

Slewing Ring Series

Single Row Ball

Cross Roller

Double Row Different Diameter Ball

L Single Row Ball

Three Row Roller

Double Row Eight Point Contact Ball

Building A Slewing Ring Number

JB/T 10839-2008 (JJ36.1-91)

$\times \frac{x}{} \times \frac{x}{(4)} \times \frac{\times x}{(5)} \frac{x}{(6)} \frac{x}{(7)}$

(1)-	Type of slewing ring
Q:	Q: Single-row ball
(2)-	S: 3-row roller
$\mathrm{W}:$	Code of driven type
$\mathrm{N}:$	Outer geur
$\mathrm{U}:$	Inner gear
(3)-	No gear
A:	Code of installation hole type
B:	Both rings with bolt holes
Cing with screw holes	

Outer ring with screw holes, mier ring with bolt holes
D:
Outer ring with bolt holes, inner ring with screw holes
(4)- (Upper row) Diameter of track center
(5)- (Upper row) Diameter of rolling element
(6)- Classification code No. of gear module

A:Bigger module, without A:normal
Classification of precision grade
G:High precision, without G: normal

For example:
Single-row ball, bigger module, outer gear, outer ring with serew holes, inner ring with bolt holes, diameter of track center 1250 mm , diameter of ball 40 mm , normal precision,type of the product sign as follows: slewing ring QWC1250.40A JB/T10839-2008

JB/T 2300-1999

(1) (2) (3) (4) (5) (6)	
(1)-	Type of slewing ring
01:	01: Single-row ball
02:	02:Double-row different diameter ball
11:	11:Single cross-roller
13:	13:3-row toller
(2)-	Code of gear driven type
O;	No gear
1:	Normal, outer gear
2 :	Bigger module, outer gear
3:	Normal, inner geat
4:	Bigger module, inner gear
(3)--	(Upper row) Diameter of rolling element
(4)--	(Upper row) Diameter of track center
(5)-	Code of installation fitting type
O:	No fitting circle
1.	With fitting circle
2:	Special type
(6)--	Code of installation hole type
0:	Both rings with bolt holes
1:	Both rings with screw holes
2 :	
Outer ring with bolt holes, inner ring with screw holes	
3 :	
Outer ring wita screw boles, mner ring with bolt holes	

For example:
Single-row ball, bigger module, inner gear, diameter of ball 40 mm , diameter of track eenter 1000 mm , with fitting cirele, both rings with boli holes, type of the prodact sigh as follows: slewing ring 014.40.1000.10 JB/T 2300-1999

Selection and Calculation of Slewing Rings

Supporting Load of Slewing Ring

During the use of slewing ring, it is usually endure axial force, radial force and overturning moment together. For different application situation, due to the vary of working manner and structure form, the fuction combined condition also different of the above three loads. Sometimes may be the combination of two loads, sometimes may be only one load.

Generally speaking, installation of slewing ring have two kinds of mode: compressive installation and suspended installation. The load of the bearing of this two kinds of installation see as follows:

Compressive Installation

Suspended Installation

If the slewing ring is compressive installation, the customer could select and calculate as follows; if the slewing ring is suspended installation, please contact our Engineering Department for assistance.

Selection of Slewing Ring
Selection of Structure

Common structure of slewing ring have four kinds: single row ball slewing ring, cross-roller slewing ring, double-row different diameter ball slewing ring, three-row roller slewing ring.

Based our experience and calculation, we have follow conclution:
Do ≤ 2000, single row ball slewing ring first; Do >2000, three-row roller slewing ring first.
For the slewing ring have the same figure size, the load capacity of single row ball slewing ring is more than the cross roller and double-row different diameter slewing ring.

Single row ball slewing ring of Q -series have higher compact structure, less weight and more economically. They are the first chose of single row ball slewing ring.

2,
(1)
$\mathrm{Co}=0.6 \times \mathrm{Do} \times \mathrm{do}^{0.5}$

Co	kN Do do -

(2)

$$
\mathrm{Cp}=\mathrm{Fa}+4370 \mathrm{M} / \mathrm{Do}+3.44 \mathrm{Fr}
$$

Select Product Type by Calculation
Calculation of single-row ball slewing ring
Calculation of rated static capacity

Rated static capacity
Diameter of track center
Diameter of ball
Equivalent load calculation according outside compound load

Selection and Calculation of Slewing Rings

Safety Factor of Slewing Ring fo

Working condition	Charactersstic	Example	fo
Light duty	Not often full lond, smooth slewing small impact	Stacker, truck erancs, non-port wheeled erancs	1.00~1.15
Middle duty	Not eften full load.slewing quickly. impact	Tower erancs, marine crancs, erawler erancs	1. $15 \sim 1.30$
Heavy duty	Often full load.heavy impact	Clamshell grabbing cranes, barbour cranes, single bucket excavator, container cranes	1. $30 \sim 1.45$
Extermely heavy duty	Full load, heavy mpact or working condition badly	Bucker wheel excavators, tunnelling machines, metallurgical cranes, offshore work platform cranes	1. $45 \sim 1.70$

3, Seleet Product Type Use Static Load Curve

Static load curve show the maximum load of slewing ring when in the static state. Each type of the slewing ring in this specimen has a corresponding load capacity curve, Load capacity curve can help customer to make an elementary chose of slewing ring.

Draw the static load curve. Customer draw the static load curve based on the type which wanted to be selected. See as follows:

Selection and Calculation of Slewing Rings

$\mathrm{P}_{1}=\mathrm{Co}$
$M_{1}=C o^{*} D o / 4370$（三排柱式：$M_{1}=C 0^{*} D o / 4500$ ）

The point which total axial force Fa and total overturning moment M multiply the safety factor respectively should located below the static load curve．

Example：Draw the static load curve of QUA1000．32
$\mathrm{P} 1=\mathrm{C} 0=0.6^{*} 1000^{*} 32^{0.5}=3394 \mathrm{kN}$
$\mathrm{M} 1=\mathrm{Co} 0^{*} \mathrm{Do} / 4370=3394^{*} 1000 / 4370=776 \mathrm{kN} \cdot \mathrm{m}$

Static load curve see as following：

Technical Parameter of Slewing Ring Selection

After making an elementary chose of slewing ring，customer could confirm the selecting result together with our Engineering Department or provide some informations about slewing ring to our company．When the selection is made by our company，please filling＇Technical References Concerned for Selection of Slewing Ring of Maanshan Tongli Slewing Ring CO．，LTD＇in detail，so as to provide you economical and suitable selection of the slewing ring as soon as we can．

Selection and Calculation of Slewing Rings

Technical References Concerned for Selection of Slewing King

Name of company: Contactor: Pelephone:		Address: Department. Fax:	
Using condition (Model of Main Machine)	Installing type (Compression or suspension)		
Requriement of gear shape: (inner teeth, outer teeth, no teeth or no restrict)	Application character Only positioning Intermittent rotation Contimnous rotation	Revolution per Normal Maximum	
Value of Load			
Type of Load	Maximum Working Load	Maximum Testing Load	Destroy Load
Axial Load			
Radial Load			
Overturaing Moment			
(kNm) : $\qquad$$\qquad$:			

Special requirement: special situation, temperature, fit size, figure size limit ete

Detailed load condition	Axial load	Radial load	Overturning moment	Revolution per minute	Working time
1$)$					
2$)$					
3$)$					
4$)$					
5$)$					
$\ldots \ldots$					

Selection and Calculation of Slewing Rings

Appendix:Confirmation of the Load Outside the Slewing Ring
a. $\quad \mathrm{M}, \mathrm{N} \cdot \mathrm{mm}$;
b. Fa, N i
c.

M
$\mathrm{Fr}, \mathrm{N}_{\mathrm{o}}$

When selecting the slewing ring, customer first to confirm the outside load of the slewing ring. The outside load of single row ball slewing ring is the total load after combination which include:
a. overturning moment M, N-mm
b. total axial force Fa, N
c. total radial force Fr of the fuctional surface of total overturning moment M

When the outside mechanical force composing the outside lead, customer should put working condition factor K into consideration which based on the working type of the machine. The following are examples of crant and excavator which explain the confirmation of outside load.(The listed calculational position not always represent the abominable condition of working condition, customer should calculate according to the maximum working condition.

1,
Crane(see figure 1)

Figure of Crane Calculation

$$
\begin{aligned}
& F a=\left[K \cdot\left(Q+G_{1}\right)+G_{2}+G_{3}+G_{4}\right] \cdot g \\
& M=\left[K \cdot\left(Q+G_{i}\right) \cdot L_{1}+G_{2} \cdot L_{2}-G_{7} \cdot L_{3} \cdot G_{4} \cdot L_{4} \mid \cdot g+W_{1} \cdot L_{5} \cdot \cos \beta+W_{2} L_{s}\right. \\
& F r=W_{1} \cdot \cos \beta+W_{2}+W_{3} \cdot \cos \gamma
\end{aligned}
$$

G_{1} -
kg ;
$\mathrm{G}_{2}-$
G_{3} -
G_{4}--
Young
Powertech
inc.

KG Maximum rated lifting weight under this working condition, kg ; Weight of hoist tool
Weight of amplitude part
Weight of turntable
Balance weight

Selection and Calculation of Slewing Rings

$\mathrm{W}_{1}-$
$\mathrm{W}_{2}-$
$\mathrm{W}_{3}-$
$\mathrm{L}_{1}-$
$\mathrm{L}_{2}-$
Horizontal force of inertia
Wind force
Meshing force of gear
Working amplitude Horizontal distance from gravity of amplitude part G_{2} to slewing center
L_{3} -
Horizontal distance from gravity of turntable G_{3} to slewing center
L_{4}
Horizontal distance from gravity center of balance weight to slewing center
L_{3}
Vertical distance from point of horizontal force of inertia $W_{\text {, }}$ to slewing ring
$\mathrm{L}_{\mathrm{a}}-$
Vertical distance from point of wind foree W_{2} to slewing ring

Angle berween horizontal force of inertia W_{1}, and M surface

Angle between meshing force of gear W , and M surface
K——
Working condition factor, decide by table 1 .
2. Excavator(see figure 2)

Figures of Excavator Caleulation
2.1 Full Bucket Revolution Condition
$F a=\left[k \cdot\left(Q+G_{1}\right)+G_{2}+G_{3}\right] \cdot g$
$M=\left[k \cdot\left(Q+G_{1}\right) \cdot L_{1}+G_{2} \cdot L_{2}-G_{2} \cdot L_{2}\right] \cdot g+W_{1} \cdot L_{4} \cdot \cos \beta+W_{2} \cdot L_{7}$
Fr $=W_{1} \cdot \cos \beta+W_{2}+W_{3} \cdot \cos \gamma$
2.2

Excavatc Condition

$F a=k \cdot W_{4}+l k \cdot\left(Q+G_{1}\right)+G_{2}+G_{3} / \cdot g$
$M=k \cdot W_{4} \cdot L_{5}+\left[K \cdot\left(Q+G_{1}\right) \cdot L_{1}+G_{2} \cdot L_{2}-G_{3} \cdot L_{3}\right] \cdot g+K \cdot W_{5} \cdot L_{5}+W_{2} \cdot L$, $\mathrm{Fr}_{\mathrm{r}}=\mathrm{W}_{2}+W_{3} \cdot \cos \gamma-W_{s}$

Selection and Calculation of Slewing Rings

Table 1 working condition factor K

Working condition	Example	K
Light duty	Stocker, truck cranes, non-port wheelad cranes,	1. 10~1. 25
Middie duty	Tower cranes, marine crane.scrawler cranes	1. $20 \sim 1.35$
Heavy un,	(Jamshell grabbing cranes, harbour cranes, container cranes	1. $30 \sim 1.50$
	Single bucket exeavator.dredger .offs hore work platform cranes	1. $40 \sim 1.70$
Extermely heavy duty	Bucker whel excavators, tunnelling machines.metallurgicat erancs	1. $60 \sim 2.00$

Slewing Ring Usage

Requirement of Installation and Usage

1. The soft zone(shown by a letter ' S ' stamped on a surface of the gear ring) and the loading plug should be located at non-loading area, non-always loading area or slightly loading area.
2. The mounting surface must keep clean and flat, and should rot have serape, burr formation and other extraneous material on it. The flatness of mounting surface should accord with table 2.

The permissible flatness values including angle deviation

Diameter ot track center			
D (mm)	Four point contact of single row	Double-row ball	Roller
-1000	0.15	0.20	0.10
$>1000 \sim 1500$	0.19	0.25	0.12
$>1500 \sim 2000$	0.22	0.30	0.15
$>2000 \sim 2500$	0.25	0.35	0.17
$>2500-4000$	0.30	0.40	0.20

3.The mounting platform should have enough rigidity to avoid the slewing rings failure of work due to the deformation of slewing rings installation which caused by lacking rigidity installing frame. The maximum deformation should accord with table 3 under rated load.

Deflection under permissible maximum load

(D) Diameler of irack venter	~ 1000	$>1000 \sim 1500$	$>1500 \sim 2000$	$>2000 \sim 2500$	$>2500 \sim 3000$	$>3000 \sim 3500>3500 \sim 4000$	
Max (mm)	0.6	0.8	1.0	1.2	1.5	2.0	2.5
The maximum deflection of frame's flat surface							

Notice of gear installation:

External gearing:The backlash between gear and pinion should not less than $0.03 \mathrm{~m}(\mathrm{~m}$ is module).

Internal gearing: The backlash between gear and pinion should not less than $0.06 \mathrm{~m}(\mathrm{~m}$ is module).

Slewing Ring Usage

Notice of Selection and Installation of Bolt

1. You can select the bolt of GB3098.1 and GB5782, and also could design the hexagon head blot by yourself. The performance classification include 8.8, 10.9 and 12.9.

It is usually use 10.9 level of bolt in the commonly construction machine.
If there is a strictly requirement on bolt static strength under rated load and bolt yield strength under maximum load but not rigid on fatigue strength, you can use 12.9 level bolt.

In the condition that load change frequently and have extreme demand on bolt fatigue strength, you'd better choose 8.8 level bolt.
2. Tightening nut have GB3098.2, GB6175 and also could design the hexagon head nut by yourself. The performance classification should accord with the bolt.
3. The use of any type of elasticwasher is forbidden. It is advised to use quenched and tempered flat washers which has lockvein on double-face or use double nuts. When use double nuts, two nuts can select from GB6170; or seclect one thick outside nut from GB6175 and one thin inside nut from GB6172. The material of two nuts must use the same one.
4. When tightening the bolt, the screw thread and nut should be greased and using torque wrench symmetrically tightening bolt several times along the 180° direction. See figure 3:

Slewing Ring Usage

5. Bolt must have enough pre-tighten force, and the produced pre-tighten strers on it should aceord with table 4.

Pre-tightening torque or forees of bolts

Specifications of bolts	$\begin{aligned} & \quad(\mathrm{GB} / \mathrm{T} 3098.1-2000) \\ & \text { Bolt's strength class } \end{aligned}$		
	8.8	10.9	12. 9
	Pre-tightening torque $\mathrm{M}_{A}(\mathrm{~N} \cdot \mathrm{~m})$		
110	44	62	75
M12	77.5	110	130
1114	120	170	210
116	190	265	320
	260		
120	370	520	620
M22	500	700	840
M 24	640	900	1080
1127	350	1350	1620
M30	1300	1800	2160
	Pre-tightening force $\mathrm{F}_{8}(10 \mathrm{~N})$		
M33	293	412	495
1336	344	484	581
1339	414	584	698
M42	473	665	798
M45	553	777	932
M48	823	878	1050
M52	749	1054	1265
M56	863	1214	1457
M60	1008	1418	1621

6. When using screw connection, the length 1 of bolt screwing into the slewing ring should meet the requirement of table 5 .

Boltperformance class	8.8	10.9	12.9
L	0.70 T	0.75 T	0.8 T

Note: T is the length of screw thread
7. In order to insure the reliability of bolt, avoid it appears lack of pre-tightening force, we recommend checking the pre-tightening torque of the bolt after first 100 hours and 500 hours of use.

Slewing Ring Usage

1. Packaging

At present, our products generally use three kinds of packaging: non-wooden packaging, wooden packaging, wood care packaging.

1) Non-wooden packaging This type of packaging is fit for short-distance transport. After painting the anti-rust coating oil, inner layer of the slewing ring wrapoing with flax tightly, the outer wrapping wilh plastic sheeting, and could put several together using metal band.
2) Wooden packaging Who need repeated transfer or long-distance transport of slewing ring must be in wooden packaging. Single or multiple packaged slewing ring could together with metal band, and fixed in a wooden box.
3) Wood care packaging This type of packaging is the main mode of transpert for long distance.
2. Transportation
1)Slewing ring handling in the loading and unloading process should be done gently, and non-throwing, hitting. Weighting more than 30 kg slewing ring, it should be use lifting holes when in the handling process.
2)Slewing ring must be horizontal in the transport. For the non-wooden packaging of slewing ring, the bottom must be put in wooden pads and should have anti-slip steps.
3)For the diameter greater than 3000 mm or easily deformed slewing ring, bearing should have assistant supporting.
3. Maintenance of the Slewing Ring
1) The slewing ring had been filled a few of No. 3 lithium based grease in the race before delivery. Consumers should fill the new grease suitably according to different working condition before use it. Generally, it is necessary to fill in grease once every 100 hours for ball slewing ring, and once every 50 hours for roller slewing ring. When filling in lithium based grease, it must make the grease even till the grease out off from the sealing. The filling period should be shorten if there is the special working condition such as at the torrid zone, high humidity, severe dust, large temperature variation and long continuing working time.
2) It should be filled with new grease before and after the machine being long time stop working.
3)The gear faces exposed in air should periudically cleaned and spread with appropriate oil on it.
3) In general working condition, check the pre-tighten foree of the bolts after first 100 working hours then cheek it every 500 hours of the slewing ring. It must be always kept enough pre-tighten foree.
4) Cleaning the slewing ring with high-pressure water is not permissible during operation so as to aviod the water entering to the rolling race,
5) Stop and check the machine during operation if there is abnormal noise, vibration oceurred or suddenly power rose. Remove the trouble or dismantle it for repairing if necessary.
6) Should not let the hard materials access or enter in the engaging area of the gear,
7) Regularly check the seal ring is that OK or not. Replace it if it is damaged and reset it when it is fallen.
8) Multi-slewing rings overlapping together horizontally must put at least $3-5$ pads evenly in the direction of eircumference between the slewing rings. And the upper and lower pads put in the circumferential direction of the position should be consistent. Slewing ring stand up is prohibited.
9) Slewing ring should be placed on non-corrosive medium, and stored in dry, flat indoor room, can not be soaked or watered.

Basic Slewing Ring Data

Single-row ball

No teeth

Outer teeth

Inner teeth

Basic Slewing Ring Data

JB/T10839-2008 (JJ 36.1-91) Basic data of standard series Q.
Recommendation)

Basic Size	
Do	
NO. QU.QW.QN	
1	315.20
	315.20 A
2	355.20
	355.20 A
3	400.20
	400.20A
4	450.20
	450.20A
5	500.20
	500.20 A
6	560.20
	560.20 A
7	630.20
	630.20 A
8	710.20
	710.20A
9	800.20
	800.20A
10	800.25
	800.25 A
11	900.25
	900.25 A
12	1000.25
	1000.25 A
13	1000.32
	1000.32A
14	1120.32
	1120.32A
15	1250.32
	1250.32A
16	1400.32
	1400.32 A
1	1250.40
	1250.40A
18	1400.40
	1400.40 A
19	1600.40
	1600.40A
20	1800.40
	1800.40A
21	1600.50
	1600.50A
22	1800.50
	1800.50A
	2000.50
	2000.50A
24	2240.50
	2240.50 A
25	2500.50
	2500.50A
26	2500.60
	2500.60A
2	2800.60
	2800.60 A
28	3150.60
	3150.60 A
2	3550.60
	3550.60A
	4000.60A
	4000.60A

Configuration Size

 D d D d

中 Φ T
$\begin{array}{lllllllllllllll}406 & 222 & 408 & 224 & 60 & 370 & 260 & 10 & 17 & M 16 & 24 & 2 & 50 & 10 & 40\end{array}$ $\begin{array}{lllllllllllllll}446 & 262 & 448 & 264 & 60 & 410 & 300 & 10 & 17 & M 16 & 24 & 2 & 50 & 10 & 40\end{array}$ $\begin{array}{lllllllllllllll}490 & 307 & 493 & 310 & 60 & 455 & 345 & 12 & 17 & M 16 & 24 & 2 & 50 & 10 & 40\end{array}$ $\begin{array}{lllllllllllllll}540 & 357 & 543 & 360 & 60 & 505 & 395 & 12 & 17 & M 16 & 24 & 2 & 50 & 10 & 40\end{array}$ $\begin{array}{llllllllllllllll}590 & 407 & 593 & 410 & 60 & 555 & 445 & 14 & 17 & M 16 & 24 & 2 & 50 & 10 & 40\end{array}$ $\begin{array}{llllllllllllllll}654 & 464 & 656 & 468 & 70 & 618 & 502 & 14 & 17 & M 16 & 30 & 2 & 60 & 10 & 50\end{array}$ $\begin{array}{llllllllllllllll}724 & 534 & 726 & 538 & 70 & 688 & 572 & 16 & 17 & M 16 & 30 & 2 & 60 & 10 & 50\end{array}$ $\begin{array}{llllllllllllllll}804 & 614 & 806 & 618 & 70 & 768 & 652 & 18 & 17 & M 16 & 30 & 2 & 60 & 10 & 50\end{array}$ $\begin{array}{llllllllllllllll}894 & 704 & 896 & 708 & 70 & 858 & 742 & 20 & 17 & M 16 & 30 & 2 & 60 & 10 & 50\end{array}$ $\begin{array}{lllllllllllllll}904 & 692 & 908 & 694 & 78 & 864 & 736 & 18 & 22 & M 20 & 36 & 2 & 68 & 10 & 58\end{array}$ $\begin{array}{lllllllllllllll}1004 & 792 & 1008 & 794 & 78 & 964 & 836 & 20 & 22 & M 20 & 36 & 2 & 68 & 10 & 58\end{array}$ $\begin{array}{lllllllllllllll}1104 & 892 & 1108 & 894 & 78 & 1064 & 936 & 24 & 22 & M 20 & 36 & 2 & 68 & 10 & 58\end{array}$ $\begin{array}{lllllllllllllll}1120 & 876 & 1124 & 880 & 90 & 1074 & 926 & 24 & 24 & M 22 & 40 & 2 & 80 & 10 & 70\end{array}$ $\begin{array}{lllllllllllllllllllllllll}1240 & 996 & 1244 & 1000 & 90 & 1194 & 1046 & 28 & 24 & \text { M22 } & 40 & 4 & 80 & 10 & 70\end{array}$ $\begin{array}{llllllllllllllllllllllllll}1370 & 1126 & 1374 & 1130 & 90 & 1324 & 1176 & 32 & 24 & M 22 & 40 & 4 & 80 & 10 & 70\end{array}$
 $\begin{array}{lllllllllllll}1390 & 1108 & 1394 & 1110 & 102 & 1336 & 1164 & 32 & 26 & M 24 & 45 & 4 & 90\end{array} 12 \quad 80$ $\begin{array}{lllllllllllllllllllllllllllll}1540 & 1258 & 1544 & 1260 & 102 & 1486 & 1314 & 36 & 26 & M 24 & 45 & 4 & 90 & 12 & 80\end{array}$ $\begin{array}{llllllllllllll}1740 & 1458 & 1744 & 1460 & 102 & 1686 & 1514 & 40 & 26 & \mathrm{M} 24 & 45 & 4 & 90 & 12\end{array} 80$

 $\begin{array}{llllllllllll}1964 & 1634 & 1966 & 1638 & 124 & 1904 & 1696 & 44 & 30 & M 27 & 50 & 4\end{array} 11212100$ $\begin{array}{lllllllllllll}2162 & 1834 & 2166 & 1842 & 1242104 & 1896 & 48 & 30 & M 27 & 50 & 6 & 112 & 12\end{array} 100$ $\begin{array}{lllllllllll}2402 & 2074 & 2406 & 2078 & 1242344 & 2136 & 54 & 30 & M 27 & 50 & 6\end{array} 11212100$ $\begin{array}{lllllllllll}2662 & 2334 & 2666 & 2342 & 1242604 & 2396 & 60 & 30 & M 27 & 50 & 6\end{array} 11212100$ $\begin{array}{lllllllllll}2696 & 2304 & 2696 & 2308 & 150 & 2626 & 2374 & 60 & 33 & \text { M30 } & 56 \\ 6 & 136 & 14 & 122\end{array}$ $\begin{array}{lllllllllll}2992 & 2604 & 2996 & 2608 & 150 & 2926 & 2674 & 66 & 33 & M 30 & 56 \\ 6 & 136 & 14 & 122\end{array}$ $\begin{array}{lllllllllll}3342 & 2954 & 3346 & 2958 & 15032763024 & 72 & 33 & M 30 & 56 & 8 & 136 \\ 14 & 122\end{array}$ $\begin{array}{llllllllllll}3742 & 3354 & 3746 & 3358 & 15036763424 & 78 & 33 & M 30 & 56 & 8 & 136 & 14 \\ 122\end{array}$ $\begin{array}{llllllllll}4200 & 38044196 & 3808 & 15041263874 & 80 & 33 & M 30 & 56 & 8 & 136 \\ 14 & 122\end{array}$
$X=0.5 \quad X=+0.5$ da z da $\mathrm{z} \begin{aligned} & \begin{array}{l}\text { outer inner } \\ \text { pear }\end{array} \\ & \text { gear }\end{aligned}$ $\begin{array}{lllllll}3 & 423 & 140 & 207 & 70 & 34 & 35\end{array}$ $\begin{array}{lllllll}4 & 428 & 106 & 200 & 51 & 35 & 36\end{array}$ $\begin{array}{lllllll}3 & 462 & 153 & 246 & 84 & 39 & 40\end{array}$ $\begin{array}{lllllll}4 & 468 & 116 & 240 & 61 & 40 & 41\end{array}$ $\begin{array}{lllllll}4 & 512 & 127 & 288 & 73 & 44 & 45\end{array}$ $\begin{array}{lllllll}5 & 520 & 103 & 280 & 57 & 46 & 47\end{array}$ $\begin{array}{lllllll}4 & 564 & 140 & 336 & 85 & 50 & 51\end{array}$ $\begin{array}{lllllll}5 & 570 & 113 & 330 & 67 & 52 & 43\end{array}$ $\begin{array}{llllllll}5 & 615 & 122 & 385 & 78 & 55 & 56\end{array}$ $\begin{array}{lllllll}6 & 624 & 103 & 378 & 64 & 57 & 58\end{array}$ $\begin{array}{lllllll}4 & 680 & 169 & 440 & 111 & 76 & 78\end{array}$ $\begin{array}{lllllll}5 & 685 & 136 & 435 & 88 & 77 & 79\end{array}$ $\begin{array}{lllllll}4 & 748 & 186 & 512 & 129 & 84 & 86\end{array}$ $\begin{array}{llllllll}5 & 755 & 150 & 505 & 102 & 86 & 88\end{array}$ $\begin{array}{lllllll}5 & 835 & 166 & 585 & 118 & 97 & 99\end{array}$ $\begin{array}{lllllll}6 & 840 & 139 & 582 & 98 & 97 & 101\end{array}$ $\begin{array}{lllllll}6 & 930 & 154 & 672 & 113 & 110 & 114\end{array}$ $\begin{array}{lllllll}8 & 936 & 116 & 664 & 84 & 111 & 114\end{array}$ $\begin{array}{lllllll}6 & 942 & 156 & 654 & 110 & 142 & 143\end{array}$ $\begin{array}{lllllll}8 & 952 & 118 & 648 & 82 & 142 & 147\end{array}$ $\begin{array}{lllllll}8 & 1048 & 130 & 744 & 94 & 163 & 162\end{array}$ $\begin{array}{lllllll}10 & 1060 & 105 & 740 & 75 & 162 & 168\end{array}$ $\begin{array}{llllllll}8 & 1152 & 143 & 848 & 107 & 178 & 182\end{array}$ $\begin{array}{llllllll}10 & 1160 & 115 & 840 & 85 & 179 & 185\end{array}$ $\begin{array}{lllllll}8 & 1160 & 144 & 832 & 105 & 230 & 227\end{array}$ $\begin{array}{lllllll}10 & 1170 & 116 & 830 & 84 & 227 & 232\end{array}$ $\begin{array}{llllll}10 & 1300 & 129 & 940 & 95 & 263 \\ 272\end{array}$ $\begin{array}{lllllll}12 & 1308 & 108 & 936 & 79 & 262 & 275\end{array}$ $\begin{array}{lllllllllll}10 & 1430 & 142 & 1070 & 108 & 294 & 302\end{array}$ $\begin{array}{llllll}12 & 1440 & 119 & 1068 & 90 & 290 \\ 309\end{array}$ $\begin{array}{llllllll}12 & 1584 & 131 & 1212 & 102 & 333 & 337\end{array}$ $\begin{array}{lllllll}14 & 1596 & 113 & 1204 & 87 & 336 & 347\end{array}$ $\begin{array}{llllllllll}10 & 1450 & 144 & 1050 & 106 & 388 & 396\end{array}$ $\begin{array}{llllllll}12 & 1452 & 120 & 1044 & 88 & 388 & 392\end{array}$ 1216081331188100444448 $\begin{array}{lllllllllllll}14 & 1610 & 114 & 1190 & 86 & 434 & 443\end{array}$ $\begin{array}{llllll}12 & 1812 & 150 & 1392 & 117 & 509 \\ 528\end{array}$ 1418201291386100511534 1420161431582114576583 $\begin{array}{llllll}16 & 2032 & 126 & 1568 & 99 & 591 \\ 607\end{array}$ 1218241511368115714714 $\begin{array}{llllll}14 & 1834 & 130 & 1358 & 98 & 723 \\ 727\end{array}$ $\begin{array}{llllllll}14 & 2044 & 145 & 1568 & 113 & 794 & 845\end{array}$ $\begin{array}{lllllll}16 & 2048 & 127 & 1552 & 98 & 818 & 843\end{array}$ $\begin{array}{llllll}16 & 2240 & 139 & 1760 & 111 & 891 \\ 912\end{array}$ $\begin{array}{llllll}18 & 2250 & 124 & 1746 & 98 & 913 \\ 927\end{array}$ 162480154198412510441020 182502138198011110411078 182754152225012611321171 202760137224011311481175 182790154221412416211677 202800139220011116541701 183078170250214018711817 203100154250012618571904 203440171284014321442087 223454156283813021292139 203840191324016324252355 $25 \quad 3875154322513024372500$ 224312195369616926832787 254325172367514827632827

JB/T 2300-1999 Basic data of standard series 01.

Basic Size

Conuguratoo Size
Mounting size
Structural Size Gear Data Ouner Ger Dona lmer Cert Dosa

Basic Slewing Ring Data

Basic Slewing Ring Data

$\begin{aligned} & \underset{y}{g} \\ & \underset{y}{2} \\ & 0 \\ & Z \end{aligned}$	8	8 8 n 0 N en	8 4 n 0 0 0	$130.25 .630$	$\begin{aligned} & \stackrel{\theta}{r} \\ & \vec{~} \\ & \text { ni } \\ & \text { ¢ } \end{aligned}$	8 8 N ल en	8 $\frac{8}{4}$ ल ले ले	130.32 .1000	$\begin{aligned} & \underset{子}{g} \\ & \overrightarrow{~ d} \\ & \text { en } \\ & \text { en } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { O } \\ & \text { e } \\ & \hline \end{aligned}$	8 $\frac{8}{4}$ 8 －	8 $\frac{8}{6}$ $\frac{8}{0}$		8 8 ल 世 －		$\begin{aligned} & 8 \\ & \text { n } \\ & \text { of } \\ & \text { o } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \text { ct } \\ & \text { n } \\ & \text { H } \\ & \text { en } \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { 合 } \\ & \text { 8 } \\ & \text { on } \end{aligned}$	130.50 .3550

[^0]
[^0]: NOIL:
 $1 . Q$ series are more scentificreasonable and economic than 01 series, please see the detail article of the effection of slewing. ring product sandard to rensonable selection in the third issue in 2002 of Construction Mectanism or consult the website of our company.
 2. No kelh skwing ring consists of outside gear D and inside gear d with the same treck center diameter The pleg and oil-hele are lacated on the outer tiap.
 3.1n Scandard Series, 132300-1999, more than the diameter of ball 30 , we add to the series of small diameter of ball,the series are aw ice, hul the other dana is the same. Ol series is antited in the tate
 4. T is the length: of screw.

