34 is used to flag a special type of response known as an
Unsolicited Response. Unsolicited responses are asynchronous messages
sent from the codec to the controller to signal an event, such as the
attachment of an acoustic device. No verb is involved in the transmission
of an unsolicited response.

Frame Format

Each frame contains a verb or response, one or more stream packets, and
a null field. The exact formats of inbound and outbound frames differ

20 M High Definition Audio for the Digital Home

slightly, but conceptually, both types of frames are organized as shown
in Figure 4.15.

Figure 4.15 Frame Format

The stream packets are logical containers for the audio data streams.
Each packet begins with 8-bit stream tag that uniquely identifies the
streams. Codecs are programmed by software to send or receive a stream
with the specified ID—for example, via the SetConverterStreamChannel
verb. After the stream tag, the packet contains one or more sample
blocks. Each block in turn contains audio sample data.

B Hardware Volume Scaling

Volume controls on Intel HD Audio codecs can be present on almost any
widget in the codec. Volume controls are optional and not required. A
driver might or might not choose to expose any particular volume
control, especially if the signal path contains multiple volume controls.
Volume controls in Intel HD Audio codecs are required to default to

Chapter 4: Introduction to Intel® HD Audio I 21

unity gain, with neither gain nor attenuation. Therefore, volume controls
that aren’t manipulated by the driver pass through any audio in the signal
path. You have no guarantee that the audio engine on the system will
make use of the hardware volume controls. Many Intel HD Audio designs
lock the hardware volume controls to unity gain, and they perform all
volume and muting in software.

Almost every widget in the codec uses the Amplifier Capabilities
response format shown in Table 4.2 to report its volume control
characteristics. A widget that is retaskable may include both input and
output volume controls, each with a separate set of capabilities. You
must know the values in StepSize, NumSteps, and Offset for each widget
in order to set the volume control correctly. You might need to read this
information directly from the codec, as it is often not included in the
codec datasheet.

Table 4.2 32-bit Amplifier Capabilities Response Format

31 30:23 22:16 15 14:8 7 6:0

Mute Capable Rsvd StepSize Rsvd NumSteps Rsvd Offset

The Amplifier Capabilities response formats are:

B Mute Capable (1 bit) reports whether the respective amplifier is
capable of muting. Muting implies a minus infinity (-) gain, so
that no sound passes, but the actual performance is determined
by the Intel HD Audio codec.

B StepSize (7 bits) indicates the size of each step in the gain range.
Each individual step may be 0-32 decibels specified in 0.25-dB
steps. A value of 0 indicates 0.25-dB steps, while a value of 1274
indicates 32-dB steps.

B NumSteps (7 bits) indicates the number of steps in the gain
range. The number could be from 1 to 128 steps in the amplifier
gain range. (0d means 1 step, 127d means 128 steps). A value of
0d (1 step) means that the gain is fixed and may not be changed.
Because of this behavior, the name actually is incorrect;
technically the name should really be “number of steps minus
one.”

B Offset (7 bits) indicates which step is O decibels or unity gain.
With two or more steps, one of the step values must correspond
to a value of 0 dB. The Offset value indicates the value which, if

22 B High Definition Audio for the Digital Home

programmed in to the Amplifier Gain control, would result in a
gain of 0 decibels.

For example, the AC97 specification defined master volume control as
32 steps of attenuation at 1.5 dB, where the maximum setting was unity
gain. This definition is shown on the first row of Table 4.3. The next row
shows a more capable volume control with a range of -96 to 0 dB in 0.75
steps. Following that is a volume control from -64 to 0 dB in 0.5 steps.
This progression provides smoother steps due to the smaller step size,
but the range is limited as a result, since both of these examples use the
maximum of 128 steps. The following example shows a typical
microphone input slider with a gain from 0 to +22.5 dB, and the final
example shows a microphone preamp stage with variable settings of +0,
+10, +20, +30, and +40 dB.

Table 4.3 Examples of Volume Controls Defined Using Amplifier
Capabilities
Num Step Offset]| True Lowest Highest Step A gain
Steps Size Number Gain Gain Size value of 10
of Steps equals
31 5 31 32 -425dB +0.0dB 1.5dB -27.5dB
127 2 127 128 -96.0dB +0.0dB 0.75dB -88.5dB
127 1 127 128 -64.0dB +0.0dB 0.5dB -59 dB
21 3 11 22 -10.0dB +10.0dB 1.0dB -1.0dB
15 5 0 16 +0.0 dB +225dB 15dB +15 dB
4 39 0 5 +0.0dB +40dB 10dB +40 dB*

Note: The three columns on the left of the double line show the Intel HD Audio parameters,
while the five columns on the right show the real world values of each example. The
leftmost column shows the value of the NumSteps field, which is really the number of
steps minus one. The rightmost column shows the effective gain in dB when a numeric
value of 10 is written to the gain register in a widget.

The Set Amplifier Gain/Mute verb supports the 16-bit payload shown in
Table 4.4, which is capable of specifying a number of simultaneous
parameters for a stereo widget. You can set all of the volume controls in
a widget to the same value in a single operation, or you can send
multiple verbs to set each input and output control separately on each
channel.

Chapter 4: Introduction fo Intel® HD Audio Jl 23

Table 4.4 16-bit Amplifier Gain/Mute Payload
15 14 13 12 11:8 7 6:0
Set Output Set Input Set Left Set Right Index Mute Gain
Amp Amp Amp Amp

The bits in the Set Amplifier Gain/Mute verb are:

B Set Output Amp and Set Input Amp determine whether the value
programmed refers to the input amplifier or the output amplifier
in widgets which have both, such as pin widgets, sum widgets,
and selector Widgets. A value of 1 indicates that the relevant
amplifier should accept the value being set. If both bits are set,
both amplifiers are set; if neither bit is set, the command is
effectively a no-op. Any attempt to set a non-existent amplifier is
ignored.

B Set Left Amp and Set Right Amp determine whether the left
(channel 0) or right (channel 1) channel of the amplifier is being
affected. A value of 1 indicates that the relevant amplifier should
accept the value being set. If both bits are set, both amplifiers are
set. Any attempt to set a non-existent amplifier is ignored. If the
widget only supports a single channel, channel 1 bits have no
effect and the value programmed applies to the left (channel 0)
amplifier.

B Index is only used when programming the input amplifiers on
Selector Widgets and Sum Widgets, where each input may have
an individual amplifier. The index corresponds to the input’s
offset in the Connection List. If the widget being programmed is
not a Selector Widget or a Sum Widget, or the Set Input Amp bit
is not set, this field is ignored. If the specified index is out of
range, no action is taken.

B Mute selects -0 gain (the lowest possible gain), but the hardware
implementation determines the actual degree of mute provided.
A value of 1 indicates that the mute is active. Generally, mute
should default to 1 on codec reset, but in some circumstances,
mute defaults to its off or inactive state. In particular, if an analog
PC Beep Pin is used, the mutes of associated outputs must default
to O to enable the beep signal prior to the codec coming out of
reset. This bit is ignored by any amplifier that does not have a
mute option.

24 B High Definition Audio for the Digital Home

B Gain is a 7-bit “step” value specitying the amplifier gain, the
actual decibel value that is determined by the StepSize, Offset,
and NumSteps fields of the Output Amplifier Capabilities
parameter for a given amplifier. After codec reset, this Gain field
must default to the Offset value, meaning that all amplifiers, by
default, are configured to 0 decibels or unity gain. If a value
outside the amplifier’s range is set, the results are undetermined.

To set a volume control to unity gain, follow these steps:
1. Simply copy the Offset from the Amplifier Capabilities response
into the Gain field of the payload.
Set the Mute bit to 0.

Specify the input or output channel, the left or right channel, and
the index (f needed).

4. 'Then send the payload to the widget.

Without knowing the offset, the only value you can reliably program in
the gain field is the number zero (not 0 dB), which always represents the
lowest gain available in the amplifier. A payload of 0xF080 mutes both
input and output amplifiers on both left and right channels and sets the
gain to the lowest possible value.

Pin Widget Control

In addition to the configuration default register, each Pin Widget also has
a control register that the audio function driver uses to configure the
port. Table 4.5 shows the contents of the Pin Widget Control register.

Table 4.5 Pin Widget Control Register

Bit 7 Bit 6 Bit 5 Bits 4:3 Bits 2:0

H-Phn Enable Out Enable In Enable Reserved VRefEn

The bits for the Pin Widget Control register are:

B H-Phn Enable stands for Headphone Enable, which disables or
enables a low-impedance amplifier to be associated with the
output. A value of one enables the amp. Enabling a non-existent
headphone amp has no effect.

B Out Enable allows the output path of the port to be shut off. A
value of one enables the output path. Enabling a non-existent
output has no effect.

Chapter 4: Introduction to Intel® HD Audio Jl 25

B In Enable allows the input path of the port to be shut off. A value
of one enables the input path.

B VRefEn stands for Voltage Reference Enable, which controls the
switchable microphone bias provided by the VRefOut pin that is
associated with the port. A range of settings provide the ability to
match specific microphones and to avoid crosstalk when the jack
is re-tasked. Adjusting VRefEn sets the microphone bias voltage
on the VRefOut pin to one of the following values:

— Hi-Z (also known as floating, or tri-stated)
— 100 percent of the analog power supply
— 80 percent of the analog power supply

— 50 percent of the analog power supply

— Ground

Standard Packaging

As should be evident, the Intel HD Audio architecture is designed to
allow a wide variety of controllers and codecs from potentially different
vendors to operate using a universal software stack. Such a stack might
only provide basic functionality. Codec vendors can provide value-add to
their products by providing specialized drivers that take advantage of
advanced features unique to their codecs.

Continuing this thread of interoperability, the Intel HD Audio
specification includes the definition of a 48-pin package for codecs, as
shown in Figure 4.16. While this package and pinout is not a
requirement, most codec vendors follow it, which allows system
integrators to have flexibility in selecting codecs. A motherboard
designed to use a 48-pin codec can be populated with any compliant
codec. For example, the same motherboard can be used to provide two
different audio SKUs, one with basic stereo support and another with
support for 7.1 surround sound. The different capabilities result from
using a different codec for each SKU.

26 M High Definition Audio for the Digital Home

Figure 4.16 Recommended Pinout for 48-Pin Codec Package

Pins, Pin Widgets, and Ports

The word pin can be used in different ways when referring to Intel HD
Audio systems. Audio software engineers use “pin” in many different
contexts, some having nothing to do with audio. For purposes of this
discussion, the term applies in the hardware context. But remember that
if you hear a software guy using the word pin, it might mean something
other than what is described here.

For integrated circuits, the word “pin” has traditionally been used to
refer to a physical pin on a codec that is soldered down to a pad on the
motherboard. The term Pin Complex was introduced in the Intel HD

Chapter 4: Introduction to Intel® HD Audio Il 27

Audio specification to refer to a group of four or more hardware pins
which are functionally linked together. You have an analog signal pin for
the left stereo channel, an analog signal pin for the right stereo channel,
a pin for a switchable microphone bias source, and a SENSE pin that is
shared between groups of four analog ports. This functionality context is
shown in Figure 4.17. These pins on the codec are often not located
together physically, and they may be spread around all four sides of the
codec package. See Figure 4.16 for more detail on individual pin
locations.

“Pin widget” and “pin complex widget” both refer to the widget
control node which controls a particular pin complex. The word Port is
used to describe the group of physical pins that is associated with an
input or output pin widget complex on the codec.

Figure 4.17 A Retaskable Pin Widget with its Related Port Shown on Right

For example, in Table 4.5 you can see that the physical pin numbers for
Port A are 39, 41, 37, and 13. Pin 39 is the left audio channel, and pin 41
is the right audio channel. Pin 37 is the switchable microphone bias
source (VRefOut_A), and pin 13 is the SENSE pin that is shared with
Ports B, C, and D. Microphone bias is not available on ports G and H for
this particular codec. Ports A through D share one SENSE pin, while
ports E through H share a separate SENSE pin.

28 M High Definition Audio for the Digital Home

The designers of the codec in Figure 4.12 chose to use Widget IDs
with hexadecimal values that match the alphabetical port names for the
first 6 ports. While this choice is a nice touch that makes it a bit easier to
work with ports A thru F, you should not expect to see this type of node-
numbering on all codecs.

Table 4.6 combines information from the widget diagram shown in
Figure 4.12, the codec pinout shown in Figure 4.16, and Intel and
Microsoft desktop platform recommendations for port assignments and
functional color codes. The system should include an Intel HD Audio
codec with at least eight analog ports, at least five stereo DAC pairs, and
at least two stereo ADC pairs. This configuration is recommended for
desktop PCs that are currently in design and production. This example is
fully compliant with the Windows 7 Logo program, including multi-
streaming support for Real Time Communication (RTC) applications
such as VoIP or instant messaging.

You can make your life a lot easier by making a version of this table
for each system you are working on, and filling in the appropriate Node
ID numbers, hardware pin numbers, colors, and port usages. Check
widget node IDs, schematic drawings, jack location and color, and pin
configuration settings against this chart. Doing so provides a solid
foundation for the pin configurations described next.

Table 4.6 Example of Ports, Pin Widget Node IDs, Pins, Colors, and Usages

Port Pin Widget Codec HW Color Recommended Usage

Node ID Pins
A OxA 39,41,37,13 Green Front Panel Headphone Output
B 0xB 21,22,28,13 Pink Front Panel Microphone Input
C 0xC 23,24,29,13 Blue Rear Panel Line Input
D 0xD 35,36,32,13 Green Rear Panel Front L/R pair (for 7.1)
E OxE 14,15,31,34 Pink Rear Panel Microphone Input
F OxF 16,17,30,34 Black Rear Panel Back L/R pair (for 7.1)
G 0x10 43,44,34 Orange Rear Panel Center/LFE pair (for 7.1)
H 0x11 45,46,34 Grey Rear Panel Side L/R pair (for 7.1)
S/PDIF Out 0x21 48 Black Digital Out
S/PDIF In 0x22 47 Black Digital In
CD In 0x12 18,19,20 Black CD In (ATAPI connector on M/B)

The Pin Widget Node ID is usually different for each model of Intel HD Audio codec. This particular table
matches the widget diagram in Figure 4.12, and the pinout shown in Figure 4.16. ltems highlighted in grey
are optional.

Chapter 4: Introduction to Intel® HD Audio Il 29

Verb Tables

A verb table is a list of 32-bit Intel HD Audio codec command sequences
that are compiled into the BIOS as data. Each verb or command to be
executed is hard-coded in assembly language as a list of 32-bit data
values. This table allows the BIOS to transmit a variable-size list of codec
commands in what appears to be a single operation. No mechanism for
querying the codec or for error checking exists. The verbs are
transmitted blindly. If a particular verb or a particular Node ID is not
supported, the codec should skip over those verbs without complaint.

While not a part of the Intel HD Audio specification, verb tables are a
very practical part of Intel HD Audio system implementation, and they
are supported by most major BIOS vendors that support Intel HD Audio.
Verb tables are defined in the ICH7 Intel HD Audio Programmer’s
Reference Manual (PRM); you can find a link to it on this book’s
companion Web site." Verb tables are usually delivered as text files or
code files, and are copied and pasted into the BIOS source code.

The verb table allows the audio team to provide the BIOS engineer
with a table of codec commands to execute during system startup and
during a return from S3 sleep state, while isolating the BIOS engineer
from the details of Intel HD Audio codec implementations and
motherboard schematic design. Completion of the verb table integration
into the BIOS is a major milestone in the audio system development,
since it should allow the Microsoft UAA class driver for Intel HD Audio to
be used for bringing up the hardware. The “UAA Class Drivers” section
in Chapter 7 contains additional details on the Microsoft UAA class driver
for Intel HD Audio.

While verb tables are a handy way to deliver this information to the
BIOS developer, verb tables are not particularly readable by humans. For
this reason, it is important to provide as many comments as possible
along with the code in the verb tables. In the absence of comments,
deconstructing verb tables is a lengthy chore requiring your colleagues
to consult the Intel HD Audio specification, the codec data sheet, the
system schematics, and hexadecimal and binary calculators. This task is
not trivial! Provide comments often and in as much detail as possible.
The examples in this section contain an appropriate level of detail.

" The verb table and code examples in the currently available PRM describe an earlier version of the verb tables
that actually are incorporated in many currently available BIOS distributions. Some of the details on how the
header is formed are now out of date, but the way that the verbs are defined and placed in the tables remains
current.

30 M High Definition Audio for the Digital Home

If the motherboard design has stuffing options for more than one
codec, the BIOS for that motherboard should contain one verb table for
each of the different codecs that might be installed, each of which
contains the codec ID as the first entry in the table. The BIOS reads the
codec ID and matches it to a BIOS table in this fashion.

To be compliant with the Microsoft UAA class driver for Intel HD
Audio under Windows 7, the BIOS must include a verb table which
contains default pin configuration settings for all pin widgets in the
codec, regardless of whether they are connected to anything or not. The
BIOS must also program the subsystem ID register in the Audio Function
Group (AFG). Since each of these registers is a 32-bit register, four verbs
are used to program each register, byte by byte. In the case of a codec
with eight pin widgets, a minimum of 36 verbs are necessary to program
the codec at system startup.

Figure 4.18 shows the first set of four verbs in the verb table, which
programs the subsystem ID register. This example sets the 32-bit
Subsystem ID register to an arbitrary value of 0xAABBCCDD. (See Chapter
7 for info on what values to use in a real system.) The four different
verbs in this list are all directed to Node ID 0x01 on Codec ID#2, which
is connected to the SDI#2 pin of the Intel HD Audio controller. This
node is the audio function group for the entire codec, where the
Subsystem ID register is located.

;Audio function group (NID=01lh), SDI#2

; set the 32-bit subsystem ID by writing four bytes to
; successive addresses. This examples writes OxXAABBCCDD
; to the subsystem ID register of the codec

: the four verbs to accomplish this are defined below

; with each of the 32-bit verbs stored as 32-bit data

dd 201720DDh ; Set bits 7:0 to 0xDD
dd 201721CCh ; Set bits 15:8 to 0xCC
dd 201722BBh ; Set bits 23:16 to O0xBB
dd 201723AAh ; Set bits 31:24 to OxAA

Figure 4.18 Simple Verb Table Written in Assembly Language

To understand this list better, try breaking the first verb into its
component parts:

2 01 720 DD
0x2 = Codec ID number, that is the number of the

Chapter 4: Introduction fo Intel® HD Audio I 31

SDI Pin to which the codec is wired

0x01 = Node ID number

0x720 = 12-bit command: write to bits 0:7 of
the subsystem ID

0xDD = 8-bit payload

The second command in Figure 4.18 works in the same way, but uses a
verb code of 0x721 to write the payload of 0xCC to bits 15:8 of the
subsystem ID register in the codec, and so on down the list. Interestingly
enough, it is possible to read all 32 bits of most codec registers in a
single operation, but writing to them usually requires four separate
operations.

Sending Verb Tables to the Codec

At startup, the BIOS reads the codec vendor ID and the codec ID, and
possibly the codec revision ID, and then searches through a list of verb
tables until it finds a verb table with a matching codec ID. If successful,
the BIOS transmits the entire verb table to the codec. It also does this on
returning from the S3 state.

A BIOS intended for desktop motherboards may also include logic or
multiple verb tables to determine how to program pin widgets allocated
to the front panel connectors that are optional on many new models.
The BIOS can use a GPIO on the Southbridge to determine whether a
front panel dongle is present. (See more details in Chapter 5, “Front
Panel Considerations.”) Additional logic in the BIOS is used to determine
how to configure the pin widgets servicing the front panel. If the system
has no front panel connectors, the BIOS sets the pin widgets to No
Connectivity. If the front panel dongle is the older AC97 style dongle,
with no presence to detect, the pin widgets are programmed to indicate
no jack detect capability. Be aware that this implementation is not
Windows 7-compliant.

While the driver normally is charged with maintaining the codec
state during S3, you have no guarantee that a driver will be present and
loaded during the transition into and out of S3, so for consistency the
BIOS must always retransmit the verb table any time that power to the
codec is removed and then restored. Otherwise, the Plug and Play ID
becomes corrupted after resuming from S3, and the driver is unable to
load.

If the system is using the codec hardware defaults or if the codec’s
digital power supply is kept powered up during S3, re-transmitting the

32 M High Definition Audio for the Digital Home

verb tables when coming out of S3 is unnecessary; in all other cases the
BIOS should retransmit the verb tables.

When coming out of S3, you have an additional consideration if a
modem codec or other Intel HD Audio device generates a wake event.
Because the OS needs to know which device caused the wake event, the
BIOS must perform the following sequence when resuming from S3.

1. Store the contents of the controller’s STATESTS State Change

Status register, which contains info on which @f any) Intel HD
Audio device caused the wake event.

2. Take the controller out of reset, program the configuration
default and optionally, program the mute registers.

3. Restore the original STATESTS register contents.
4. Put the controller and Intel HD Audio link back into reset.

This sequence should restore everything in the codec to the state it was
in when the wakeup event occurred, with the exception of the new
values contained in the verb table.

Mvuting and Startup Work-arounds

One of the requirements for Windows 7 Logo is for the BIOS to mute
outputs during the power-up sequence. While not specifically defined in
the PRM, the verb table mechanism can be used for this purpose. To
mute a widget, you must send a verb which specifies the codec ID, the
widget node ID, a Set Amplifier Gain/Mute command (0x3) and a 16-bit
payload of 0xF080. For instance, to mute the widget at Node ID 0x04 on
codec ID #2, you would send 0x2043F080. This value mutes both input
and output volumes on both the right and left channels of the widget, as
well as setting the volume controls on each pin widget to their lowest
settings.

It’s important to send these mute messages to the proper widgets. By
studying Figure 4.12, you can sece that the volume controls are
implemented in the DAC widgets rather than in the pin widgets, which
means that in this codec a mute command sent to a pin widget is simply
ignored. Instead, you must send series of mute commands to all the
DAC:s in the codec, as shown in Figure 4.19.

; MUTE ALL DACS on Codec ID #2

; the verbs are formed in groups of four in case the BIOS
; uses the count of pin widgets to determine how big the
; verb table is. The pin widget count should be increased

Chapter 4: Introduction fo Intel® HD Audio ll 33

; by two to accommodate these additional commands
; The second group of 4 includes some repeated to make 4

dd 2023F080h ; Mute DAC at Node 0x02

dd 2033F080h ; Mute DAC at Node 0x03
dd 2043F080h ; Mute DAC at Node 0x04
dd 2053F080h ; Mute DAC at Node 0x05
dd 2063F080h ; Mute DAC at Node 0x06
dd 2063F080h ; Mute DAC at Node 0x06 (repeat)
dd 2063F080h ; Mute DAC at Node 0x06 (repeat)
dd 2063F080h ; Mute DAC at Node 0x06 (repeat)

Figure 4.19 List of Eight Verbs Which Will Mute All DACs in the Codec

Unlike the pin-configuration registers, the mute for each pin widget
can be set with a single 32-bit verb, rather than a set of 4 verbs. If the
BIOS requires you to specify the number of pin widgets in the verb table,
you can fool it into supporting mute verbs by telling it that you have one
or two additional pin widgets. You would add one to this count for every
four mute verbs that you want to send. If you have an odd number of
mute verbs to send, simply repeat the last one until they line up in sets
of four. Some BIOS versions may use a terminator such as OxFFFFFFFF to
signify the end of the verb table, rather than specifying a count in the
header. In this case, you can easily add as many verbs as you like without
needing to restrict them to sets of four verbs.

Be sure to account for analog PC beep if it is implemented. For
instance, if you want to be able to hear POST tones coming from the
stereo outputs on the rear of the system, don’t send a mute verb to that
pin widget. Instead, you might send a verb that configures the output
appropriately for the intended usage. If you are purposefully un-muting
an output so that POST tones can be heard at startup, DO NOT set the
volume control to unity gain. Instead, set it to 25 or 30 decibels of
attenuation, so that if the system is attached to a high-powered speaker
system, that the POST tones don’t damage the speakers or the listener’s
ears. See “Hardware Volume Scaling” earlier in this chapter for more
details on how to do so.

While the pin widgets may not contain volume controls, you can
approximate a mute in many cases by disabling the pin widget’s input
and output circuits by writing to the Pin Widget Control register for each
pin widget, as shown in Figure 4.20.

34 M High Definition Audio for the Digital Home

; Set all Pin Widgets on Codec ID #2
; to disable input, output, and VRefOut

; the verbs are formed in groups of four in case the BIOS
; uses the count of pin widgets to determine how big the
; verb table is. The pin widget count in the BIOS should
; lncrease by two to accommodate these additional verbs

dd 20A70700h ; Disable Pin Widget 0x0A

dd 20B70700h ; Disable Pin Widget O0x0B
dd 20C70700h ; Disable Pin Widget 0x0C
dd 20D70700h ; Disable Pin Widget 0x0D
dd 20E70700h ; Disable Pin Widget OxOE
dd 20F70700h ; Disable Pin Widget OxOF
dd 21070700h ; Disable Pin Widget 0x10
dd 21170700h ; Disable Pin Widget O0Ox11

Figure 4.20 Verb List to Disable Input, Output and VRefOut for All Pin
Widgets

Notice that disabling a pin widget or muting the codec is not
guaranteed to be a noise-free event, although it should be the case for a
well-designed codec. In some cases, especially with a poorly designed
codec, you might find that setting the mutes or disabling the pin widget
ends up causing more noise than if you didn’t write to the widget all. A
number of factors come in to play in this situation, including the power
supply sequencing and the rise time of the codec’s DC levels for analog
output and VRefOut.

Also remember that when the driver loads it may reset the Intel HD
Audio link. If this happens, the codec registers return to their default
state. This reset could also cause a pop or noise when abruptly changing
from the settings written by the verb table at startup. You can isolate
each noise source by disabling the audio driver, then removing power
from the entire system.

After waiting at least one minute for all capacitors to drain off, start
the system while listening through a good pair of speakers or
headphones. Any noise that you hear is a function of the codec coming
out of reset, the power supplies starting up, or the verb tables being
written to the codec. Try changing the verb tables to see if this changes
the noise behavior. Once you’ve characterized the startup noise sources,
re-enable the driver. Any noises that you hear when the driver is started

Chapter 4: Introduction to Intel® HD Audio ll 35

(and the codec is reset) could have an interaction with the verb table s
programmed at startup. Try leaving out messages to the Amplifier/Mute
register and the Pin Widget Control to further identify any interaction.

This ability to arbitrarily configure the codec at system startup can be
very useful in cases where you are having problems with pops, clicks, or
noises at startup before the driver loads. If you are using the Microsoft
UAA class driver for Intel HD Audio, this period before the driver loads
may be one of the few places where you can address these pops and
clicks. You may want to experiment with other settings of the various
pin widget controls. Each make and model of codec is likely to have
some variation in how it responds to various settings while being
powered up and initialized.

Sometimes, special cases require other verbs to be sent to the codec
at initialization time, before the driver has been loaded, to address
specific behaviors. Just about any command to the codec can be routed
through verb tables, as long as it doesn’t require any knowledge of the
current codec state.

Pin Configuration Registers

The Pin Widget or Pin Widget Complex mentioned earlier has a special
place in the relationship between Intel HD Audio and Microsoft’s
Universal Audio Architecture (UAA). The Microsoft UAA class driver for
Intel HD Audio and some codec-vendor-specific drivers use the
information that the BIOS programs into the Pin Configuration registers
to determine the schematic design and layout of the audio subsystem
and to automatically configure the driver topology based on the pin-
configuration registers. Future versions of Linux drivers might also make
use of these registers.

To meet Windows 7 Logo requirements, the BIOS must program
valid pin-configuration defaults into each pin widget contained in the
codec. The codec hardware also has default configurations hard-coded
into each of the codec’s pin widgets, but these default configurations are
only valid if the motherboard has been wired identically to the schematic
used to generate the configuration defaults.

In almost all cases, the motherboard design does not match the
codec’s default pin configurations, so the BIOS has to program the pin-
configuration registers during system boot-up. Often, the codec vendor
provides the pin configuration defaults as part of the schematic review
process. Like the Subsystem ID, each 32-bit configuration register

36 M High Definition Audio for the Digital Home

requires four separate 8-bit writes to set the register, as shown in Table

4.7.
Table 4.7 Pin Configuration Default Register Fields
31:30 29:24 23:20 19:16 15:12 11:8 7:4 3.0

Connectivity Location Device Connector Color Misc Association Sequence

The grey shading indicates each of the 8-bit segments used when writing to this register

The BIOS must therefore send four verbs for the subsystem ID, and an
additional four verbs for each pin widget or port on the codec,
regardless of whether the port is connected to anything or not. Figure
4.21 shows an example of a partial verb table, which sets the pin
configuration defaults that are shown in Table 4.8. A similar sequence
must be repeated for each pin widget in the codec, whether it is
connected to anything or not.

Be aware that the Subsystem ID Register and the Pin Configuration
Default registers in each pin widget are not touched during a reset from
any source, while other registers in the codec are reset to their default
values upon a function group reset. The contents of these registers are
only lost when digital power is removed from the codec; the BIOS must
restore these registers when power is restored to the codec’s digital
power supply.

; Front Panel HP Out uses port A (NodeID = 0OxA, SDI#2)
; Set Node ID 0x0A Pin Configs to 0x02214070

dd 20A71C70h ; Set 7:0 to 0x70 - Assoc 7, Seq O

dd 20A71D40h ; Set 15:8 to 0x40 - Green, Jack Detect

dd 20A71E21h ; Set 23:16 to 0x21 - HP Out, 3.5 mm jack
dd 20A71F02h ; Set 31:24 to 0x02 - Front, chassis

Figure 4.21 Verb table and Pin Configuration for an Independent
Stereo HP Out Jack on Front Panel

Table 4.8 Pin Configuration for an Independent Headphone Out Jack on Front Panel

Connectivity Loc Device Type Color Jack Detect Assoc Seq
Chassis Jack Front HP Out 3.5mm Green Yes(0) 7 0

Chapter 4: Introduction fo Intel® HD Audio Bl 37

For the most part, the individual fields of the Configuration Default
register are independent of each other. These fields are sufficient to
describe a static configuration, but they do not contain enough
information to fully describe a retaskable jack.

The Port Connectivity field, shown in Table 4.9, allows you to
specify whether the port is disconnected, connected to a jack, or
connected directly to an integrated device such as a microphone or
speaker amplifier. Though the Intel HD Audio specification allows for
both a jack and an internal device to be attached to a single port, this
configuration is not fully supported by the Microsoft UAA class driver for
Intel HD Audio and should be avoided.

Table 4.9 Port Connectivity (Bits 31:30) of Pin Configuration Default Register

Bits 31:30 Value

00b Port is connected to a jack (3.5 mm, ATAPI, RCA, etc)

01b No physical connection for Port

10b A fixed function device (integrated speaker, integrated mic, etc.) is
attached.

11b Both a jack and an internal device are attached. (Not recommended)

Note: Port connectivity settings that are highlighted in gray are not recommended.

The Location field consists of two subfields. Bits 29:28 are used to
indicated whether the port is on the primary chassis, an external chassis,
internal to the PC (not user accessible), or “Other,” which includes
microphones on the PC lid. Bits 27:24 are interpreted differently based
on the contents of bits 29:24. This alternative results in a very large table
of supported devices when decoded, but only a small subset of these
possible devices is actually used in modern PCs. Most motherboard
designs use only those locations not highlighted in gray in Table 4.10.

The Microsoft UAA class driver for Intel HD Audio uses the locations
to build logical names for jacks, as well as to group related topologies.
WHQL tests enforce Logo requirements by ensuring that two or more
jacks of the same color are never in the same location or in the same
association. It’s OK to have a pink microphone input jack on the front,
and another pink microphone input jack on the rear, but it’s not OK to
have two pink jacks on the front, next to each other.

When the Port connectivity bits are set to “jack” (0x00), the value in
the high byte of the Pin Configuration Default register directly reads out

38 M High Definition Audio for the Digital Home

the location. This result is true for any byte value for bits 31:24 that
comes up to less than 0x40.

Table 4.10 Location / Connectivity (Bits 29:24) of Configuration Default Register

b31:24 b31:30 b29:28 b27:24 Value

01h 00b 00b 1h External jack on primary chassis: Rear

02h 00b 00b 2h External jack on primary chassis: Front

03h 00b 00b 3h External jack on primary chassis: Left

04h 00b 00b 4h External jack on primary chassis: Right

05h 00b 00b 5h External jack on primary chassis: Top

06h 00b 00b 6h External jack n primary chassis: Bottom

08h 00b 00b 8h External jack on primary chassis: Drive bay

18h 10b 01b 8h HDMI Integrated (Direct S/PDIF trace to
HDMI Encoder)

19h 00b 01b 9h ATAPI Jack on motherboard

90h 10b 01b Oh Internal: Speaker

B7h 10b 11b 7h Other: Mic Inside Mobile Lid

B8h 10b 11b 8h Other: Mic Outside Mobile Lid

Note: Uncommon combinations are highlighted in gray, and should be avoided. See Intel HD
Audio Specification for complete description of the Location field.

The Default Device field shown in Table 4.11 describes the different
functions that might be connected to a port. You rarely use any of the
devices highlighted in gray in a modern motherboard. Items highlighted
in gray are not supported by the Microsoft UAA class driver for Intel HD
Audio.

Be sure to use speaker category only for devices that drive an
amplifier that is outside the codec but inside the PC chassis. Either the
speaker should be in the PC chassis as well, or it should be a passive 8-
ohm speaker connected directly to speaker clips on the PC chassis,
much like a stereo receiver. Devices such as self-powered 5.1 speaker
systems that are connected through line-out jacks should be designated
as line-out, not as speaker.

Table 4.11 Default Device (Bits 23:20) of Pin Configuration Default Register

Bits 23:20 Value

Oh Line Output Jack
1h Internal Speaker (amplifier is built into PC chassis)

Chapter 4: Introduction to Intel® HD Audio JI 39

Bits 23:20 Value

2h Headphone Output Jack
3h Analog CD Input (via ATAPI connector)
4h S/PDIF Out (optical or coaxial)
5h Digital Other Out
6h Modem Line Side
7h Modem Handset Side
8h Line Input Jack
9h Aux
Ah Microphone Input
Bh Telephony
Ch S/PDIF In (optical or coaxial)
Dh Digital Other In
Eh Reserved
Fh Other
Note: Items highlighted in gray are not supported by the UAA class driver. Less common

devices shown in italics should be avoided when possible.

The Connection Type field detailed in Table 4.12 describes the type of
connector that is used. In practice, the highlighted subset of these
connector types is rarely used on modern PCs.

The Microsoft UAA class driver for Intel HD Audio sets the outputs to
a fixed maximum volume output level when an RCA jack is specified and
the device type is set to Line Out. It labels the audio endpoint as line
connectors, to indicate a multi-channel A/V receiver.

An RCA jack can also be used as digital connector for S/PDIF signals.
The same connector code (0x4) is used in this case, but the device field
is set to either S/PDIF In or S/PDIF Out, rather than Line In or Line Out.
The Microsoft Intel HD Audio UAA Class Driver handles volume controls
differently when an RCA jack is used, and it also displays a different
name for the audio endpoint, which is typically a multi-channel A/V
receiver.

The XLR connector is very useful for connecting professional
microphones. It is typically mounted in a 5-inch wide content-creation
audio bay on the front of the PC, in the spot where a CD or hard drive
might otherwise be mounted. The XLR connector does not inherently
have a jack detection mechanism, so this type of input should be treated
as always connected.

40 B High Definition Audio for the Digital Home

Even though it’s not indicated in the table, it’s OK to specify a
quarter-inch headphone jack on a content creation bay. As long as the
quarter-inch jack is wired the same way that the 3.5-millimeter jack is
wired for jack detection, this configuration will work well. Other
standard quarter-inch jack configurations used in the audio industry do
not match the way that 3.5-millimeter jacks are used on the PC. For
instance, no pro-audio equipment uses a stereo quarter-inch phone jack
for stereo line in. Instead, two quarter-inch jacks would be used for that
purpose. In the audio industry, quarter-inch stereo jacks are more likely
to be connected in a balanced configuration, which is rarely used in PC
designs. Using quarter-inch jacks improperly can cause lots of confusion,
and should be avoided.

Future versions of the Microsoft UAA class driver for Intel HD Audio
could make use of these connector types, but these settings have little
effect on the UAA class driver that ships with Windows 7.

Table 4.12 Connection Type (Bits 19:16) of Pin Configuration Default Register

Bits 19:16 Value

Oh Unknown
1h 3.5 mm stereo/mono phone jack (incorrectly referred to as 1/8”)
2h Ya” stereo/mono phone jack
3h ATAPI Internal
4h RCA jack (may be used for analog audio or for coaxial S/PDIF)
5h EIAJ Optical or TOSLINK' connector for S/PDIF or ADAT
6h Other Digital
7h Other Analog
8h Multi-channel Analog (DIN)
9h XLR/Professional
Ah RJ-11 (Modem)
Bh Combination
Ch - Eh Undefined
Fh Other
Note: Uncommon connectors are highlighted in grey, and should be avoided.

Some classes of Microsoft 7 Logo compliance call for specific colors to
be used for the various standard analog audio inputs and outputs on a
PC. In addition to defining these colors, the Intel HD Audio specification
also defines some additional colors which are not used for audio jacks on

Chapter 4: Introduction to Intel® HD Audio I 41

systems conforming to Windows 7 Logo requirements. Avoid colors that
are highlighted in Table 4.13 to help prevent WHQL failures.

Table 4.13

Color (Bits 15:12) of Pin Configuration Default Register

Bits 19:16 Value

Standard Usage

Associated Device

Oh Unknown n/a Don’t Use

1h Black Rear Surround L/R Line Out

2h Grey Side Surround L/R Line Out

3h Blue Line In L/R Line In

4h Green Line Out or HP Out L/R Line Out or HP Out

5h Red Not used for audio 3.5mm jacks Don’t Use

6h Orange Center/LFE Line Out

7h Yellow Not used for audio 3.5mm jacks Don’t Use

8h Purple Not used for audio 3.5mm jacks Don’t Use

9h Pink Microphone in mono or stereo Microphone In
Ah - Dh Reserved n/a Don’t Use

Eh White Not used for audio 3.5mm jacks Don’t Use

Fh Other n/a Don’t Use

Note: Colors that are not Windows 7 Logo-compliant are highlighted in gray. Avoid using any

of these colors in your pin configuration defaults.

Three of the four bits designated as Misc are currently undefined, and
only one of the four is defined. This Jack Detect override bit is tricky,
because it uses negative logic.

If the Jack Detect override bit is set, it indicates to the audio driver
that it is not possible to detect jack insertion events on this jack. This
result could be from using a connector that does not include an isolated
switch, such as an RCA or XLR connector.

To meet Windows 7 Logo requirements, all 3.5-millimeter analog
jacks must set the Jack Detection Override bit designated in Table 4.14
to zero, indicating that Jack Detection is present both in the codec and
that the jacks on the motherboard have switches and are wired properly,
even for front panel jacks. Analog outputs using RCA jacks and a device
type of Line Out may set this bit to one, indicating that a switch on the
jack is not present.

42 B High Definition Audio for the Digital Home

Table 4.14 Misc (Bits 11:8) of Pin Configuration Default Register

Bits 11:8 Value

00h Jack detection through SENSE pins
01h No jack detection implemented
2h-7h Reserved

Note: The 1.0 Intel HD Audio specification defines only bit 8 of the Misc fields. Bit 8 should
be set whenever jack detection is not implemented for any reason. Setting Bit 8 on
analog /0O ports may result in a WHQL failure under Windows 7

Associations and Sequences

Each audio endpoint in complete system is defined by a separate
association and sequence. Associations in the range of 0x1 through 0xE
can be used for multi-channel or stereo applications. Association 0xF is
reserved only for devices which expose a single pin widget. Each
association must have a unique number. Although several pin widgets
might use Association 0xF, the Microsoft UAA class driver for Intel HD
Audio treats each of the pin widgets in this association as a separate
stereo device. The associations are evaluated in priority order, with
association 0x1 having the highest priority and association 0xF having
the lowest priority.

The association is stored in Bits 7:4 of the Pin Configuration Default
register. Associations that describe multi-channel audio streams can be
represented by a 4-bit hexadecimal number from 0x01 to O0xO0E.
Association 0x00 is reserved, and association 0x0F is limited to a single
pin widget. The sequence is stored in Bits 3:0 of the Pin Configuration
Default register. A sequence must be unique in any particular
association. Some special sequence values also are used to indicate
specific behavior.

Associations built from a single pin widget should always use #0.
Examples are Stereo Headphone Out, Stereo Line Input, Stereo (or
mono) microphone input, Stereo Line Out, Stereo S/PDIF In, and Stereo
S/PDIF Out. Multi-channel streams can be created by setting several pin
widgets to the same association, and then using the Sequence numbers
to define the individual channel pairs in the stream.

Associations can also be used to describe ADC multiplexer (Mux)
inputs, ADC mixer (mix) inputs, mic arrays, and redirected headphone
configurations. The audio driver uses the associations to determine how
to make connections and allocate resources inside the codec. The audio

Chapter 4: Introduction fo Intel® HD Audio ll 43

driver evaluates each Association in numerical priority, starting with
Association 0x01 and ending with Association 0xO0F.

Table 4.15 shows a possible set of association assignments for a
complete system. If you prefer, you can mix and match any way that you
would like, but you should try to set up a numbering scheme that is
consistent across multiple systems, for ease of understanding, and that
takes association priorities into account. Starting with one and skipping
every other association number, as shown in the table, allows you to
casily reorder priorities without renumbering the entire table.

Table 4.15 Example of a Set of Association Assignments in a Typical System
Association Value
Oh Reserved, Do Not Use
1lh Integrated Stereo Speaker Pair
3h Rear Panel Primary Line Out (may be stereo, 5.1, or 7.1)
5h Rear Panel Primary Stereo Line In or ADC Mux In
7h Front Panel Secondary Stereo HP Out
9h Front Panel Secondary Stereo Mic In Jack
Ah Rear Panel Stereo S/PDIF Out
Ch Rear Panel Stereo S/PDIF In

Note: No standard requires this ordering, but you may wish to keep consistent between
different models for ease of understanding.

One or more examples of each of these assignments follow. The
association numbers shown in the examples match Table 4.15. You can
use these examples to create your own verb table s directly.

Stereo Stream Associations

An association consisting of a single pin widget should always specify a
sequence of zero. The association number should be unique, with the
exception of 0x0F, which supports multiple stereo associations. The
example in Table 4.16 shows an association consisting of a single blue
3.5-millimeter stereo Line In jack on the rear panel of the computer.

Table 4.16 Pin Configuration for Rear Panel Line Input
Connectivity Loc Device Type Color Jack Detect Assoc Seq
Chassis Jack Rear Lineln 3.5mm Blue Yes (0x0) 5 0

Note: See Appendix A for complete verb tables for this association.

44 B High Definition Audio for the Digital Home

While Table 4.16 shows the entire contents of the pin widget’s default
configuration register, this information is not enough by itself. The
entries in the actual verb table also need to know the codec ID and the
Node ID of the pin widget. For your convenience, completely assembled
verb tables for each of the Pin Configurations shown in this chapter are
available in Appendix A. These examples all assume that the Codec ID is
#2 and that the Node IDs of the codec are the same as those shown in
the widget diagram in Figure 4.12, where you can see that Node ID 0x0C
is used for Port C.

In this example, the pin widget attached to Port C is targeted. The
Codec ID of 0x2 and the Node ID of 0x0C can be seen at the beginning
of each of the four commands in the verb list in Figure 4.22.

; Rear Panel Line In is port C (NodeID = 0x0C, SDI#2)

; Set Node ID 0x0C Pin Configs to 0x01813050

dd 20C71C50h ; Set 7:0 to 0x50 - Assoc 5, Seg 0

dd 20C71D30h ; Set 15:8 to 0x30 - Blue, Jack Detect

dd 20C71E81h ; Set 23:16 to 0x81 - Line In, 3.5 mm jack
dd 20C71F01h ; Set 31:24 to 0x01 - Rear, chassis

This verb list matches the line inputs in Table 4.16.

Figure 4.22 Verb List for Rear Panel Line Input Configuration

Table 4.17 shows the pin configuration for a green line-out jack on the
rear of the computer. In this case port D is used, which is also assigned
to Node ID 0x0OD in the codec. In the corresponding verb table in
Appendix A, you can see the “20D” at the beginning of each verb in the
table. This pin configuration assumes that jack detection is wired
correctly on the motherboard.

Table 4.17 Pin Configuration for Rear Panel Line Output

Connectivity Loc Device Type Color Jack Detect Assoc Seq
Chassis Jack Rear LineOut 3.5mm Green Yes (0x0) 3 0

Note: See Appendix A for an example of a completed verb table for this association.

Table 4.8 showed the pin configuration for a green headphone jack on
the front of the computer. Node ID 0x0A is used for this pin widget.
Notice that a differently numbered association is used to denote the front
panel headphone jack from the rear line out. This differentiation
provides the option for a multi-streaming output configuration. This pin

Chapter 4: Introduction to Intel® HD Audio Bl 45

configuration assumes that the specified port is capable of driving
headphones, that coupling capacitors large enough to drive headphones
are present, and that jack detection has been wired correctly on the
motherboard.

Table 4.18 shows the pin configuration for an independent
microphone input jack using Node ID 0x0B, which in this case is also
Port B. This configuration assumes that the microphone bias circuit and
the jack detection circuit are configured properly on the motherboard.

Table 4.18 Pin Configuration for Front Panel Microphone Input

Connectivity Loc Device Type Color Jack Detect Assoc Seq
Chassis Jack Front Micln 3.5mm Pink Yes 9 0

Note: See Appendix A for an example of a completed verb table for this association.

Table 4.19 describes a digital S/PDIF optical output jack using Node ID
0x15. No SENSE pin is associated with S/PDIF Out, so the Jack Detect bit
is set to 0x1, which indicates that jack detection is not available for this
jack.

Table 4.19 Pin Configuration for Rear Panel S/PDIF Output
Connectivity Loc Device Type Color Jack Assoc Seq
Detect
Chassis Jack Rear S/PDIF Optical Black No (0x1) A 0
Out
Note: See Appendix A for an example of a completed verb table for this association.

You should be able to put together a complete system featuring separate
stereo input and output circuits on front and rear panels by using the
preceding examples. Be sure to check the codec data sheet for the
proper Node IDs for each pin widget, as they vary from codec to codec.

5.1 Surround Multi-channel Stream Association

Surround sound output with five satellite channels and a subwoofer can
be accomplished by assigning three stereo line-out ports to the same
association, but with unique sequence numbers for each pin widget in
the association. Sequence numbers often have unique meanings; you
cannot assign them arbitrarily as you can with association numbers.
Additional information on multi-channel speaker configurations can be
found in Chapter 7.

46 B High Definition Audio for the Digital Home

When used together in a single association, the set of sequence
numbers (0, 1, 2) defines a 6-speaker configuration as shown on the left
side of Figure 4.23, with speakers located at the Front Left (FL), Front
Right (FR), Front Center (FC), Low Frequency Effects (LFE), Back Left
(BL), and Back Right (BR) positions.

Similarly, sequence numbers (0,1,4) represent a 6-speaker
configuration with speakers located at the FL, FR, FC, LFE, Side Left (SL),
and Side Left (SR) positions, as shown on the right side of Figure 4.23.

Sequence (0, 1, 2) Sequence (0, 1, 4)

Figure 4.23 5.1 Surround Sequences for a Multi-channel Association

The Speaker Configuration control panel in Windows does not
distinguish between the two 5.1 speaker configurations shown in Figure
4.23, which differ only in whether BL and BR speakers are used in place
of SL and SR speakers. The control panel uses the label 5.1 surround
sound speakers to identify either configuration. The reason for not
distinguishing between the back-speaker and side-speaker configurations
in the control panel is that most listeners don’t distinguish between
these speaker positions, so having two different settings doesn’t make a
lot of sense.

Sequence (0, 1, 4) is the preferred configuration for Windows 7. This
configuration assumes that all ports in the association have jack
detection circuitry implemented on the motherboard. Table 4.20 details
the settings for this configuration.

Chapter 4: Introduction to Intel® HD Audio Il 47

Table 4.20 Pin Configuration for 5.1 Surround Line Outputs
Using Sequence (0, 1, 2)

Connectivity Loc Device Type Color Jack Detect Assoc Seq

Chassis Jack Rear LineOut 3.5mm Green Yes (0x0) 3 0

Chassis Jack Rear LineOut 3.5mm Orange Yes (0x0) 3 1

Chassis Jack Rear Line Out 3.5mm Black Yes (0x0) 3 2
Note: The choice of sequence number determines the function of each port, which must be

matched with the proper color for that function. See Appendix A for an example of a
completed verb table for this association.

7.1 Surround Multi-channel Stream Association

Sequence numbers (0, 1, 2, 4) represent an 8-speaker configuration with
speakers located at the FL, FR, FC, LFE, BL, BR, SL, and SR positions, as
shown in Figure 4.24. Sequence 3 must not be used in this configuration.
The 7.1 bome theater speakers configuration should be selected in the
Advanced Audio Properties Speakers tab for use with this type of
association.

Sequence numbers (0, 1, 2, 3) and (0, 1, 3, 4) represent now-obsolete
multi-channel configurations known as 7.1 wide configuration speakers.
These sequences should not be used for new designs, nor should the
speaker configuration control panel be used with this setting unless the
speaker configuration is truly set up in this fashion.

Sequence (0, 1, 2, 4) Speaker setup:

7.1 home theater speakers v

Figure 4.24 7.1 Home Theater Sequence for a Multi-Channel Association

48 B High Definition Audio for the Digital Home

Table 4.21 details the pin configuration defaults for the 7.1 home theater
speaker configuration. Be aware that Microsoft uses the term Home
Theater to denote a 7.1 configuration, while Dolby' uses Home Theater
to denote a 5.1 configuration, and Master Studio to refer to 7.1.
Sequence (0, 1, 2, 4) is very similar to the recommended sequence of
(0, 1, 2) for 5.1 surround. The addition of the grey side surround speaker
jacks is the only difference. In sequence (0, 1, 2, 4), sequence 0 is always
front (green), sequence 1 is always Center/LFE (orange), sequence 2 is
always Rear Surround (black), and sequence 4 is always side surround

(grey).

Table 4.21 Pin Configuration for 7.1 Surround Line Outputs using Sequence (0,
1,2, 4)

Connectivity Loc Device Type Color Jack Detect Assoc Seq

Chassis Jack Rear LineOut 3.5mm Green Yes (0x0) 3 0
Chassis Jack Rear LineOut 3.5mm Orange Yes (0x0) 3 1
Chassis Jack Rear Line Out 3.5mm Black Yes (0x0) 3 2
Chassis Jack Rear LineOut 3.5mm Grey Yes (0x0) 3 4

Note: The choice of sequence number determines the function of each port, which must be
matched with the proper color for that function. See Appendix A for an example of a
completed verb table for this association.

Resource Sharing

UAA guidelines generally discourage sharing of codec resources, such as
ADCs and DACs, between multiple pin widgets because they might not
always be available. This practice could be a cause of significant user
confusion. A DAC or ADC should have an exclusive path to one and only
one pin widget. The port controlled by that pin widget should be
connected to one and only one jack or integrated device. This exclusivity
allows the Microsoft UAA class driver for Intel HD Audio’s topology
parser to consistently and uniquely identify each audio endpoint.

The three exceptions to this rule support usability models that have
long been established on the PC. In each case, a single DAC or ADC is
associated with multiple pin widgets. Sequence numbers 0xE and 0xF
are used to indicate this shared usage. While these special cases are not
defined in the Intel HD Audio specification, they are part of the
requirements for Microsoft’'s UAA Intel HD Audio class driver
compatibility and are consistent with the Intel HD Audio specification.

Chapter 4: Introduction to Intel® HD Audio I 49

Redirected Headphone Association

One common usage for headphones is that plugging headphones into
the headphone jack disables the built-in speakers or the line-out jacks on
the rear panel, as shown in Figure 4.25. In this case, the signal from the
DAC at widget ID# 2 would switch from the line-out jack to the
headphone-out jack whenever headphones are plugged in, and switch
back when the headphones are unplugged, un-muting the line out again.

If a multi-channel configuration is used for line out, like that shown
in Table 4.21, then plugging in the headphone would mute all of the
multi-channel outputs on the same association. Depending on the driver
configuration and what’s playing, the headphones may contain only the
Front Left and Front Right signals, or they may contain a mix of all the
channels that are playing in the stream.

To use this configuration, you must use a DAC which is capable of
being routed to either of the two pin widgets. The sequence number for
the redirected headphone must always be 0xF, which indicates to the
Microsoft UAA class driver for Intel HD Audio topology parser that a
redirected headphone configuration is being requested.

The DAC is routed to only one pin widget at a time. If the headphone jack is
plugged in, then the signal from the DAC is routed to the Front Headphone
Out and the Rear Line Out is disconnected. If the headphone jack is not
plugged in, then the signal is routed to the Rear Line Out and the Front
Headphone Out is disconnected.

Figure 4.25 Line Out jack and Headphone Out jack sharing a single DAC in a
Redirected Headphone configuration

The redirected headphone configuration is shown in Table 4.22. Both
jacks in this case are green, but this use of the same color complies with

50 M High Definition Audio for the Digital Home

Logo requirements because one is on the front and one is on the rear.
Both jacks should support jack detection to meet Windows 7 Logo
requirements, though the redirected function still works if only the
headphone jack supports detection.

Table 4.22 Pin Configuration for Rear Panel Line Out with Redirected Front
Panel HP Out
Connectivity Loc Device Type Color Jack Detect Assoc Seq
Chassis Jack Rear LineOut 3.5mm Green Yes (0x0) 3 0
Chassis Jack Front HP Out 3.5mm Green Yes (0x0) 3 F
Note: See Appendix A for an example of a completed verb table for this association.

A similar configuration is desirable for PCs with a built-in speaker and a
headphone jack. It matches the way that TVs and radios with a
headphone work, muting the built-in speaker whenever headphones are
plugged in. Figure 4.26 shows the block diagram of this configuration.

Figure 4.26 Internal Speaker with Redirected Headphone Output

From the codec perspective, the routing and the signal flow in Figure
4.29 are the same as shown in Figure 4.28. However, the pin
configuration for the internal speaker is quite different from the line out
configuration. No color is specified, and no jack detection is present.
The location and connectivity registers are set to a unique value
indicating a built-in speaker. Like the previous example, the sequence
number for the headphone is set to 0xF to indicate this behavior. Table
4.23 shows the configuration defaults.

Chapter 4: Introduction fo Intel® HD Audio I 51

Table 4.23 Pin Configuration for Internal Speaker with Redirected
Front Panel HP Out
Connectivity Loc Device Type Color Jack Assoc Seq
Detect
Fixed Internal Speaker Other n/a No (0x1) 1 0
Function Analog
Chassis Jack Front HP Out 3.5mm Green Yes(0x0) 1 F

Note:

Redirected 1 .ine Out Association

See Appendix A for an example of a completed verb table for this association.

Figure 4.27
DAC

Internal Speaker and a Redirected Line Out jack Sharing a Single

This configuration is very similar to the previous configuration. The
primary difference is that the green jack is on the rear of the computer,
and it is not capable of driving headphones. It is also possible for this
configuration to be used with 5.1 or 7.1 associations. To allow for this,
the internal speaker always uses Sequence 0xF in the same way that the
headphone output does in the previous examples.

Table 4.24

Rear Panel Line Out

Pin Configuration for Internal Speaker with Redirected

Connectivity Loc Device Type Color Jack Assoc Seq
Detect

Fixed Internal Speaker Other n/a No (0x1) 1 F

Function Analog

Chassis Jack Rear LineOut 3.5mm Green Yes(0x0) 1 0

52 M High Definition Audio for the Digital Home

ADC Mux Association

Most Intel HD Audio codecs are designed to accept inputs on any of the
analog audio ports A thru H, although typically only a few ports are
dedicated to input functions. Each ADC usually has a selector that allows
it to select one of these input ports to provide input. Figure 4.28 shows
an association configured as ADC Mux. It is able to identify an ADC and
the ports that ADC can choose to select its signal from.

Figure 4.28 Three Pin Widgets Sharing a Single ADC in a Mux Pin
Configuration

If there is only one gain control, as shown in the diagram, the OS stores a
different gain value for each input to the mux. This feature gives the
effect of having three separate gain controls without requiring all three
to be implemented in hardware. If there are separate gain controls in
each pin widget, then the OS keeps track of each individual volume
setting. Table 4.24 shows the configuration defaults for this option.

Table 4.24 Pin Configuration for Shared Input Mux with Line In, CD, and
Microphone In
Connectivity Loc Device Type Color Jack Detect Assoc Seq
Chassis Jack Rear LinelIn 3.5mm Blue Yes (0x0) 5 0
Fixed Function ATAPI CDIn ATAPI Black No (0x1) 5 1
Chassis Jack Front MicIln 3.5mm Pink Yes (0x0) 5 E
Note: See Appendix A for an example of a completed verb table for this association.

Even though this example shows how to configure the analog CD analog
CD is not recommended, and it might not be supported under Windows

Chapter 4: Introduction fo Intel® HD Audio Bl 53

7. The ATAPI connector has no provision for jack detection. If no cable
is plugged into the ATAPI connector, set the connectivity to No
Connect.

ADC Mix Association

The ADC mix configuration block diagram shown in Figure 4.29 is very
similar to the mux configuration. The big difference is that all three
inputs are “live” at the same time, which requires independent gain
controls for each input in order to adjust the relative level of each input.
While allowable under both the Intel HD Audio specification and the
UAA guidelines, most users find the mix configuration confusing since it
doesn’t match the way that A/V receivers are designed. A mix
configuration is a poor choice for ease of use because it does not match
the behavior of a typical A/V receiver, which uses a Mux to select
between inputs. You should avoid using the mix configuration unless
you have a specific reason to use it.

Figure 4.29 Three Pin Widgets Sharing a Single ADC in a Mix Configuration

Since each input port has an independent gain stage, they must have
separately addressable widget node IDs, which increases the codec cost
and complexity. In terms of the pin configuration shown in Table 4.25,
the only difference between a mux and a mix configuration is that the
highest sequence number is set to 0xF rather than 0xE, signifying mix
rather than mux.

54 M High Definition Audio for the Digital Home

Table 4.25 Pin Configuration for Shared Input Mix with
Line In, CD, and Microphone In
Connectivity Loc Device Type Color Jack Detect Assoc Seq
Chassis Jack Rear Lineln 3.5mm Blue Yes (0x0) 5 0
Fixed Function ATAPI CDIn ATAPI Black No (0x1) 5 1
Chassis Jack Front Micln 3.5mm Pink Yes (0x0) 5 F
Note: See Appendix A for an example of a completed verb table for this association.

These configurations are but a few key ones that can be created from
associations and sequences. Links to more detailed information are
available at this book’s companion Web site.

Resource Allocation

While hardware developers think of the I/O ports as the primary point of
contact for the codec, software developers consider the DACs and ADCs
in the codec to be the primary point of contact. Intel HD Audio codec
designs have a somewhat flexible interconnection between analog I/O
ports and resources such as DACs and ADCs that are directly addressed
by the software.

The codec must have enough resources in the form of ADCs and
DACs to build complete paths for each port, as specified in the default
configurations. For instance, if four ports were to be configured as stereo
line outputs, but the codec contained only three stereo DACs, the path
with the highest association number (and therefore lowest priority)
cannot be completed because the driver has run out of DACs to assign.

While most codecs have ADC muxes that can select any of the analog
ports, it is not always true of the connections between DACs and ports
configured for output. In many designs, a DAC can connect to only one
or two ports.

If you are having trouble getting a particular pin configuration to
work properly, study the block diagram or widget diagram of the codec
to be sure that you have enough DACs and ADCs to fulfill your needs. If
you're sure that resources are sufficient, try to isolate the problem by
setting all other ports to No Connection. This setting releases any DACs,
ADCs, or other elements claimed by these ports.

If your association now works properly with all ports set to No
Connection, you have a resource conflict. Re-enable the other
associations one at a time until the conflict re-appears, then study the
codec block diagram to determine where the conflict is occurring. Or

Chapter 4: Introduction to Intel® HD Audio Bl 55

better yet, use colored highlighter markers on the codec block diagram
to color code each association. Another approach is to reverse the
priority of the associations that are in conflict. If a number of different
paths are possible, you can often resolve the issue by causing the
resources to be allocated in a different order.

Unsolicited Response

In place of a traditional interrupt request (IRQ), unsolicited responses
are messages that are sent by the codec independently of any software
request. Typically, they are triggered when the codec’s SENSE pins
change state because a jack was inserted or removed, but they can also
be triggered by such events as when the listener changes a front panel
volume control or when the codec latches onto a valid S/PDIF input
stream.

The Intel HD Audio bus driver transforms the unsolicited responses
into callback events that the function driver registers to receive. The
Intel HD Audio bus driver calls the specified callback routine at IRQL
DISPATCH_LEVEL, much like a traditional interrupt service routine. The
driver can then dispatch events to user-mode applications that have
registered to receive callbacks. At the higher levels in the OS, the
unsolicited responses may be treated identically to a normal IRQ.

Jack Detection

The Intel HD Audio jack detection mechanism consists of two related
but very different functions: jack-insertion detection and impedance
sensing. Jack-insertion detection is required by the Windows 7 Logo
program, but impedance sensing is optional and is supported only in
some codec vendors’ function drivers. In some limited cases, impedance
sensing can be used to automatically reconfigure a jack to match the
analog device that was plugged into the jack.

Jack-insertion detection is accomplished by using the resistor ladder
shown in Figure 4.30 to share a single SENSE pin between four ports.
The Presence Detect bit in the Pin Sense register inside each pin widget
changes to a one whenever the corresponding switch is closed,
indicating that a jack has been inserted.

56 M High Definition Audio for the Digital Home

All resistors have a tolerance of 1 percent. Switches J1 thru J4 are closed
when a jack is inserted in the associated port. The SENSE_A pin is used for
ports A thru D, while SENSE_B is used for ports E thru H. The switches
must be isolated from the signal paths of the port.

Figure 4.30 Resistor Stack Connecting Four Jacks to a Single Codec SENSE Pin

It is critical to use resistors with a tolerance of 1 percent or better, and to
follow good layout and design practices for these circuits. Try to make
sure that all four resistors are made using the same process, so that they
track better together over temperature variations. If this circuit does not
work properly, it could trigger WHQL failures under the Windows 7
Logo program.

Modifying the Pin Configuration in the BIOS

Often, when bringing up the system, you might find that the BIOS team
cannot update the default configurations quickly enough to meet audio
test deadlines. If the BIOS chip is mounted in a socket and not
encrypted, it is relatively straightforward to modify configuration
defaults in the BIOS, by using an external ROM programmer.

Remove the BIOS chip from the motherboard and use the ROM
programmer coupled to a PC to read the BIOS contents into a
hexadecimal file. Using a hexadecimal editor, search for a verb that you
know to be present, such as 0x20A71C70, which is the first verb in the
partial verb table in Figure 4.21. You should be able to see the same verb
table patterns that you see in the previous examples: sets of four similar
32-bit words all starting with 2 and followed by the widget ID.

Chapter 4: Introduction fo Intel® HD Audio Bl 57

Once you have located the verb table that you wish to edit, use the
hex editor to edit the raw data, then blow the updated contents back
into the BIOS chip, and put it back into the motherboard.

Most production BIOSes are encrypted, so this technique is unlikely
to work with shipping products. However, it could prove to be very
handy in meeting tight development schedules.

System Bring-up Trick Using the Microsoft UAA class driver for Intel® HD Audio

In many cases, it may be sufficient to test with the Microsoft UAA class
driver for Intel HD Audio. The class driver has an INF file mechanism to
transmit a verb table just prior to normal driver initialization. This
transmission allows the pin configuration registers to be programmed
properly even if the BIOS is not programming them properly.

You can accomplish this transmission by editing a copy of the class
driver INF file, HDAUDIO.INF. Be aware that this practice is only suitable
for lab work; you cannot submit an edited HDAUDIO.INF as part of a
Logo submission package. The mechanism is much like the verb table
mechanism, but the surrounding syntax and structure is different. The
formation of the verbs themselves is identical.

The InitVerbs registry entry is controlled by the HKR key in the
HdAudInit. AddReg section of the HDAUDIO.INF file. Create one entry is
for each verb that you want to send to the codec. You also must set a
descriptor to indicate the total number of verbs, specified in
hexadecimal. Each verb must be preceded by a unique ID number,
starting with zero. These unique ID numbers are specified in decimal. An
example is shown in Figure 4.31.

Just like verb tables written by the BIOS, you must know the codec
ID and the Node ID for each set of commands. The verbs are sent blindly
and with no error checking.

58 M High Definition Audio for the Digital Home

[HdAudInit.AddReg]

; Number of verbs to be sent to codec

HKR, InitVerbs, NumVerbs, 0x00010001, 0x00000004

; ——Codec ID#2, Port C (NID = 0x0C)

; Set Node ID 0x0C Pin Configs to 0x01813050

HKR, InitVerbs, 0000, 0x00010001, 0x20C71C50 ; Assoc 5, Seq O

HKR, InitVerbs, 0001, 0x00010001,0x20C71D30 ; Blue, Jack Detect
HKR, InitVerbs, 0002, 0x00010001,0x20C71E81 ; Line In, 3.5 mm jack
HKR, InitVerbs, 0003,0x00010001,0x20C71F01 ; Rear, chassis

This code matches the verb table in Figure 4.22 for a rear line input jack.

Figure 4.31 Verb Table Specified in the INF file of the UAA Class Driver

You can use this feature of the Microsoft UAA class driver for Intel HD
Audio to pre-test verb tables before they are provided to the BIOS team
or to test various potential configurations of the motherboard.
Remember: any changes that you make to the HDAUDIO.INF file are for
your own use and may not be submitted to WHQL as part of a Logo
package. Instead, any verbs must be written by the BIOS in a production
system capable of meeting Logo requirements. You must use an unedited
version of the Microsoft UAA class driver for Intel HD Audio INF file to
ensure system compliance with Windows 7 Logo requirements.

The examples provided in Appendix A include verb tables in both
ASM and INF formats. You can use the examples to build a complete pin
configuration for your system.

Ml Display-based Audio

Historically, video and audio signals were always carried by separate
physical connectors. With the development of the High Definition
Multimedia Interface (HDMI) and, later, Display Port, it become possible
for the two types of signals to be carried over a single connector and
cable. Supporting these display audio protocols on the PC was
challenging, because the rendering of video and audio are handled by
separate software stacks that do not communicate with each other.

The video and audio signals are interrelated. For instance, the active
video resolution (for example, 1920x1080) affects the amount of
bandwidth available for transmitting audio information. Certain video
resolutions are incapable of supporting high bit-rate audio streams.

Chapter 4: Introduction to Intel® HD Audio Bl 59

Furthermore, an end user may change the video resolution at any time,
potentially rendering a current audio configuration invalid.

As such, it is necessary for the video and audio software stacks to
communicate with one another. When Intel architects began designing a
solution for supporting HDMI on Intel graphics hardware, we created a
hardware-based mailbox for the audio and video drivers to exchange
information. This structure was similar to the existing Extended Display
Information Data (EDID) commonly found in monitors, yet contained
additional information needed for audio. We named the resulting
structure EDID-Like Data (ELD). Although the solution was initially
unique to Intel products, it has since been standardized in the Intel HD
Audio specification.

The ELD contains a header and a baseline block, and may optionally
contain vendor-specific data (Figure 4.32).

Figure 4.32 ELD Memory Structure

The header is four bytes long and contains two pieces of
information: the ELD version and the size of the baseline block. The only
currently viable ELD version is version 2, which supports a maximum
baseline block size of 80 bytes. The vendorspecific block is
implementation-specific, and not required for standard operation.

60 M High Definition Audio for the Digital Home

The baseline block includes the following monitor information:
B User-friendly monitor name string

B Manufacturer name

B Product Code
[|

Latency of the audio relative to the video. Such latency is
typically introduced by performing quality enhancements on the
video. Adjusting the audio feed by the latency can prevent A/V
synchronization issues.

B HDMI or Display Port connection type

HDCP support

B A list of supported audio formats stored as CEA Short Audio
descriptors

B List of speakers attached to the display (for example, Front
Center, Front Left and Right)

The ELD is derived from the attached display’s EDID, so if a display is not
attached, there can be no ELD. In a typical implementation, the video
driver will retrieve the EDID from the monitor and program an ELD for
consumption by the audio unit. An ELD is typically generated when a
monitor is activated by the video driver; updated ELDs may also be
generated when the display resolution is changed.

The audio driver can receive asynchronous notification of the arrival
of a new ELD by using the Unsolicited Response Control Verb. Properly
configured, the audio codec will generate a new intrinsic unsolicited
response when a new ELD is valid. The driver can use the same verb to
enable Presence Detect URs, which are triggered whenever a display is
attached or removed.

Data Island Packets

In addition to the video and audio sample data, additional information
can be sent across the HDMI and Display Port links. This information
includes sideband descriptions of the audio/video content and content
protection status. This ancillary information is carried over the link in
what are known as data island packets (DIP).

The Intel HD Audio specification includes mechanisms for setting the
contents of the packets. There are different flavors of packets across
HDMI and Display Port, and these can be sent at different frequencies

Chapter 4: Introduction fo Intel® HD Audio ll 61

across the links. HDMI codecs must support at least four DIP packet
buffers, whereas Display Port codecs only need to support at least one.

The DIP-Size verb allows the drivers to determine the hardware
buffer size for the up to eight data island packet buffers. The same verb
is also used to determine the size of the EDID-like data.

The DIP buffers can be read and written one byte at a time by using
the DIP-Index verb to select the desired buffer and desired byte index,
and then using Get/Set DIP-Data verbs to read/write that byte’s value.
After the Get/Set DIP Data verb is issued, all subsequent Get/Set Data
verbs will automatically use the next byte in the same buffer until a new
DIP-Index verb is issued.

The DIP-XmitCtrl verb is used to set how often the currently selected
packet buffer (as indicated by the last DIP-Index verb) is transmitted over
the link. The valid values are:

B Never
B Transmit the packet once

B Transmit the packet at best effort (typically once per video
frame)

The DIP buffers can be filled with appropriate information by the audio
drivers using the Set DIP-Data verb.

HDCP

Both HDMI and Display Port support a link protection scheme known as
High Bandwidth Digital Content Protection (HDCP). HDCP was originally
defined on the Digital Visual Interface (DVI), which was incapable of
supporting audio. As such, the responsibility for controlling HDCP on
Windows operating systems rests with the video drivers. Content
protection requests originating from the audio side thus require
coordination with the video drivers. Specifically, the video driver is the
master of the HDCP state; the audio driver is only allowed to make
requests to change state. State changes, it approved, may take time to be
activated.

The audio driver can get and set content protection state using the
content protection control verbs: GET_CP_CONTROL and
SET_CP_CONTROL. GET_CP_CONTROL provides two read-only
parameters set by the hardware: Current Encryption State (CES) and
Ready. The CES indicates whether HDCP encryption is currently active
over the display link. The Ready bit (also called CP_READY in the Intel
HD Audio specification) indicates whether or not the hardware is in a

62 B High Definition Audio for the Digital Home

state where it is ready to receive encryption state change requests from
the audio driver.

The CP_CONTROL verbs also use a read/write parameter titled
Content Protection (CP) State. The label is a bit of a misnomer, however.
More accurately, the parameter describes the content protection state
currently requested by the audio driver.

The three valid states are:

B Don’t care: The audio driver does not care whether or not HDCP
is activated. This is the default state, and allows the video driver
to toggle HDCP encryption at the request of video applications
without

B Protection Off: The audio driver would prefer that HDCP be
disabled.

B Protection On: The audio driver would prefer that HDCP
encryption be active.

Note once again that the Protection On and Off states are just requests
from the audio driver. The video driver is under no obligation to honor
them. The actual state of HDCP encryption on the display link can only
be determined using the CES bit.

When changes to the content protection state are made by the
hardware, it will generate a non-intrinsic unsolicited response. This UR
contains the CP_READY bit as well as the CP_STATE.

The basic flow for performing audio-side HDCP activation is as
follows:

1. The video driver activates the display link. When the link is

active, it sets the CP_READY bit in hardware.

2. The audio driver determines it needs to activate link encryption,
most likely due to a need to protect premium content. The audio
driver uses GET_CP_CONTROL to check CP_READY, which
indicates if hardware is ready for content protection operations

3. Assuming CP_READY is true, the audio driver sends a
SET_CP_CONTROL with CP State set to Protection On. This verb
includes a subtag field that will be used to identify subsequent
content protection unsolicited responses.

4. The hardware clears the CP_READY bit, indicating that it is
operating on the request. It also responds with a default
response, confirming to the audio driver that it has received the
request.

5. The audio driver polls CP_READY via GET_CP_CONTROL.

Chapter 4: Introduction fo Intel® HD Audio Bl 63

6. The video driver is alerted by the hardware of the request. If
HDCP is not already on, it will begin HDCP activation. When
complete, the hardware will set the CP_READY bit.

7. Now that CP_READY is set, the hardware will generate the CP
UR with the subtag set in step 3.

8. Upon receipt of the CP UR, the audio driver can determine the

link’s HDCP status by examining the Current Encryption State bit
available via GET_CP_CONTROL.

3 Low Power Enhancements

Design Change Notification (DCN) HDAO15B is likely the most far-
reaching set of changes between the 1.0 and 1.0A versions of the Intel
High Definition Audio 1.0a specification. This DCN outlines significant
improvements to low power performance including the ability to control
power at the widget level, the ability for jack sense detection to work
properly in low-power states, and system wake and reporting of
presence, even if the Intel HD Audio link clock is not running when the
Intel HD Audio controller is in a low-power state.

The DCN clarifies how to use the previously-unused D1 and D2
power states, and defines a new optional D3cold power state, which
allows the lowest possible power consumption. Once a codec is put into
D3cold, it can only be awakened by a reset on the Intel HD Audio Link
or a double Function Group reset command sequence. Jack detection
and other unsolicited responses are disabled while in the D3cold power
state.

This DCN also defines an SPDIF keep-alive feature that continues to
send audio packets out of the SPDIF output port even when a stream is
not in progress. Without this support, most A/V receivers lose roughly
the first half-second of each new stream, as they analyze the incoming
data to determine what format the data is in before locking on.

If the codec reports that Extended Power State Support (EPSS) is
available, then all of the low-power features must be implemented by
the codec, including new features such as SPDIF Keep Alive and SCMS
copy protection bits. There are corresponding WHQL logo tests for
almost all of these enhancements, which will only be executed if the
codec reports support for EPSS.

The scope of changes in this DCN is quite large, and beyond the
scope of this chapter. While all of these changes have been integrated
into the 1.0A specification, you can get a better sense of the scope of

64 B High Definition Audio for the Digital Home

enhancements by reading the DCN itself, which is available for
download from
http://www.andrewgrove.org/standards/hdaudio/index.htm.

A closely-related DCN is HDA0O24-A, which describes the transition
from 3.3V to 1.5V signaling on the Intel HD Audio link. Lower voltages
help with power management, especially for battery-powered devices.
This DCN further defines a “hot attach” mechanism to allow, for
example, an Intel HD Audio codec in a dock to be detected and
initialized when a laptop is docked in the dock.

Chapter l 2

Windows' 7
and
Mac OS' X

irtually all computers sold today incorporate HD Audio, whether

Windows or Macintosh-based, and high-quality audio is increasingly

more important as form factors become ever smaller. Windows 7
and OS X 10.7 have both continued to refine the audio subsystem.

Both operating systems employ a “class driver”’-based approach to
supporting audio hardware without third-party drivers. Windows 7
additionally allows third-party drivers provided by the various HD Audio
codec vendors, and allows for the class driver functionality to be
extended thereby allowing customizations that are equivalent to what
can be done with the third-party drivers.

Mac 0S X and HD Audio

This section is pretty short and sweet. Apple provides its own audio
drivers as part of OS X, to provide a completely sealed system. There is
no equivalent of an APO that can be inserted into the HD Audio driver
signal-processing chain, though CoreAudio provides a well-implemented
audio processing framework at the application level. Independently
developed audio plug-ins known as Audio Units can be registered with
CoreAudio and applications can use them for processing as desired.

Intel-based Macintoshes have the option of running Windows using
Apple’s Boot Camp, which takes advantage of the hardware in the Mac.
All of the Mac hardware is fully supported under Windows by using the
drivers included with Boot Camp.

65

66 B High Definition Audio for the Digital Home

From the end-user perspective, the audio drivers effectively disappear
as a separate entity, which is a plus. Unless you're an engineer working
for Apple, there’s not much you’ll need to know about how HD Audio
works on OS X. Regardless, HD Audio codecs must meet both OS X and
Windows 7 requirements to be useful on the Mac platform.

M Extending the Windows 7 HD Audio Class Driver

Microsoft has a long history of absorbing common functionality into the
operating system while at the same time pushing the extensibility and
customization to the user interface level. For example, in the transition
from Windows 95 to WDM drivers (see Appendix C, “Audio Drivers from
DOS to Windows XP”), Microsoft standardized all of the legacy DRYV files
that had formed the audio drivers and required driver developers for
Windows 2000 to use the Windows Driver Model (WDM) miniport for
customization and extensibility.

Following suit, under Windows 7 the class driver takes the place of
the customized WDM miniport driver. You extend the HD Audio UAA
Class driver by using Audio Processing Objects (APOs), in conjunction
with Upper Filter Drivers, Lower Filter Drivers, custom property pages,
and customized INF files, as shown in Figure 12.1.

Chapter 12: WindowsT 7 and Mac OSt X B 67

Figure 12.1 Extensible components in the HD Audio driver stack

For Windows 7 (and Vista) the actual audio data packets are no
longer passed through the driver stack. Instead, a WaveRT miniport
driver connects the output of the global mixer or the GFX directly to the
DMA buffers in the HD Audio Controller. The audio function driver sets
up the DMA hardware and starts and stops it, but the PCM audio data
never passes through the stack.

This means that filter drivers, as well as audio function drivers,
cannot be used to perform audio signal processing. Instead an LFX and/or
a GFX APO must be used for all signal processing. APOs run in user mode
in the Audio DG protected environment.

A filter driver, on the other hand, runs in kernel mode, and is used to
manipulate control signals rather than audio data. A lower filter driver
can intercept and alter the communications between the HD Audio UAA
Class driver and the UAA HD Audio Bus Driver, which in turn controls

68 M High Definition Audio for the Digital Home

the HD Audio controller hardware. You can use a lower filter driver to
modify verbs and responses passed to and from the HD Audio codec.

An upper filter driver can intercept system audio messages just
“above” the HD Audio UAA class driver, to modify the topology of the
codec. For example, you can use an upper filter driver to expose the
KSPROPERTY_AUDIO_MIC_ARRAY_GEOMETRY property to the rest of
the system even though the class driver doesn’t expose this property.
This allows you to use the HD Audio UAA Class driver with a microphone
array.

An upper filter driver can also expose an interface that applications
can call into to control the driver or the hardware. While it is not
possible for an application to call into a Lower Filter Driver directly, an
Upper Filter Driver can communicate with both an application and a
Lower Filter Driver in the same driver stack.

You can use Windows Driver Foundation to create Upper and Lower
Filter Drivers. Because they run in Kernel mode, filter drivers must be
signed in order to install and run on 64-bit versions of Windows.

A custom property page is the officially sanctioned method for
providing a Ul for individual audio endpoints. In fact, these property
pages are the only place that you can set APO Property Keys; they can’t
be set from a normal application. You can create one or more property
pages to match the features on the device. The GUI layer is typically built
using the aging Win32 API, which was introduced over 15 years ago as
part of Windows 95.

Use a customized INF file to load all your extensions along with the
HD Audio UAA class driver. The package containing the extensions and
the INF file can be submitted for Windows Hardware Device Logo if it
passes the all of the tests in the current Windows Logo Toolkit (WLK).

How Custom APOs Interact with System APOs

The Global Audio Engine in Windows 7 is largely composed of system
APOs and methods for stringing them together. Most of these APOs are
normally invisible from external view (even to a driver programmer) and
are strung together automatically based on the input format, the output
format, and the formats supported by the LFX and GFX APOs installed on
the system. The Microsoft-provided WM audio LFX APO and GFX APO
can be replaced by customized versions of each; no others can be
replaced.

Chapter 12: WindowsT 7 and Mac OSt X B 69

Table 1.1 System APOs Used by the Windows 7 Audio Engine

System APO Name

Replaceable?

Used For

WM audio LFX APO Yes OS-supplied LFX APO, replace with our own
WM audio GFX APO Yes OS-supplied GFX APO, replace with our own
CAudioVolume No Provides mute and gain control.
CAudioConstrictor No Limiting output to 48 kHz, 16-hit
CAudioMixer No Mixing multiple audio streams
CAudioRateConvert No Sample rate conversion
CAudioRateConvertCMPT No Sample rate conversion
CAudioFormatConvert No convert int16 to float32, float32 to int32, etc.
CAudioMeter No Audio level meters (Peak and RMS)
CAudioMatrix No Up or down channel conversion
CAudioLimiter No Prevent clipping when rendering
CAudioCopy No Capture to several streams at once

These chains of APOs are created dynamically at the start of each
new audio stream, and are destroyed at the end of the stream. When the
stream is created, the Audio Engine first creates the Device Pipe for the
endpoint, which contains the GFX APO followed by the limiter, meter,
volume control, and format conversion APOs. In the case of encoding
GFXs, the GFX is placed last rather than first.

Then the Stream Pipe is created, which typically consists of format
converter, sample rate converter, LFX APO, volume control, and finally
mixer, which outputs to the Device Pipe.

If a second stream is created on the same endpoint, then a new
Stream Pipe is created and the output is mixed to the Device Pipe for that
endpoint, as shown in Figure 12.2.

The formats for the Device Pipe and for the output of the Stream Pipe
are always determined by the settings that the user has selected for
sample rate, bit depth, and number of channels.

70 M High Definition Audio for the Digital Home

Figure 12.2 Device Pipe and Stream Pipe signal flows

Using a Custom INF File with the Class Driver

Use a custom INF file which references the UAA HD Audio class driver to
include the extensible components. The example in Figure 12.3 assigns
the CLSIDs of the COM interfaces for the custom LFX, GFX, and UI DLLs.
This INF file additionally references the HDAUDIO.INF file for the class
driver.

A driver package containing only a custom INF and the extensible
components that it references can obtain WHQL logo if it is capable of
passing the all of the audio device hardware logo tests. For more
information, see the Microsoft white papers entitled “Custom Audio
Effects in Windows Vista” and “Reusing Windows Vista Audio System
Effects”.

Chapter 12: WindowsT 7 and Mac OSt X | 4

[SysFx.AddReqg]

HKR, "FX\\0",%$PKEY_SYSFX_PreMixClsid%, ,%SYSFX_PREMIX_CLSID%
HKR, "FX\\0",%$PKEY_SYSFX_PostMixClsid%, , $SYSFX_ POSTMIX_CLSID%
HKR, "FX\\0",%PKEY_SYSFX_UiClsid%,, $SYSFX_UI_CLSID%

[Strings]

PKEY_SYSFX_ PreMixClsid
PKEY_SYSFX_PostMixClsid
PKEY_ SYSFX_UiClsid
SYSFX_PREMIX_CLSID
SYSFX_POSTMIX CLSID
SYSFX_UI_CLSID

"{DO4EO5A6-594B-4FB6-A80D-01AF5EED7D1D}, 1"
"{D04EO5A6-594B-4FB6-A80D-01AF5EED7D1D}, 2"
"{DO4EO5A6-594B-4FB6-A80D-01AF5EED7D1D}, 3
" {B48DEA3F-D962-425a-8D9A-9A5BB37A99041} "
"{06687E71-F043-403A-BF49-CB591BA6E103}"
"{19166F23-5F08-47F9-BB57-9F57A977D88E} "

Figure 12.3 These sections of the INF file specify unique Class ID GUIDs for LFX
(PreMix), GFX (PostMix), and PropertyPage (UD).

Replacing the Enhancements Tab

If you choose to replace the default LEX and GFX APOs that ship with
Windows 7, it’s also a good idea to replace the Enhancements tab that
provides controls for the default LFX and GFX. You can replace it with
your own property page by specifying it in the INF file, just as you do for
the custom LFX and GFX. If you leave the default Enhancements tab in
place, it will cause end user confusion. In this case, the only control on
the Enhancements property page that will function at all is the “Disable
All Enhancements” checkbox. All other controls will appear to function
properly, but will not have any effect on anything.

The Disable All Enhancements checkbox is a WHQL Logo test
requirement, so this checkbox must be present if you provide your own
property page. If you aren’t presenting the user with any controls for
your LFX or GFX, then you may choose to use no property page at all, by
not specifying a property page in the INF file. If you do this, then
Windows will create an “Enable audio enhancements” checkbox in the
Advanced tab, which is checked on by default (see Figure 12.4).

72 B High Definition Audio for the Digital Home

[@ Speakers Properties

General | Levels | Enhancements | Advanced
Select the enhancements to apply for your current speaker
configuration. Changes may not take effect until the next time you start
playback.

Disable all enhancements

Low Freguency Protection
Speaker Fill

Room Correction
Loudness Equalization

Enhancement Properties

Description: Low Freguency Protection eliminates frequencies
below a specified cutoff to reduce audio distortion

Provider: Microsoft

Status: Disabled [settings... |

P= Preview |v
oK Cancel

Restore Defaults |

Figure 12.4 The default Enhancements tab is shown on the left. The Advanced
tab shown on the right adds an “Enable audio enhancements”
when a property page is not specified in the INF file.

Bl New Audio Communications Features in Windows 7

Windows 7 includes long-awaited support for an audio communications
default device in addition the existing audio “console” default device.
Any endpoint can be set as Default Communication Device or Default
Console Device, or to be both at the same time.

An application can choose to open the default console device, the
Default Communication Device, or a specific device chosen by the
application’s user. Render and capture default devices are totally
independent from each other. There are no formal APIs or system calls
for an application to set the default device; the default device(s) can only
be set by the user from the Sound dialog box in the Control Panel, or as a
result of installing a new device that sets itself to be a default device.

For example, a media player application will typically use the default
console render device to play movies or music, while a VoIP application
will typically use the default communication device for both render and
capture.

Chapter 12: WindowsT 7 and Mac OSt X H 73

Follow-Me Endpoint Heuristics

Each default device type includes a set of heuristics to dynamically
switch the default device as devices are added to or removed from the
system. For instance, a Bluetootht headset is considered to be a better
match as a communications device than a laptop’s built-in microphone
and speaker, so pairing a Bluetooth headset will cause it to replace the
built-in microphone and speaker as the Default Communication Device,
without affecting the Default Console Device. When the Bluetooth
headset is disconnected, then the Default Communication Device
switches back to the next best match, which in this case is the internal
microphone and speaker on the laptop.

In the same manner, connecting the HDMI endpoint of the laptop to
a multi-channel audio/video receiver and HDTV will cause the Default
Console Render Endpoint to switch to the HDMI render endpoint, and to
switch back when the HDMI endpoint is unplugged. The heuristics for
the Default Console Device and the Default Communication Device are
completely separate. Each uses its own set of weightings and rankings to
determine the device priority, but the underlying code is the same for
both.

It is possible for OEMs to adjust the heuristics by modifying registry
keys. For more details see the Microsoft whitepaper “Default Audio
Endpoint Selection in Windows 7” on the MSDN Web site.

Dynamic Stream Redirection and Dynamic Format Change

Prior to Windows 7, if you switch the default endpoint while an
application is playing through it, the stream will stop playing and the
audio application will usually throw up some kind of error dialog,
resulting in a poor user experience, which gets even worse when the
follow-me endpoint heuristics cause endpoints to change automatically.

Dynamic stream redirection resolves all of these issues: As long as an
application is wusing DirectSound, DirectShow, Wave, or Media
Foundation to play audio, then the global audio engine redirects the
stream to the new default endpoint automatically. Applications that call
directly into the low-level Windows Audio Session API (WASAPI) or that
use a third-party audio stack such as OpenAL will not benefit from stream
redirection.

Although the transition from one device to the other sounds almost
seamless to the ear, much more is going on behind the scenes. The
existing stream is paused while the audio engine filter graph is destroyed

74 B High Definition Audio for the Digital Home

and rebuilt to match the new Default Device, and then the stream is
restarted. The APOs in the Device Pipe and in the Stream Pipe are
configured to use the output sample rate, bit depth, and channel count
that the user has configured for the new Default Device. The audio
application is unaware that this automatic switching has taken place.

Dynamic Format Change uses the same mechanism when the user
switches endpoint formats while a stream is playing and builds a new
filter graph on the fly that matches the new format, even if the Default
Device hasn’t changed.

Dynamic Format Change also means that devices can now inform the
OS that their formats have changed without having to unload and reload
the driver. A device can now have a hardware sample rate control that
implements Dynamic Format Change to rebuild the filter graph
dynamically when the sample rate changes.

This is especially important for HDMI and DisplayPort support, which
include back-channel control information in the form of EDID-Like Data
(ELD) described in the updated Chapter 4. For example, if you switch
your A/V receiver from 5.1 to 7.1, then the 6-channel APO Stream Pipe
and APO Device Pipe will be destroyed and new 8-channel Stream and
Device Pipes will take their place.

Overall this means that in Windows 7 the number of error messages
from audio applications is dramatically reduced compared to Windows
Vista, resulting in a greatly improved user experience with minimal or no
changes to the applications themselves.

Updated Volume Control Experience

Windows 7 has also greatly refined the Volume Control experience,
making it much easier for the end user to access all the different volume
controls and sound control panels that might be present on a given
system.

It is now possible to configure the mixer panels to show more than
one endpoint at a time, and to switch between endpoints without having
to close and reopen the mixer panel. Clicking an icon above the slider
will usually take you to the associated property page or application.

Capture Monitor

Another long-overdue feature is capture monitor. This feature allows the
output of a capture device to be routed directly to the input of a render
device. This functionality was virtually impossible to achieve reliably in

Chapter 12: WindowsT 7 and Mac OSt X H 75

previous versions of Windows, and allows the user to listen to an MP3
player, for example, through the system’s speakers or headphones, as
shown in Figure 12.5. Be careful when using this feature with
microphone inputs, as it is very easy to create acoustic feedback. It’s also
possible to configure this setting to allow monitoring only when on line
power, and to disable it when on battery power.

Figure 12,5 The Listen tab for Capture devices controls the Capture Monitor
functionality.

Multi-Channel HDMI and DisplayPort support

While it was possible to support multi-channel HDMI in Vista using a
third party audio function driver, Windows 7 now adds both HDMI and
DisplayPort support to the UAA HD Audio class driver, along with
extended format support for high-quality encoded formats, automatic
discovery of HDMI sink capabilities, and support for Dynamic Format
Change, as shown in Figure 12.6. Jack detection is also supported when
plugging in the HDMI connector and the current speaker configuration is
now discoverable.

76 M High Definition Audio for the Digital Home

Figure 12,6 The Supported Formats tab of the HDMI endpoint is automatically
populated by ELD (EDID-like-data) containing the HDMI device
capabilities.

The capabilities shown in Figure 12.6 are the capabilities of the
HDMI or DisplayPort sink device at the other end of the cable. As you
plug in different HDMI or DisplayPort devices, you will see that the
capabilities may change based on the device’s characteristics. The name
of the final device in the chain will also be shown. If an AV receiver is
inserted between the PC and the display device, then its capabilities will
also be included. For example, the Samsung TV shown above is only
capable of 2 channels when plugged directly into the PC. The 8-channel
capability and the ability to decode premium formats such as Dolby
TrueHD and DTS-HD are provided by the AV receiver, not by the TV.

Exclusive Mode

Much of the previous discussion has been focused on Shared Mode,
which is the typical usage for most endpoints. In Shared Mode, multiple
audio streams going to the same endpoint are mixed together, as shown
in Figure 12.2.

Exclusive Mode does not mix any audio together; in fact it doesn’t
even allow APOs to be inserted into the signal chain. The choice of
Exclusive Mode or Shared Mode is determined by the application and by
the audio format. For example, a BlurayT player application might

Chapter 12: WindowsT 7 and Mac OSt X 77

choose to pass a signal encoded with DolbyT TrueHD directly to an AV
receiver, which will decode the signal and pass it on to the speakers
attached to the receiver.

In this case, there would be no volume control on the PC for this
endpoint, because the encoded TrueHD stream cannot be modified by
either hardware or software without corrupting the data. The only way
to modify a TrueHD stream, for example, is to decode it and then modify
or scale the un-encoded PCM signal.

Pro audio applications such as ProToolst or CakewalkT, which
contain built-in mixing capabilities, will typically use Exclusive Mode to
guarantee that the signals leaving the application will be unmodified by
APOs associated with the endpoint.

You can determine Exclusive Mode behavior for each endpoint in the
Advanced tab. Figure 12.7 shows the default settings for each endpoint.
You can totally block the use of Exclusive Mode by unchecking “Allow
applications to take exclusive control of this device”. In this case, only
Shared Mode will be available, and applications that try to open in
Exclusive Mode will fail.

If you uncheck the “Give exclusive mode applications priority”
checkbox, then an application that attempts to open the endpoint in
Exclusive Mode will fail if that endpoint is currently open in Shared
Mode. If this checkbox is checked, then the Shared Mode session will be
destroyed if another application opens the endpoint in Exclusive mode.

78 M High Definition Audio for the Digital Home

l] Speakers Properties =

General | Levels | Dolby | Advanced

Default Format

Select the sample rate and bit depth to be used when running
in shared mode.

|24 pit, 48000 Hz (Studio Quality) <[PeTest |

Exclusive Mode

V| Allow applications to take exclusive control of this device

V| Give exclusive mode applications priority

OK ‘ | Cancel

Figure 12.7 You can control Exclusive Mode behavior in the Advanced
properties tab for the current audio endpoint.

Here’s an interesting example of Exclusive Mode in action: Premium
versions of Windows 7 and Windows Vista include a DirectShow Dolby
Digital decoder which is capable of decoding a 5.1 AC3 bitstream into 6
channels of PCM. PCs that support SPDIF out are capable of playing the
un-decoded 5.1 bitstream directly to the SPDIF output to be decoded by
the AV receiver at the far end of the SPDIF cable by placing the endpoint
into Exclusive Mode. In this case, none of the APOs or volume controls
will have any effect because the system is in Exclusive Mode. However, if
you uncheck “Allow applications to take exclusive control of this
device”, then the Windows Media Player application will not be able to
open the endpoint in Exclusive Mode. Windows Media Player will instead
insert the built-in Dolby Digital decoder into the application signal chain,
and will output 5.1 PCM to the endpoint in Shared Mode. If the endpoint
has a GFX that includes a real-time encoder such as Dolby Digital Live or
DTS Interactive, then the 5.1 PCM signal will be processed by any LFX
APOs associated with that endpoint, and then will be recoded to a
bitstream format that is transmitted to an AV receiver over the SPDIF
cable. The AV receiver will then decode this final bit stream to provide
discrete 5.1 surround.

Chapter 12: Windowst 7 and Mac OSt X H 79

Low Power Enhancements

The low-power updates to the HD Audio 1.0a specification are supported
by Windows 7. There is support for PortCls idle power management,
which monitors the time that each audio device has been idle and
determines whether to power down some or all of the codec’s analog
circuitry based on the system power management state

There is also improved granularity for how different parts of the
codec can be powered down. A new IAdapterPowerManagement2 API
has been added that allows drivers to distinguish system power state
changes from a PortCls idle power management timeout and that also
provides a way for an audio function driver to opt out of PortCls idle
power management.

Virtualized 8253 Timer

Back in the days of DOS, sounds on a PC were typically generated by an
8253 timer chip, which generated a square wave that was routed to an
internal speaker. This circuitry has been part of a PC ever since, though
in recent years most computers designed for a 64-bit OS have not
implemented it, even though this is a primary method of providing audio
feedback for unsighted users. Take a look at the section of Chapter 7
titled “Sticky Keys, Toggle Keys, and the 8253 Timer” for more detail.

An unfortunate side-effect of this implementation was that an analog
mixing path was necessary to mix this square wave signal into system
outputs whenever a sound was generated. This meant that some analog
portions of the HD Audio codec always needed to be powered up, even
when the system wasn’t generating any signals, because the OS had no
knowledge of when these tones might be generated.

In order to be able to power down the analog section of the codec
when not playing sound yet ensure that accessibility sounds will
continue to be heard, Windows 7 implements a virtual 8253 timer. The
Beep() API was rewritten to call a new software tone generator that
responds to the same controls as the 8253 timer but outputs a PCM signal
to the Default Console Render Device. This in turn allows the codec to
enter D3 sleep state when the codec is idle, but still guarantees that all of
the Beep(sounds will be heard by the user, at least if the master volume
and mute controls are turned on.

80 M High Definition Audio for the Digital Home

System-wide Attenuation or Ducking

Radio broadcasters have long used the term ducking to describe the
process of turning down the music when the DJ is speaking. Now
Windows 7 can do the same thing when the Default Communications
Device is used for a VoIP call.

The idea is that when the Default Communications Device is in use,
then any other render endpoints can be automatically turned down or
muted while the communication stream is active, as shown in Figure
12.8.

Figure 12.8 The new Communications tab in the Sound dialog box of the
Control Panel allows the user to globally configure the automatic
ducking behavior.

Applications written to take advantage of the
IAudioVolumeDuckNotification interface can customize or override the
default ducking behavior. For instance, a media player application could
register for ducking notifications, pause when the communication stream
is started, and then resume playback once the communication stream has
been closed.

Chapter 12: WindowsT 7 and Mac OSt X H 81

Event-Driven WaveRT

Under Windows Vista, audio clients that ran in Push Mode had to
repeatedly poll the size of the available buffer to decide when to write
data to or read data from an audio buffer, which resulted in latencies that
were unsuitable for real-time communications applications.

Event-driven mode, also known as Pull Mode, is a Windows 7 logo
requirement that significantly reduces overall audio latencies and
minimizes audio drop-outs. A driver package must add the
PKEY AudioEndpoint Supports EventDriven Mode property key to
the INF file to meet the logo requirement.

From a hardware perspective, Pull Mode is similar to double-buffered
DMA transfers, where the interrupt is fired at the halfway point and at
the end of each allocated buffer, while Push Mode uses a timer to wake
up and see if enough time has elapsed to do something useful with the
audio.

HDCP and SCMS Copy Protection Support

Applications can now call into the IMFOutputPolicy interface and the
IMFTrustedOutput interface while a stream is playing to set the SCMS
and/or HDCP copy protection states or to disable digital output on a
digital output stream. To play the protected content, the underlying
audio driver must be a fully-signed trusted driver; that is, the driver must
be logo-certified for DRMLevel of 1300 or higher. Use of a test-signed
driver is not sufficient.

Windows Media Player OCX Device Selection

Applications that call into the Windows Media Player API to play media
files can use the OCX device selection feature to select a specific render
endpoint that is typically selected by the user. Prior to Windows 7, Media
Player always chose the Default Console Render Endpoint and there was
no way to override this behavior.

Windows Performance Analysis Tools

The Windows 7 SDK includes XPerf.exe, XPerfView.exe, and
XBootMgr.exe as the Windows Performance Analysis Tools that are built
on top of the Event Tracing for Windows (ETW) infrastructure that is
part of Windows 7.

82 M High Definition Audio for the Digital Home

XPerf.exe is used to captures traces, post-process them for viewing
on any machine, and to perform command-line (action-based) trace
analysis. XBootMgr.exe is used to automate on/off state transitions and
captures traces during these transitions. XPerfView is used to view and
analyze traces created by the other two tools.

You gather logs by running XPerf.exe from the command line, and
then stop it when you want to stop sampling. It creates an .ETL file
containing all of the data gathered during the session. XPerfView is then
used to analyze and display the data that was gathered, as shown in
Figure 12.9 and Figure 12.10.

Figure 12,9 XPerfView.exe output showing a worker thread using about 14 percent of
the CPU’s capacity

Chapter 12: WindowsT 7 and Mac OSt X H 83

Figure 12,10 XPerfView.exe Sampling Summary Table of the same data from Figure
12.9, showing breakdown of audio processing by module.

The CPU Sampling by Thread view is a great way to see which
subroutines are getting called over time, and the sampling summary table
is great way to see how much time is being spent in each subroutine.

You can also use XBootMgr.exe to automate and gather performance
logs during system boot. This is one of the few ways to have visibility
into startup performance and this can provide significant insight into
what’s going on.

Finally, powerful WPF Performance tools are also installed as part of
the toolkit. If you create GUI applications using WPF, this is a great way
to verify that performance is up to par.

Bl Echo Cancellation and Microphone Arrays

There is no single agreed-upon way to implement echo cancellation and
array microphones on a PC. Almost all communications applications
implement some sort of echo cancellation in the application, and a few
also perform some type of array microphone processing. Likewise almost
all OEMs implement echo cancellation inside the driver stack of most
models, and some models also perform some type of array microphone
processing in the driver stack, typically inside an APO.

84 M High Definition Audio for the Digital Home

This means that there will be cases where two echo cancellers are
running at the same time, with different characteristics. Sometimes this
works out just fine, other times it can be a train wreck.

The argument for driver-based echo cancellers is that they are very
close to the hardware, and therefore have the lowest latency. Also, in
many cases the capture endpoint and the render endpoint are on the
same device, and can be implemented to take advantage of each other.
For instance, it is possible to tune a built-in microphone and built-in
speakers to perform well with each other.

This model breaks down a bit when you consider that Windows
audio doesn’t have any implicit associations between capture and render
devices, thus there is no guarantee that the user will have actually
selected the built-in microphone as the Default Communications Capture
Endpoint and selected the built-in speakers as the Default
Communications Render Endpoint.

For example, if you are using the built-in microphone and speakers
for a communications session, and then plug in a set of headphones, then
the headphones will become the Default Communications Render
Endpoint. Any driver-based echo cancellation going on between the
microphone and speakers is no longer needed, but is not necessarily
removed from the signal path.

Microsoft therefore recommends that the application perform the
echo cancellation and microphone array processing, and that’s exactly
what they do in Office Communicator 2007 and its successor, Microsoft
Lync. Microsoft also ships a DirectX Media Object (DMO) with
Windows 7 to provide this same functionality for other applications.

The Microsoft Kinect SDK for Windows 7 provides an updated
version of this DMO that takes full advantage of the four array
microphones in the Kinect. Although the Kinect connects via USB, rather
than HD Audio, it's a good example of how to implement a four-
microphone array.

When things aren’t working well together, it’s sometimes difficult to
determine whether the problem is with the echo canceller or with the
network. If you are experiencing network latencies, this can sometimes
sound like the echo canceller is misbehaving. Therefore it’s important to
be able to distinguish between acoustical issues and network issues.

If you are testing the communications capabilities of systems under
design, it’s always best to establish a golden system that works well in all
cases, and then test against that. You can accomplish this by using a well-
provisioned local network in isolation from the Internet, and use it to

Chapter 12: WindowsT 7 and Mac OSt X H 85

connect two acoustically isolated test locations, preferably close to each
other.

For your two baseline microphones, consider using a professional
grade “shotgun” microphone, such as a Rode NTG-1 or an Audio
Technica AT-875R connected through an XLR-to-USB adapter that
provides phantom power for the microphone. Shure, MXL, Blue, and
Centrance are among vendors who make these adapters. Mount the
microphone on a stand that is not mechanically attached to the speakers.
You should be able to stand up to 6 feet away from the microphone
without applying any additional signal processing.

For speakers, consider using Avantone Active Mixcubes or equivalent
full-range powered monophonic speakers attached to the left channel of
the render endpoint.

Set up and qualify your baseline system so that it is working well, and
then compare the systems under design to this golden reference. This
should make it easier to evaluate new software components without
changing hardware, and vice versa.

HDAU - HD Audio Tool

Windows 7’s release was accompanied by a completely updated High
Definition Audio Tool (HDAU) that can be used to create or modify the
verb tables that are stored in the BIOS, and that are used to populate the
Pin Configuration registers whenever power is restored to the codec.

Previous versions of HDAU performed all processing in software,
which required the tool to acquire and maintain an accurate model of the
HD Audio codec. The current version actually runs on the audio codec
hardware, so when you change a setting, you are changing it in real-time,
and the codec itself simply ignores any invalid commands.

Also, it's now possible to temporarily edit a system’s
PinConfigOverrides in the registry. These registry settings are used in
place of the BIOS settings if present. To do this, you must locate the
HDAU.exe file and launch it with administrator privileges, as shown in
Figure 12.11 and Figure 12.12.

86 M High Definition Audio for the Digital Home

-
o5l Edit PinConfigs

=8

PinCorfigs

- Default Association: (1
¢ e Pin Complex: {(xD)
E\ Default Association: (b
L Pin Complex: ((xC)

E| Default Association: (b3
i i Pin Complex: (IxF)

- Default Association: (5
RN Ci, Complex: (x9)

(= Default Association: (6

I

i Fin Complex: (10)
- Default Association: (8
Pin Complex: (A}
Pin Complex: (B}
- Default Association: (xF
Pin Complex: (IxE)
Pin Complex: {(x12)
Pin Complex: {(x15)

B Verb: Ox00071C50 Rezponse: (00000000

Verb Fields:
T
Default Association I[kf,

El Verb: 00071040 Response: (00000000

Verb Fields:
S -0
Presence Detect Ovemide False
Color Green

E Verb: 0xD0071E2B Response: (00000000

Verb Fields:

Connection Type Combingtion
Default Device HP Qut
El Verb: Ge00071F01 Response: 000000000

Verb Fields:

e
Location Extemal
Port Connectivity Jack

E Verb: OxD00F1CO0 Response: Ox012B4050

Response Fields:

Sequence (151
Default Association 05

Misc el
Presence Detect Ovemide False
Calor Green
Connection Type Combination
Default Device HP Out
Directional Location Rear
Location Extemal
Port Connectivity Jack

!

b
2 g ¢ g 0
lelele (e [l kL

—————————————————————

J

Figure 12.11 The HDAU Edit Pin Configs dialog box. Select new values in the right-most
column, and then click Set to send them to the codec.

Chapter 12: Windowst 7 and Mac OSt X B 87

-
o5l High Definition Audio Utility 3.3

File View PinConfig Parse
E-HDAUDIO\FUNC_018VEN_10138DEV_4: il B Parsed output

=)
-- Parameters = Association 0x1 [Micln) :Static device
£ Audio Function Group - Path 0 (ending at Pin{0xD)Seq no (0x0))
& Controls Audio Input: (0x6)
- Parameters Pin Complex: (0xD)
B Pivots =R Association 0x2 { Lineln) :Dynamic device
=-Pin Associations = Path 0 (ending at Pin(0xC)Seq no (0x0))
- Default Association: 0x1 Audio Input: (0x5)
- Default Association: 0x2 Pin Complex (0xC) H
- Default Association: 0x3 =8 Association (k3 (Spdifin) :Dynamic device
[Default Association: 0x5 £-Path 0 (ending at Pin(0xF)Seq no (0x0))
#- Default Association: 0x6 i Audio Input: (0x7)
- Default Association: 0x8 Pin Complex (0xF)
- Default Association: 0xF =l Association 0x5 (Headphone) :Dynamic device
= Pin Device = Path 0 {ending at Pin(0x8)Seq no (0x0))
- Default Device: Line Out Audio Output: (0x2)
- Default Device: Speaker Pin Complex: (0x9)
- Default Device: HP Out ® Association Ox6 (SpdifOut) :Static device
- Default Device: SPDIF - Path 0 (ending at Pin{(x10)Seq no (0x0])
- Default Device: Line In Audio Output: (0x8) H
- Default Device: Mic In Pin Complex: (0x10)
- Default Device: SPDIF In - ociation 0x8 { Speaker) :Static device
B Widgets & Path 0 {ending at Pin(0xB)Seq no (0x0)) H
- Audio Output: (0x2) Audio Output: (Txd)
& Audio Output (0x3) Pin Complex (0xB) H
Audio Output: (Ox4) =-Path 1 (ending at Pin{(xA)Seq no (0x2))
=- Audio Input (0x5) Audio Output: (0x3)
- Audio Input: (0x6) Pin Complex (0xA) H
- Audio Input (0x7)
- Audio Output: (0x8)
Pin Complex: (0x9) . v“;,‘,l,l,,
=- Pin Complex: (0xA)
- Pin Complex: ((xB)
- Pin Complex: (0xC)
- Pin Complex: (0xD)
Pin Complex: ((IxE)
- Pin Complex: (0xF)
- Pin Complex: (0x10)
- Vendor Defined Widget (0x11)
- Pin Complex: (0x12)
Beep Generator Widget: (1x13)
- Audio Qutput: (0x14)
- Pin Complex: (0x15)
< #l 3 4 7 »

Figure 12,12 The Microsoft HD Audio Configuration Utility main screen, with parsing
results on the right.

For more information and to download the tool, search Microsoft’s
MSDN Web site for “High Definition Audio Tool”.

88 M High Definition Audio for the Digital Home

B Windows 7 Driver Installation

Windows Vista introduced the concept of a Driver Store, a storage area
consistent of all the drivers currently available on that system, regardless
of whether they are currently installed or not. For instance, an OEM
could choose to pre-install the drivers for an optional USB headset that
might be bundled with the system. By pre-installing into the Driver Store,
the driver is immediately available when the headset is plugged in for the
first. The driver is only loaded when the hardware is actually detected.

You can use PNPUtil.exe to view and edit the driver store. To see all
the drivers in the Driver Store, for instance, open a command prompt
and type

PNPUtil -e

To remove an item from the Driver Store, you must determine the name
of the INF that you wish to remove, then open a command prompt with
administrator privileges, then type

PNPUtil -d OEM58.INF

As part of being installed into the Driver Store, the name of the INF file is
changed to the form OEMxx.INF, where the xx represents a unique ID
within the driver store. The Driver Store uses the date and version
specified in each INF file to determine which one is the newest INF file
for a particular device. If the Plug and Play ID and the version and date of
the INF file being installed are the same as a previously installed INF file,
then the new INF file is ignored and nothing is added to the Driver Store.

During development and testing, it is very easy to end up with many
different versions of your INF file in the driver store, and this can cause
unpredictable behavior if you are not careful. The best strategy is to
ensure that only one instance of your driver package under development
is stored in the Driver Store. You can do this by using PnPUtil.exe to
view the list of items in the Driver Store, and then manually removing
any items that you see fit. However, there are easier ways to accomplish
this.

How to Install/Remove Drivers Using Device Manager

If you will be installing and uninstalling drivers on a regular basis, you
should drag the Device Manager control panel to your Start menu so that
it is readily available. In Device Manager, expand the entry for “Sound,
video, and game controllers” to see the audio devices that are installed.

Chapter 12: WindowsT 7 and Mac OSt X H 89

Right-click the device you wish to update and then select “Update
Driver Software” from the drop-down menu. In the next dialog, select
the lower choice: “Browse my computer for driver software”. In the next
dialog after that, again select the lower choice: “Let me pick from a list of
device drivers on my computer”. This will bring up yet another dialog
that shows all of the drivers in the Driver Store that currently match the
device.

Click the “Have Disk...” button in the lower right and then click the
Browse button in the resulting dialog box. Now browse and select the
new INF file, click Open, and then click OK. You will now be able to see
one or more matching driver configurations.

If the INF file contains more than one configuration that matches the
device’s Plug and Play ID then multiple selections will appear. Multiple
selections may also appear if any other INF file in the folder that you just
selected contains a matching Plug and Play ID. You may also see
selections for other drivers in the Driver Store that match the ID. Select
the desired driver package from the list, then click the Next button, and
the driver installation process will begin.

To uninstall a driver, right-click the device in Device Manager and
select Uninstall, then click OK to uninstall. Check the “Delete the driver
software for this device” checkbox to additionally remove the driver
package from the Driver Store. This is equivalent to using PnPUtil with
the -d argument to remove the driver from the Driver Store.

How to Install/Remove Drivers Using Sound Control Panel

You can accomplish the same functionality from the Sound dialog box in
the Control Panel. In the Playback or Recording tab, double-click a device
in the list to bring up its main property page. Then click on the
Properties button on the right side of the main property page to bring up
an additional property page. Click Change Settings in the bottom left of
this page, and then click the Driver tab at the top. You can then click
Update Driver, which is equivalent to selecting Update Driver Software
from the drop-down menu in Device Manager. All of the remaining steps
are the same as the steps for using Device Manager.

Driver Install Frameworks

Windows 7 also provides better support for installing drivers
programmatically, rather than using the manual procedures described
above. You can use the DPInst.exe application to put a simple wrapper

90 M High Definition Audio for the Digital Home

around your INF-based driver package to avoid the manual steps shown
above.

If your driver needs to be installed as part of a .MSI Microsoft Installer
package, you can use DifXApp to install the drivers as part of the larger
installer package. Alternately, you can wuse the DifX API to
programmatically install driver packages. For more information, search
Microsoft’s MSDN Web site for “Driver Install Frameworks Overview”.

Using SetupAPl.Device.Log to Debug Driver Installations

You can find the SetupAPILDevice.Log text file in the C\Windows\INF
directory. This file grows a bit each time that the user attempts to install
a new device. Start at the end of the file and scroll backwards to see the
most recently installed device.

At the very end of the file, you will find an entry that indicates
whether the most recent driver installation succeeded or failed:

<<< Section end 2011/06/27 09:04:27.251
<<< [Exit status: SUCCESS]

If you scroll up, you will eventually come to a blank line followed by the
start of the section describing the device installation. It will start with
>>> and look something like this:

>>> [Device Install (DiShowUpdateDevice) HDAUDIO\FUNC_O01l&

VEN_1013&DEV_4206&SUBSYS_106B1800
>>> Section start 2011/06/27 08:55:32.220

The details of the driver installation are shown between these two
sections. If the exit status is FAILURE, then look for exclamation marks in
the left margin. These are placed in front of any line that doesn’t fully
succeed. Note that installing unsigned drivers can result in a number of
exclamation marks that can be ignored.

If your review of the log file doesn’'t provide any insights, then try
running the ChKINF Perl scripts that are included with the Windows
Driver Kit (WDK). You must also have Perl installed on your system in
order for ChKINF to work properly. ChKINF parses an INF file and
generates an HTML file with a list of warnings and errors that are
discovered. The INFTest logo test is a wrapper around the ChKINF Perl
scripts that is used to qualify an INF file for logo. Your INF file must be
able to pass INFTest in order to get logo certification.

Chapter 12: Windowst 7 and Mac OSt X H o

Popular Audio Registry Key Locations

When you install an audio device, a number of different registry locations
are set to specific values that define the functionality of the audio device.
If you are debugging driver installation issues, you may find it useful to
memorize these registry locations using RegEdit’s Favorites menu:

B HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control

\DeviceClasses\{6994AD04-93EF-11D0-A3CC-
00A0C9223196}
This location is the staging area where all of the possible
configurations from the INF file are stored. When a driver is
actually installed, then Windows migrates these values to
matching hardware endpoints.

B HKEY LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Curre
ntVersion\MMDevices\Audio
This location is used to contain settings that have been migrated
from the INF file for both the audio endpoint and the associated
APO.

B HKEY LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Curre
ntVersion\MMDevices\DefaultDeviceHeuristics
This location is used to control the heuristics for determining the
Default Console Device and the Default Communications Device.

B HKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control
\Class\{4D36E96C-E325-11CE-BFC1-08002BE10318}

This location is used to store keys specific to the device driver
(not the endpoint), such as PinConfigOverrideSettings and
PowerSettings.

B HKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\HD
AUDIO
This location contains a list of the currently installed Plug and
Play IDs for HD Audio devices.

B HKEY_ LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Curre
ntVersion\Audio
This location is used to store global control of audio, such as the
flag to allow unsigned APOs to be run for development purposes.

92 M High Definition Audio for the Digital Home

Chapter l 3

Windows® Logo
Testing for HD Audio

Sometimes when you innovate, you make mistakes. It is
best to admit them quickly and get on with improving your
other innovations.

—Steve Jobs

I\/I anufacturers of audio hardware such as laptop and desktop
computers or USB-connected sound cards and headphones often
need to obtain Microsoft Windows Logo Certification for their product to
be viable in the marketplace. The process consists of running a series
tests on the hardware defined by Microsoft to ensure that the hardware
meets a defined audio quality standard and compatibility with Windows
requirements. When the tests successfully pass and Microsoft certifies the
results, the OEM or system manufacturer can then display the
“Windows®7” logo, shown in Figure 13.1, on the system packaging.
Externally connected devices, such as a USB headset, can qualify to
display “Compatible with Windows"7” by passing the device tests.
Complete systems can pass the system tests only if all of the devices on
the system have logoed driver packages..

M Microsoft Windows Hardware Quality Lab (WHQL) Logo Process

This testing process is managed by the Driver Test Manager (DTM), a
testing environment consisting of a controller and an audio test system
with software. This and the support hardware are configured as an
isolated and private network with the System Under Test. The package
typically includes a Domain Controller and may be as simple as a single
test station or in an enterprise environment could be hundreds of

93

94 M High Definition Audio for the Digital Home

independent test stations. The DTM system is used for Windows driver
testing and consists of hundreds of individual tests required to test
specific hardware such as video cards, network adapters, hard drive
controllers, and all of the hardware devices found in a PC. Audio
hardware is unique in that it requires special tests for quality verification
that can only be performed using sophisticated audio test hardware.
These are called audio fidelity tests and consist of a suite of audio tests to
characterize the audio performance of the audio hardware against an
established set of specifications.

Figure 13.1 System and Device logos

The WLK Includes the Driver Test Manager (DTM)

DTM is an application and collection of tools that manage tests for
development teams who create Windows hardware, drivers, and validate
Windows configurations. DTM provides support for automating
Windows-based driver and hardware testing and is directed at those who
use the WIK to test, validate, and certify drivers.

The DTM system runs Microsoft software called Windows Logo Kit
(WLK) that contains all the tests required. The current WLK version at
this time of writing is WLK 1.6. After setup, the testing process is mostly
automated although certain tests require operator intervention to
connect cables to various analog endpoints such as Line Out, Line In, and
Microphone In, which use analog 3.5mm jacks.

Chapter 13: Windows® Logo Testing for HD Audio Ml 95

Windows Quality Online Services (WinQual)

All logo submissions are performed using Microsoft’s WinQual Web site,
at https://winqual.microsoft.com. In order to join WinQual and gain
access to the secure portion of the site, your company must obtain a
VeriSign Microsoft Authenticode Code Signing Digital Certificate. This
certificate typically costs USD 499 (US dollars) per year, and must be kept
current to retain access to the secure portions of the WinQual site. There
is a link on the WinQual Web site to acquire this certificate. There is also
a link on the WinQual home page to a list of legal documents that your
company must sign before you can submit a product for logo. WinQual
also includes LogoPoint, which is the repository of logo requirements,
and Windows Error Reporting (WER), which keeps track of which
devices are crashing the most often. Your company must agree to
participate in WER in order to make logo submissions, and you will be
notified if your products are causing crashes in the field.

The remainder of this chapter assumes that you have full access to
the WinQual Web site. Otherwise you may not be able to perform some
of the steps described here.

Driver Submission Process —What Files Are Submitted

To obtain a Windows Logo Certification, you must submit passing log
files as well as a copy of all the driver files (DLLs, SYSs, APOs, and INFs).
Microsoft defines a specific process for bundling these files together in a
“cabinet” or .cab file.

The passing DTM log file consists of a single .CPK file for each
operating system. Typically this includes at least one 64-bit OS and
optionally at least one 32-bit OS for each driver package. The .CPK file is
a compiled binary file that bundles together the test results for all of the
tests run as part of the DTM test suite and includes detailed information
on the driver, the test system, and the test environment. In addition to
several driver reliability and other tests, this includes the audio fidelity
tests using both the Class Driver and the Vendor Driver (if present).
Every test must pass; even a single failure of one test among the hundreds
of required tests will cause a failure of the submission process. There are
occasionally some exceptions where certain test failures may be
overlooked and Windows certification granted manually but this involves
discussion with Microsoft and is usually only granted if the failure can be

96 B High Definition Audio for the Digital Home

shown to have been caused by an error of the DTM system, not a real
failure of the driver.

The .CPK file may be viewed using the DTM Log Viewer, which will
generate an explorer view of all of the tests and allow expansion of these
results, as shown in Figure 13.2.

Figure 13.2 DTM Log Viewer shows the contents of a .CPK file.

WLK Errata

When Microsoft discovers faults or tests that may cause unintended
failures in the DTM test software, they generate what are called QFEs
(Quick Fixes) that can be downloaded and added to an existing DTM test
environment. Installing QFEs on a DTM system will often clear tests that
have failed, changing them to passed results. For this reason, it is
important to keep a DTM system up to date with the latest QFEs to avoid
finding errors that are due to DTM test system faults. QFEs are
downloaded from the WinQual Web site and easily installed into the
DTM system.

Chapter 13: Windows® Logo Testing for HD Audio Jl 97

Third-Party Audio Fidelity Testing

Since the audio fidelity testing portion of the DTM test process requires
both specialized equipment and expert audio testing knowledge,
Microsoft has included a mechanism to allow third-party test houses with
this equipment and knowledge to perform the necessary audio fidelity
tests and generate test logs that the driver developer can then import into
their DTM test environment to combine with the regular driver tests to
complete the submission process. The driver developer will run all the
necessary tests on a target device or system omitting only the audio
fidelity tests. The third party test facility will run just the audio fidelity
tests on an identical device or system and then the two sets of results can
be merged to create a complete .CPK file ready for submission. It is
important that the device or systems be identical and configured
identically so the results will match. If not, it will not be possible to
import the audio fidelity test logs into the primary DTM test
environment. Microsoft provides a list of third-party test facilities that can
provide this service on their Web site. Just search for “audio fidelity
testing”.

Test Signing

The Windows 04-bit operating system requires that all kernel-mode
drivers be signed. This presents an interesting catch-22 situation since
the drivers being tested are not yet signed, yet they must pass a
“signability” test in order to be installed and then subsequently signed.
Microsoft provides for this with a process called Test Signing. This
procedure test signs the drivers in such a way that a 64-bit installation
will load test-signed drivers. Note that you can’t distrbute drivers that
have been test signed; this is only for internal testing. The process is
somewhat complex but if you carefully follow the step-by-step
instructions available on the Microsoft WinQual site, you can obtain test-
signed versions of your drivers to proceed with the DTM testing. You
must have a WinQual account and a Verisign certificate to test sign your
drivers, and your company must execute the test-signing legal agreement.

Audio Fidelity Requirements

Microsoft takes an occasional snapshot of the audio fidelity requirements
from time to time, and makes this information publicly available.
However, a WinQual account is required to view current requirements.

98 M High Definition Audio for the Digital Home

In-Box Class Drivers

Microsoft includes with Windows a set of Class Drivers for all UAA-
compatible audio hardware. These generic drivers are designed to
support all of the normal features of a device. Hardware manufacturers
typically also develop device-specific drivers with extended capabilities
compared to the generic class driver. It is also possible to extend the
Class Driver functionality to create a driver package using filter drivers
and APOs along with the Class Driver. DTM requires and tests for
compliance with both the class drivers and the third-party drivers. A set
of HD Audio Class Driver Tests will re-run various audio device tests to
test the compliance these devices with the Microsoft HD Audio Class
Driver. All audio tests must pass with both the Class Driver and any Third
Party driver package, if present.

Test Duration

The time required to run a complete set of Audio Fidelity tests on a 32- or
64-bit system or driver will vary depending on how many analog end
points are in the system. With a typical Mic In, Line In, and Headset or
Speaker Out, a full test run would typically be about an hour. The test
requires occasional operator action: for example, answering questions
such as “Is the Speakers end point actually a Line Out end point?” The
test also requires the operator to insert 3.5mm plugs into specific analog
end points such as “connect the Audio Precision Generator Output to the
Mic input”. Systems that are tested for both 64- and 32-bit operating
systems that include front panel microphone and headset jacks and rear
panel microphone, line-in, and speaker-out jacks will typically take two
to three hours for a complete test run. If you make an error plugging in a
cable, for example by plugging the generator into the front panel
microphone jack when it wanted the rear panel microphone jack, the
test will fail on the first level setting test and the entire process will have
to be repeated.

M DTM System

DTM is comprised of three installation components, the Controller, the
Studio, and the Client.

DTM Controller. The DTM Controller manages tests that are run on
available clients. The DTM Controller is installed from the DTM

Chapter 13: Windows® Logo Testing for HD Audio J 99

installation media and contains separate installers to install the DTM
Studio and DTM Client components. You must install DTM Controller
first from the DTM installation media. You can then install DTM Studio
and DTM Client.

DTM Controllers are computers that control what tests run on DTM
clients and when those tests run. Controllers host a SQL database that
stores tests to be run and the results of previous tests for review and
future use. The DTM installation will install a limited version of SQL
Server that has a maximum storage capacity of 2 GB. If you will be testing
a large number of systems, you should upgrade to the full version of SQL
Server so that you don’t run out of storage space.

DTM Studio. You use DTM Studio to select and schedule tests to be run
on available clients that are connected to, and controlled by, the DTM
Controller computer. You will not see an option to install the DTM
Studio from the DTM installation media. Instead you install DTM Studio
directly from a shared network location on the DTM Controller. For
smaller DTM setups, you will typically run DTM Studio on the same PC as
the DTM controller, but it is possible to run it on a separate system as
well.

DTM Studio is the application and user interface that testers use to
create and schedule tests and otherwise manipulate controllers and
clients. With DTM Studio, you can organize the computers in your lab
into the appropriate environment to test your drivers.

DTM Client. Each client computer can have a different configuration,
appropriate for your testing scenario(s) including different hardware,
operating systems, service packs, drivers, and so forth. You will not see
an option to install the DTM Client from the DTM installation media.
Instead, you install DTM Client directly on your individual test computers
from a shared network location on the DTM Controller.

DTM Clients are computers that run tests. You should have as many
client computers with as many different configurations as possible so that
your driver can be tested under the widest variety of real-world
conditions. Clients should have different hardware and software
configurations and different operating systems and service packs
installed.

A DTM Test System for Audio Driver testing requires three computers
and an audio test instrument, which must be an Audio Precision System
Two 2700. The 2500 series will also work in most cases. System Two
consists of a dual channel low-distortion, high-quality reference signal
generator, an accurate high-quality signal level meter, a high-quality total

100 B High Definition Audio for the Digital Home

harmonic distortion meter, a sensitive noise meter, frequency counter,
and a phase meter. Additionally, System Two provides several
measurement conditioning capabilities that allow it to measure to
specific international standards. For example, noise is typically measured
with a standard-specified bandwidth and commonly with a standard-
specified frequency weighting such as ANSIIEC A-weighting. Certain
tests require these bandwidth conditioning settings and System Two
provides them. If you don’t have these add-ons installed in the Audio
Precision, then the tests will usually run, but may not provide passing
results until the add-on filters are installed.

Figure 13.3 DTM Test System components

Components of a DTM System

A DTM system typically consists of a Domain Controller, a DTM
Controller, and Audio Test Controller, an Audio Precision System Two
test set, and the System Under Test. Each of these computers is
connected in a network. This network must be isolated and not be part
of a corporate network.

Chapter 13: Windows® Logo Testing for HD Audio ll 101

DTM Domain Controller

The DTM Domain Controller runs Windows Server (2003 or 2008). It also
runs:

File Server
DNS Server
DHCP Server

The Domain Controller provides an independent local domain and
network not connected to the corporate network. All firewall and
antivirus protection on all systems should be disabled. It is possible to
configure DTM to work on a domain within a workgroup. The Domain
Controller is needed only for the domain scenario. If present, the Domain
Controller must be installed on a separate instance of Windows Server,
and cannot be combined with the DTM Controller. Virtualization is not
supported by DTM, so this will require a physically separate server.

Also note that this network should be an isolated network, and not
connected to your corporate network or to the Internet. This is because
the System(s) Under Test should be configured without firewall or virus
checker, and set to auto-login. This leaves the test network open to virus
threats if connected to the Internet.

DTM Controller

The PC used to host the DTM Controller must run Windows Server 2008
R2 64-bit. It has hardware requirements of 2 GHz Dual-Core CPU with 2
GB RAM or more. This controller runs Microsoft WLK 1.6, the test
software containing all of the individual tests. The user interface for the
DTM system is DTM Studio, and this software may be run on any
computer on this network but it is convenient to run it on this DTM
Controller PC.

Audio Precision Host

The Audio Precision Host runs Audio Precision APWIN software AP2700
v 3.30, the software that controls the System Two. You can download
this software from www.audioprecision.com. This software is in turn
controlled by the DTM software WLK. The operating system on this PC
may be Windows Vista or Windows 7. This system also runs DTM Client,
the program that connects this PC to the DTM environment. This PC is
joined to the local test domain.

102 B High Definition Audio for the Digital Home

You must create an Audio Precision Host system and install the
APWIN software regardless of whether you do or don’t have an Audio
Precision test set. This is necessary to import fidelity test results from a
third-party test house in the case where you do not have an Audio
Precision test set.

Audio Precision System Two

Audio Precision manufactures several models of the audio test instrument
System Two. The models that will function in the DTM system include:
SYS-2702, SYS-2712, SYS-2522, and SYS-2722. In addition, the System
Two must be equipped with certain specific options to be able to
perform the tests properly. The options include:
B A-Weighting noise filter. This provides frequency weighting
required for certain noise measurement.

B AES-17 Filter Package. This filter provides a 20-kHz steep roll
off low pass filter and is required to reduce out-of-band noise
typically present on oversampling converters.

B What Tests Are Run: Current Audio Fidelity Testing

The Fidelity Test verifies that the audio device meets the WLP
requirements for a high-fidelity audio playback experience. The test plays
a tone that is analyzed by an Audio Precision System Two analyzer that is
connected to the analog output jack of the system. In other cases, the
System Under Test generates a test tone that is measured by the Audio
Precision. The following test cases appear in the DTM for both Basic and
Premium logos. A set of HD Audio Class Driver Tests will re-run various
audio device tests to test the compliance of these devices with the
Microsoft HD Audio Class Driver. Fidelity Test takes eight render
measurements on analog outputs:

B Output level. This test plays a digital full-scale signal and verifies
that it meets the Full-Scale Output Voltage requirement in the
Windows Logo Program Device Fidelity Requirements.

B Dynamic range. This test takes a noise floor measurement in the
presence of a signal per AES-17 and verifies that the measurement
meets the Dynamic Range requirement in the Windows Logo
Program Device Fidelity Requirements.

Chapter 13: Windows® Logo Testing for HD Audio ll 103

B THD+N. This test takes a THD+N measurement and verifies the
measurement per the Windows Logo Program Device Fidelity
Requirements document.

B Magnitude response. This test measures the frequency response
of the device and verifies whether it meets the Magnitude
Response requirement in the Windows Logo Program Device
Fidelity Requirements.

B Pbhase Delay. This test measures the interchannel phase delay and
verifies that it meets the requirements.

B System Activity. This test measures the noise level of the system
during system activity (GPU activity, disk activity, and so on) and
verifies that it meets the requirements.

B Skew. This test plays a high-frequency 15 kHz tone with strong
settling parameters and verifies via the analyzer that the
fundamental frequency is within the frequency requirements of
the expected value.

B Power State Transition. This test measures the noise level of the
system during transition to low power and back to normal audio
playback. This measurement takes place while power is removed
and reapplied to the HD Audio codec. If any pops and clicks
exceed the specified level, then the test will fail.

Fidelity Test also takes five capture measurements on analog inputs:

B Input level. This test plays analog signals of varying voltages into
the recording jack and attempts to find the voltage that induces a
full-scale signal (or equivalent, per AES6id) in the digital domain.
It does this by gradually increasing the input level until it just
measures a THD+N value of 1 percent (-40dB) and sets this level
as the full scale level. Be careful to ensure that your system is
designed to handle the levels coming from the Audio Precision, to
prevent codec latchup.

B Skew. This test captures a large sample of a high-frequency
15 kHz tone generated from the analyzer and verifies via DSP that
the fundamental frequency is within the requirements of the
expected value.

B T7HD+N. This test captures a signal and measures the THD+N via
DSP. It then validates that the harmonics and noise level is lower
than the requirement allows.

104 B High Definition Audio for the Digital Home

B Dynamic range. This test captures a signal and takes a noise
measurement, and verifies that the dynamic range is at least as
high as required.

B Frequency response. This test captures signals at various
frequency levels and verifies that the measured intensity of the
signal across the audio frequency range does not vary more than
the requirement allows.

All test cases return pass or fail, and the generated log file contains the
actual measurement that is recorded.

Fidelity Test requires special hardware to run. The test requires the
presence of a System Two series or an AP2700 series audio
analyzer/generator from Audio Precision.

Fidelity Test will test only:

B Analog line out jacks

B Analog headphone out jacks

B Analog speaker jacks (which are usually actually Line Out jacks)
B Analog line in jacks

B Analog microphone input jacks

Integrated speakers and integrated microphones are not tested; neither
are digital connectors such as S/PDIF or HDMI.

B Starting DTM Controller

On the DTM Controller computer, launch Studio. Initially, the Start Page
will open. Go to Explorers, Job Monitor. This will open an explorer with
a Machine Pool pane on the left, Machines pane, Job Status pane, and
Task Status panes on the right, as shown in Figure 13.4.

Chapter 13: Windows® Logo Testing for HD Audio Jl 105

Job Monitor] =101 x|
o File Edit Miew Explorers Tools Actions Window Help 2] x|
HNewwindow 5 | G| & M| 2] | Fschedie |Joblogs & Rewn
[oTM-CaNTROLLERS 7] | =l ’E Y/E"_E Truncate Results To [500
Machine Poel | B2 Machines - 3 ltems
EE ¥ Name: Stalus Last Heatbeat Runlime Yersion Machine Paol Path |

4 Default Pool

"4 OPTIMALWLK M APHOSTZ Ready 5/2/200310:00:33 PM 2.5.5068.100 FAOPTIMALWLE
;_-E" System 4 TESTER3:22 Ready 5/2/200310:03:23 PM 2.5.5068.100 FAOPTIMALWLE
N ‘_, TESTER-G4 FReady 5/2/2003710:01:10 PM 25.5068.100 FAOPTIMALWLE

B Job Execution Status - 250 lems

Lagt Updaizd Time Fass Fal B
@l U» 5/2 9 10:01:50 PM 5. 1
@ I HDudio Class Driver Fidelity Test - Vista or Server). 5/2/2000 54444 P 5/2/2003 &:31:04 PM 26 0
@ 332 Fidelity Test - ista or Server08 [Manual] 54242009 501:33 P B/2/2003 & 44:18 P 24 0 -
@ 107 WK Prepare client for submission 443042009 4:03:30 P 4/30/2009 4:09.52 PM S 0
@ 107 WK Prepare client for submission 443042009 1:12:00 P 4/30/20091:12:21 PM S 0
@ 3B HD&udia Class Driver Test - Vista or Server08 4/30/2009 7:21:29 M 4/30/2009 7:31:04 AM 204 0
@ 555 Reinstall with 10 4/23/2009 7:46:53 PM 4/25/2003 11:56:25 PM 25 0
@ 553 Camman Scenatio Stress Witk 10 4/23/2009 7:46:53 PM 4/25/200311:33:15 PM 543 0
@ 552 Dizable Enable \With 10 4/23/2003 7:46:53 PM 4/29/200911:41:26 PM 18 0
@ 55 Sleep Stress With 1D 4/23/2003 7:46:53 PM 4/29/2009 8:25:24 PM 85 0
@ 20 Embedded Signature Yerification 4/29/2009 7:46:53 PM 4/29/2009711:3318 PM 1 0
@ 250 Plug and Play Driver Test 4/29/2000 7:46:53 PM 4/29/2009711:45:03 PM 3 0
@ e Device Path Exerciser 4/23/2009 7:46:53 PM 4/25/2009711:41:32 PM 2 0
@ 23 Run INFTest against a single INF 4/23/2009 7:46:53 P 4/28/200311:5717 PM 1 0
@ 32 Full Duplex Test - Vista or Server08 (Manual) 4/23/2009 E:10:56 P 4/25/2003 719:36 PM 160 0
@ 337 General dudio Test [Il] - Vista or Server08 4/23/2009 4:48:52 P 4/25/2009 4:55:25 PM B300 0
@ 3% General Audio Test [I] - Vista or Server08 4/29/2009 4:48:52 PM 4/29/2009 4:50:40 PM 7536 0
@ 327 Lullaby Test - Wista or Serverdf 4/23/2009 4:48:52 PM 4/29/2003 5:32:09 PM 24 0
@ e SysFi Test - Wista o Server0l 4/23/2003 4:48:52 PM 4/23/2009 4:55:37 PM 2] 0
@ Az DRM Test -Vista or ServerDd (Manual] 4/23/2003 4:48:52 PM 4/29/2009 4:51:23 PM 18 0
@ I HD#udio Class Driver Test - Vista or Server08 (Manu... 4/23/2009 2:23.38 PM 4/23/2009 4:18:45 PM 180 0
@ 3® SpsF U Test - Wista or Server(d 4/29/2000 2:23.33 PM 4/29/2009 2.58:45 PM 1 0
@ K5 Topology Test - Yista or Serverd8 4/23/2009 2:23: 36 PM 4/29/2003 2:50:45 PM 57 0
@ e Wave Test - Vista or Server08 4/23/2009 2:23: 38 PM 4/25/2009 2:60:34 PM B4 0
@ e K& Position Test - Vista or Server08 4/23/2009 2:23: 38 P 4/25/2003 2265740 PM 54 0
@ 30 AC3 Test -Vista or Serven08 4/23/2009 2:23: 38 P 4/25/2009 2:60:54 PM 7 0
@ 308 Midi Driver Test - Wista or Server(8 4/29/2009 2:23: 38 P 4/25/2009 2-48:48 PM o 0
@ 107 WK Prepare client for submission 4/29/2009 2:08:13 PM 4/29/2009 2:08:49 PM) 0

Task Execution Statu! Items
Task Name Task Type Task Execulion ... | Machine Start Time_ /. | End Time [Last Updated Time
@ Copy s39nitdl CopyFie Setup TESTERG4 5/2/2009 10,0247 PM 5/2/2009 10:02:47 P 5/2/2009 10:02:47 PM
@ Copytestlies CopyFie Setup TESTERG4 5/2/200910:02:47 PM 5/2/2008 10:02:47 PH 5/2/2003 10:02:47 PM
@ Copy soipt o tianslate WOKDevicel D CopyFie Setup TESTERE4 5/2/200310:02.47 P 5/2/2008 10:02:47 PH 5/2/2003 10:02:47 PM
@ Translate WDKDevicelD Execule Setup TESTERE4 5/2/2003 10:02.47 P 5/2/2008 10:02:48 Ph 5/2/2003 10:02:48 PM
@ Install Codes Test Drivers Execule Regular TESTERE4 5/2/200310:02 48 P 5/2/2008 10:03:05 P 5/2/2003 10:03:05 PM
© RunCodec Tests Execule Regular TESTERE4 5/2/2009 10:03:05 Pt 5/2/2008 10:03:44 P 5/2/2003 10:03:44 PM
@ Restore Codec Drivers Execute Regular TESTERE4 5/2/200910:03:44 PM 5/2/2009 10:04:03 P £/2/2009 10:04:02 PH
| | |
Job Mnnitnr‘ Device Cansale | qp x

| Background Processing Idle - 4

1 Task Result selected

Figure 13.4 DTM Job Monitor in DTM Studio is the user interface to control the DTM
activity.

W DTM Studio Job Monitor

The DTM Job Monitor is the primary user interface to observe system
activity and progress. It lists all machines (PCs) in the pool and when
tests are running, shows each of the jobs and progress. When a job (or
test) completes, it shows whether the test passed or failed and lists all the
tests that have been run.

106 B High Definition Audio for the Digital Home

Creating a Machine Pool

When DTM is started initially, there will be no Machine Pools, only a
Default pool. Create a new machine pool to host the computers that will
run the tests and be tested. Right-click on the “$” symbol under Machine
Pools and select Create New Pool, giving it an appropriate name.

Adding systems to the pool

With the new machine pool set up, you can move computers from the
default pool to the new machine pool. Just right click and drag the
computers to the new pool. Once in the pool, set the computer to
Ready. To do this, right click on the computer and select Reset. After a
minute or so, the computer status should change from a red Debug to a
blue Ready. Note that Explorer does not self refresh, you need to click
the refresh button at the top menu bar or hit F5.

82 Machines - 3 ltems

B Machines - 2 ltems : Mame Status
AP-HOSTZ Fieady
MName Status
4 AP-HOST3 Ready 4 TESTER322 Ready
| @A TESTER3z2 Debug 4 TESTER-E4 Feady

Figure 13.5 Status mode of machines. On the left, one machine is not ready.

What to do when you can’t get a heartheat

The DTM system constantly monitors the pulse of all systems in the pool.
If a system should lose connection with the DTM Controller for any
reason, the controller will show the Status of that system as other than
Ready and the blue icon will be replaced with a red X. The DTM system
will report a lack of heartbeat from that system. Unless the system has
failed, it should be possible to restore the heartbeat and return the status
to Ready. Start by opening the status by right clicking on the status,
select Change Status and select Reset and see if the system returns to
Ready after a few minutes. If it does not, try selecting “Unsafe”, then
Reset and see if it returns to Ready. If that does not solve the problem,
set the system to status Unsafe, remove it from the pool by dragging the
subject machine to the Default Pool, then return it to the test pool and

Chapter 13: Windows® Logo Testing for HD Audio Il 107

set status Reset. If this does not work, repeat the above process but
reboot the subject machine while it is in the default pool. In extreme
cases, you may need to reinstall the client on the System Under Test.

Choosing Tests to Run

To select tests to run, first be sure all required machines in the current
machine pool are running and have a recent heartbeat. Then select
Device Console. On the left, you will see a list of available devices and
systems. Highlight the device you want to test. Using the Submission
drop down box in the upper right, select Create New Submission, give
this test run a name and go through the several panels that ask questions
about the kind of test you want to run. These include information about
the device or system and the level of qualification such as premium or
regular. After you complete this process, the DTM gatherer will populate
the right pane with the required tests that will need to be run for a
submission.

108 M High Definition Audio for the Digital Home

“=i Windows DTM Studio - [Device Console] o [=] B
o Fle Edit View Explorers Tools Window Help =l x|

B lenivindoy 5 M & | & T2 M D

Data Store: [DTMCONTROLLER10 =] Submission: [Acer Dolby 325 = Status
Available Devices [Show Hidden Devices Available Jobs
=3 TestLabs =-0tg Audio Device
B 2| Summary -] T8 AC3 Test - Win7
- 1) Opersting System: Windows 7 Client -0) Audo Logo Test - Win7
-] Processor Architscture: X85 [) Class Dnver AC3 Test - Win7
8] Qualfication Program: Audio > Audio Device [&) Class Driver Audio Logo Test - Win7
3] Qualification Level: Logo [3] Class Driver DRM Test - Win7 (Manual)
-4 OFTIMALTEST [3] Class Driver Fidelity Test - Win7 (Manual)
1% SystemAUtioHD-3 (MEDIA %DriverBuidDat [&) Class Driver K5 Position Test - Win7
% Tester32-Runz2 [0 ¥ Class Driver KS Topology Test - Win7
% Tester64-Runld [& Class Driver Round Trip Test - Win7 (Manual)

-[[]) Class Driver SysFX Test - Win7
-[[]) Class Driver Wave Test - Win7
-] 18 DRM Test - Win7 (Manual)
-]) Fidelty Test - Win7 (Manual)
[¥ General Audio Test {}} - Win7

[) General Audio Test {I) - Win7

[) KS Position Test - Win7

] ¥ KS Tepology Test - Win7

]) Lullaby Test - Win7

]) Midi Driver Test - Win7
-]) Round Trip Test - Win7 (Manual)
-]) SysFX Test - Win7
-] 1) SysFX Ul Test - Win7
[¥ UAA Test - Win7

0 &) Wave Test-Win7
Device Fundamentals
- Driver Reliability
3 CHAQS - Concurent Hardware And 05 Test
O3 Commen Scenario Stress Wih 10
=5 Device Install Check for Other Device Stability
= Device Install Check for System File Consistency
=3 Device Path Bxerciser
=3 Disable Enable With IO
=3 Embedded Signature Verfication
=5 10 Cancellation with DevPathExer
=5 10 Cancellation with Direct 10
=3 Plug and Play Driver Test
=3 Reinstall With 10
=3 Fun INFTest against a single INF
=5 Sleep Stress With 10
=3 WDF Logo Tests

=0

[=]

RN |

ooooooooooon

B G BB

4 | 2l

Device [Machine [Jobs |

Add Selected load | Save Schedule Jobs |

10b Monitor| fidelitytestapp.wil - Rep... Devioe Console qpx
Ready I |[Background Processing Idie | 4

Figure 13.6 Device Console shows a list of available tests and lets you choose
which ones to run.

Running Tests

To run a suite of tests, simply check the boxes to the right of the listed
tests. All tests on the list with (Manual) next to them require operator
action to answer a question to connect a cable. If you select either of the
Audio Fidelity tests, you will initially see a yellow indicator:

Chapter 13: Windows® Logo Testing for HD Audio ll 109

----- [¥ Cla=s Driver DRM Test - Win7 (Manual)

----- 3+ Class Driver Fidelity Test - Win7 (Manual)

----- [0 ¥ Cla=s Driver KS Position Test - Win7

----- [¥ Class Driver KS Topology Test - Win7

----- O ¥ Cla=s Driver Round Trip Test - Win7 (Manual)
----- [¥ Class Driver SysFX Test - Win7

----- [¥ Class Driver Wave Test - Win7

----- 0 ¥ DRM Test - Win7 (Manual)

----- 3> Fidelity Test - Win7 (Manual)

----- O ¥ General Audio Test ([} - Win7

1 A% Camaes] fadia Tast A0 W8GERT

Figure 13.7 Fidelity Tests selected showing yellow indicator indicating
additional information is required.

This indicates that additional information is required before these tests
can be run. Right click on each of these to bring up an additional dialog
box.

110 B High Definition Audio for the Digital Home

Job extension for "Class Driver Fidelity Test - Win7 (Manual)™ k|
—Run Modes —Run Mode Descriptions
Select one of the following modes to run Fidelity Test: Run in this je if you are a vendor
% Run Test Locally wishing to run Fidelity Test locally in your
lab. You must have an AP and an AP Host
" Export Log machine physically available for testing. If
- - you do not have an AP machine you can
IEn’[er a path+filename accessible by SUT have a 3rd party testing facility run this test
for you. For a list of such facilities as well as
" Import Log the Iatt m_awsland information regarding
IEnter a path+filename accessible by SUT mmfﬁl:gﬁimlhmmﬁ
delity. mspx.

—Run Test Locally
Select the second machine required for this job

Selected Device: Dolby Home Theater w4 - Acer 7740 Analog
Selected Machine: DOLEY32-PC

E|‘r-5 OPTIMALTEST
é AP-HOST3

Foz | Cancd

Figure 13.8 Dialog that opens after right-clicking on a yellow-indicated test.

It is necessary to select the machine that hosts the Audio Precision test
software and that controls the Audio Precision System Two. Highlight the
machine and click Save.

When this is resolved, you can click on Add Selected which will copy
all checked tests to the lower pane ready to run. Then click on Schedule
Jobs which will add these test jobs top the job queue. You can then
return to the job monitor screen, click on Refresh and you should soon
see the selected machines status change from Ready to Running.

It is not necessary to run all tests at one time. You can select any
subset of tests, run these, and then return to the Device Console to select
additional tests to run. If a test fails, you can rerun that test. Ultimately,

Chapter 13: Windows® Logo Testing for HD Audio B 111

you need to have run all of the tests in the Device Console list and you
need to have 100% PASS for all tests. Even a single failure out of the
hundreds of individual tests will fail the submission. We will discuss
Audio Fidelity failures below.

Viewing errors, using DTM console or Log Viewer

After running each test, the Job Monitor explorer will identify the passes
and failures for every test. See the Job Monitor screen capture above, Fig
XX, for an example. You can drill down to more detail for any test to get
more information on what failed if you need to. Highlight the test in the
middle Job Execution Status pane to see a list of the tasks in the lower
Task Execution Status pane. Then right click on the failed task and select
either View Task Log or Child Task to expand the tasks to the sub tasks
involved. Then right click on the failed Run Test task and select View
Task Log. This will open a Test Log Report that is a detailed list of all the
activity that was part of the test run, the conditions of the system under
test, test activity, and all messages. If there is a failure, it will clearly show
in red with the test results.

If you don’t have access to the DTM console, you can download DTM
Log Viewer from the Microsoft Connect site to view the logs that have
been generated. You can save an XML file of this test report by selecting
save as and providing a file name for the .WTL file that gets saved. The
DTM Log Viewer application will open a .WTL file and show it as it looks
here. It is useful to save .WTL files for failed Audio Fidelity tests to assist
with seeing what failed and provide guidance with how to solve the
failure.

112 B High Definition Audio for the Digital Home

Figure 13.9 Viewing a Test Log Report. The Complete view is shown which
lists the passing and failing tests and every activity that was run as
part of this test.

Bl Running Tests Outside the DTM “Shell”

The DTM Controller provides a convenient and powerful user interface
and management console to set up and run tests. But occasionally you
may experience a stubborn problem with one or more tests and running
these tests within the DTM shell may be too cumbersome. Or a
developer may wish to exercise a particular test in his development
environment away from the full DTM system. Many of the tests can be
run in a manual mode outside the shell from the command line.

Chapter 13: Windows® Logo Testing for HD Audio ll 113

How to Locate Tests that Run from Outside the Shell

The DTM shell calls specific executables to run specific tests. These

executables may also be run individually outside of the DTM shell. They

can be found in a shared folder on the DTM controller here:
DTMController\Tests\x86fre\NTTest\multimediatest\avcore\audio\wdk\

Here is a list of the audio-related tests:
1. ac3test.exe

drmtest.exe
extfxtst.exe
fduplex.exe
fidelitytest.exe
fidelitytestapp.exe
uaatest.exe

e A N

wavetest.exe

For example, an APO developer should copy the APO test named
extfxtst.exe to his or her local system, and use it during the development
process to ensure that all APO requirements are being met.

M Failures

The following section describes some common failures and what to do
about them.

Jacks Not Populated

The WLK test process, for many tests, requires that all analog jacks on
the system be populated with plugs. Plug-presence detection switches
alert the audio driver when a jack is populated or absent. Tests such as
DRM will fail if any jacks are not populated. Since the jack-insertion
detection is only a physical mechanical switch that senses the presence
of a plug, the plug need not be wired to a device, it need only actuate the
switch, which in turn should provide an indication on the associated
property panel that the jack has a plug inserted. When you are switching
cables for the Audio Fidelity tests, be sure to replace any jacks after
removing the test cables.

114 B High Definition Audio for the Digital Home

Noise Failures

Failures caused by excessive noise are the most common Audio Fidelity
failures. This will show up on the Dynamic Range test and the System
Activity test. From the perspective of the sensitive analog circuits in a PC,
the PC environment is very hostile and noisy. Switching power supplies,
motor control circuits in hard drives, video circuitry, and many other
digital circuits can leak into audio circuits and be heard as buzzing noise,
clicks, pops, and other offensive and unwanted noise. The physical
proximity of these offending digital and switching noise sources to the
analog audio circuitry, how grounding is handled, and how wiring to
case-mounted jacks is done can all affect how much noise will be
present. Conversely, using shielded audio cable for signal connections
between the motherboard and case mounted jacks can reduce the
susceptibility of these cables to picking up noise. Motherboard design
principles that avoid sensitive analog signal traces being in close
proximity to traces carrying digital signals will also reduce the noise
contribution from these sources.

Some noise failures may be the result of incorrect mixer settings
during the test run. For example, while running the render dynamic
range test, only the Windows Media Player fader should be open. All
other faders should be at their minimum position. Check especially the
Microphone fader if there is one. If this were open during this noise test,
it would allow extraneous noise that may be present in the microphone
channel to be injected into the render line out and add additional noise
that would likely cause a failure.

M Summary

The DTM System runs a series of Audio Fidelity tests as defined by
Microsoft WHQL. DTM Studio is the user interface to choose the tests to
run, show progress, and indicate test results.

Tests, or jobs, can be evaluated by looking at Test Log Reports, which
show every activity, what passed, what failed. After a full set of tests have
been run, the resulting test logs are bundled together in a .CPK file and
submitted to Microsoft. If all tests have passed, the WINQUAL site will
certify the submitted drivers as passing the WHQL requirements allowing
the owner of the driver to display the “Compatible with Windows” logo.

	Page 1

