ATU: Anti-Theft Unit
Focus: Prevent unauthorized access or theft.
Software design:
Implement multi-factor authentication (MFA) to protect access to systems.
Use real-time tracking and geofencing for physical devices.
Add encryption for sensitive data, ensuring stolen information is unusable.
Build in automatic lock-and-wipe mechanisms triggered by predefined conditions, like prolonged inactivity or unauthorized attempts.
 IDENTIFICATION DIVISION.
 PROGRAM-ID. Database-MFA-System.
 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 User-Input.
 05 Username PIC X(20).
 05 Password PIC X(20).
 05 Security-Code PIC 9(7).

 01 Stored-Database.
 05 Stored-Username PIC X(20) VALUE " live ".
 05 Stored-Password PIC X(20) VALUE " forever ".
 05 Stored-Code1 PIC 9(5) VALUE 82698.
 05 Stored-Code2 PIC 9(7) VALUE 7628429.

 01 Verification-Status PIC X VALUE "N".

 PROCEDURE DIVISION.
 DISPLAY "Enter Username: " WITH NO ADVANCING.
 ACCEPT Username.

 DISPLAY "Enter Password: " WITH NO ADVANCING.
 ACCEPT Password.

 IF Username = Stored-Username
 AND Password = Stored-Password
 THEN
 DISPLAY "Enter Security Code: " WITH NO ADVANCING.
 ACCEPT Security-Code.

 IF Security-Code = Stored-Code1
 OR Security-Code = Stored-Code2
 THEN
 MOVE "Y" TO Verification-Status
 DISPLAY "Access Granted. System Secured."
 ELSE
 DISPLAY "Invalid Security Code. Access Denied."
 END-IF
 ELSE
 DISPLAY "Invalid Credentials. Access Denied."
 END-IF.

 STOP RUN.

import sys

Simulating COBOL WORKING-STORAGE SECTION
01 User-Input.
05 Username PIC X(20).
05 Password PIC X(20).
05 Security-Code PIC 9(7).
username_input = ""
password_input = ""
security_code_input_str = "" # Store raw input for potential error display
security_code_input_num = 0

01 Stored-Database.
05 Stored-Username PIC X(20) VALUE " live ".
05 Stored-Password PIC X(20) VALUE " forever ".
05 Stored-Code1 PIC 9(5) VALUE 82698.
05 Stored-Code2 PIC 9(7) VALUE 7628429.
stored_username = " live " # Padded to 20 chars for exact COBOL PIC X(20) behavior if needed, though comparison usually ignores trailing spaces
stored_password = " forever " # Padded to 20 chars
stored_code1 = 82698
stored_code2 = 7628429

01 Verification-Status PIC X VALUE "N".
verification_status = "N"

PROCEDURE DIVISION.
DISPLAY "Enter Username: " WITH NO ADVANCING.
print("Enter Username: ", end='')
ACCEPT Username.
Read input and pad/truncate to 20 characters to mimic PIC X(20) fixed length
username_input = input().ljust(20)[:20]

DISPLAY "Enter Password: " WITH NO ADVANCING.
print("Enter Password: ", end='')
ACCEPT Password.
Read input and pad/truncate to 20 characters
password_input = input().ljust(20)[:20]

IF Username = Stored-Username
AND Password = Stored-Password
THEN
if username_input == stored_username and password_input == stored_password:
 # DISPLAY "Enter Security Code: " WITH NO ADVANCING.
 print("Enter Security Code: ", end='')
 # ACCEPT Security-Code.
 security_code_input_str = input()

 # Attempt to convert input to integer, mimicking PIC 9(7)
 try:
 # COBOL ACCEPT for numeric fields usually handles leading/trailing spaces
 # and potentially signs depending on the exact PIC clause.
 # PIC 9(7) implies an unsigned integer.
 # We attempt to convert to int. COBOL might truncate or error on > 7 digits.
 # Python int() handles varying lengths. We'll check length conceptually.
 # We don't explicitly enforce 7 digits here as the COBOL ACCEPT behavior
 # for invalid numeric input can vary and isn't fully specified.
 # We prioritize converting valid numbers.
 security_code_input_num = int(security_code_input_str.strip())

 # IF Security-Code = Stored-Code1
 # OR Security-Code = Stored-Code2
 # THEN
 if security_code_input_num == stored_code1 or security_code_input_num == stored_code2:
 # MOVE "Y" TO Verification-Status
 verification_status = "Y"
 # DISPLAY "Access Granted. System Secured."
 print("Access Granted. System Secured.")
 # ELSE
 else:
 # DISPLAY "Invalid Security Code. Access Denied."
 print("Invalid Security Code. Access Denied.")
 # END-IF
 except ValueError:
 # Handle non-numeric input for security code
 print("Invalid Security Code (must be numeric). Access Denied.")
ELSE
else:
 # DISPLAY "Invalid Credentials. Access Denied."
 print("Invalid Credentials. Access Denied.")
END-IF.

STOP RUN.
In Python, the script naturally ends here. sys.exit() provides explicit termination.
sys.exit(0)

// Database-MFA-System

// User Input
let userInput = {
 username: "",
 password: "",
 securityCode: ""
};

// Stored Database
const storedDatabase = {
 storedUsername: " live ",
 storedPassword: " forever ",
 storedCode1: 82698,
 storedCode2: 7628429
};

// Verification Status
let verificationStatus = "N";

// Function to simulate user input
function promptUser(message) {
 return prompt(message);
}

// Main Procedure
userInput.username = promptUser("Enter Username: ");
userInput.password = promptUser("Enter Password: ");

if (userInput.username === storedDatabase.storedUsername && userInput.password === storedDatabase.storedPassword) {
 userInput.securityCode = promptUser("Enter Security Code: ");

 if (userInput.securityCode == storedDatabase.storedCode1 || userInput.securityCode == storedDatabase.storedCode2) {
 verificationStatus = "Y";
 console.log("Access Granted. System Secured.");
 } else {
 console.log("Invalid Security Code. Access Denied.");
 }
} else {
 console.log("Invalid Credentials. Access Denied.");
}

create {
 // This code initializes a process and provides instructions.
 instructions: "This code starts a process that will execute a series of tasks. Ensure that all prerequisites are met before starting the process.",
 .start
}
; Dependencies: NASM Assembler, ld Linker (standard Linux build tools)
; Assembling and Linking (Example):
; nasm -f elf64 -o program.o program.asm
; ld -o program program.o

section .data
 ; Equivalent to COBOL WORKING-STORAGE SECTION constants and literals

 ; User Input Prompts (from DISPLAY statements)
 prompt_user db "Enter Username: ", 0 ; Null-terminated string for helper
 prompt_pass db "Enter Password: ", 0 ; Null-terminated string
 prompt_code db "Enter Security Code: ", 0 ; Null-terminated string

 ; Stored Database Values (Equivalent to VALUE clauses)
 ; 05 Stored-Username PIC X(20) VALUE "live".
 stored_user db "live " ; Padded with spaces to 20 bytes
 stored_user_len equ 20

 ; 05 Stored-Password PIC X(20) VALUE "forever".
 stored_pass db "forever " ; Padded with spaces to 20 bytes
 stored_pass_len equ 20

 ; 05 Stored-Code1 PIC 9(5) VALUE 82698.
 ; Stored as numeric value for comparison
 stored_code1_val dq 82698

 ; 05 Stored-Code2 PIC 9(7) VALUE 7628429.
 ; Stored as numeric value for comparison
 stored_code2_val dq 7628429

 ; 01 Verification-Status PIC X VALUE "N".
 verification_status db "N"

 ; Output Messages (from DISPLAY statements)
 msg_granted db "Access Granted. System Secured.", 0xA, 0 ; Added newline (0xA) and null terminator
 msg_denied_code db "Invalid Security Code. Access Denied.", 0xA, 0 ; Added newline and null
 msg_denied_creds db "Invalid Credentials. Access Denied.", 0xA, 0 ; Added newline and null

section .bss
 ; Equivalent to COBOL WORKING-STORAGE SECTION variables without VALUE clause

 ; 01 User-Input.
 ; 05 Username PIC X(20).
 input_user resb 21 ; Reserve 20 bytes for data + 1 for potential newline/processing

 ; 05 Password PIC X(20).
 input_pass resb 21 ; Reserve 20 bytes for data + 1

 ; 05 Security-Code PIC 9(7).
 input_code resb 8 ; Reserve 7 bytes for digits + 1

section .text
 global _start ; Linker entry point

;--
; Helper function to print a null-terminated string
; Arg: rdi = address of the null-terminated string
; Uses syscall: sys_write
; Clobbers: rax, rsi, rdx, rdi, rbx
;--
print_string_z:
 push rdi ; Save original pointer if needed later
 mov rbx, rdi ; Use rbx to find the end of the string
.loop:
 cmp byte [rbx], 0 ; Check for null terminator
 je .done
 inc rbx
 jmp .loop
.done:
 sub rbx, rdi ; rbx now holds the length
 mov rax, 1 ; syscall number (sys_write)
 mov rsi, rdi ; address of string to write
 mov rdx, rbx ; length of string
 mov rdi, 1 ; file descriptor 1 (stdout)
 syscall
 pop rdi ; Restore original pointer
 ret

;--
; Helper function to read input from stdin
; Args: rdi = buffer address, rsi = buffer size
; Returns: rax = number of bytes read (excluding potential trailing newline)
; Uses syscall: sys_read
; Clobbers: rax, rdi, rsi, rdx, rbx
;--
read_input:
 mov rax, 0 ; syscall number (sys_read)
 mov rdx, rsi ; buffer size (max bytes to read)
 mov rsi, rdi ; buffer address
 mov rdi, 0 ; file descriptor 0 (stdin)
 syscall ; Kernel reads input, rax = bytes read or -1 on error

 ; Check for read error or EOF
 cmp rax, 0
 jle .read_error ; If bytes read <= 0, handle as error/EOF

 ; Remove trailing newline (0xA) if present
 mov rbx, rax ; Save original byte count read in rbx
 dec rax ; Point rax to the index of the last character read
 cmp byte [rsi + rax], 0xA ; Compare the last byte with newline character
 jne .no_newline ; If it's not a newline
1000
, the actual length is rbx

 ; It was a newline, rax already holds the length *without* the newline
 jmp .read_done
.no_newline:
 mov rax, rbx ; Restore original count (rbx) if no newline found
.read_done:
 ret
.read_error:
 ; On error or EOF, return 0 bytes read
 mov rax, 0
 ret

;--
; Helper function to convert ASCII string to unsigned integer
; Args: rdi = string pointer, rsi = length of string segment to convert
; Returns: rax = integer value, rcx = 0 on success, 1 on error (non-digit found)
; Clobbers: rax, rbx, rcx, rdx
; Note: Simple implementation, no overflow check.
;--
atoi:
 mov rax, 0 ; Initialize result accumulator to 0
 mov rcx, 0 ; Initialize index/counter to 0
 mov rbx, 10 ; Base for decimal conversion
.loop:
 cmp rcx, rsi ; Have we processed all characters based on length?
 jge .done ; Yes, jump to done

 movzx rdx, byte [rdi + rcx] ; Get current character into dl (zero-extend to rdx)

 ; Validate if the character is a digit '0'-'9'
 cmp dl, '0'
 jl .error ; If less than '0', it's not a digit
 cmp dl, '9'
 jg .error ; If greater than '9', it's not a digit

 ; Convert character digit to integer value
 sub dl, '0' ; '0' becomes 0, '1' becomes 1, etc.

 ; Update the result: result = result * 10 + digit
 imul rax, rax, rbx ; Multiply current result by 10
 add rax, rdx ; Add the new digit's value

 inc rcx ; Move to the next character index
 jmp .loop

.done:
 mov rcx, 0 ; Set return code to 0 (success)
 ret

.error:
 mov rax, 0 ; Return 0 on error (or could return specific error value)
 mov rcx, 1 ; Set return code to 1 (error)
 ret

;--
; Main program logic starts here
; Equivalent to COBOL PROCEDURE DIVISION
;--
_start:
 ; DISPLAY "Enter Username: " WITH NO ADVANCING.
 mov rdi, prompt_user ; Load address of prompt string
 call print_string_z ; Call helper to print it

 ; ACCEPT Username.
 mov rdi, input_user ; Load buffer address
 mov rsi, 21 ; Max buffer size
 call read_input ; Read user input
 mov r12, rax ; Store actual length read (excluding newline) in r12

 ; DISPLAY "Enter Password: " WITH NO ADVANCING.
 mov rdi, prompt_pass ; Load address of prompt string
 call print_string_z ; Call helper to print it

 ; ACCEPT Password.
 mov rdi, input_pass ; Load buffer address
 mov rsi, 21 ; Max buffer size
 call read_input ; Read user input
 mov r13, rax ; Store actual length read (excluding newline) in r13

 ; IF Username = Stored-Username AND Password = Stored-Password
 ; Check Username length first
 cmp r12, stored_user_len ; Compare input length with expected length (20)
 jne .invalid_credentials ; If lengths differ, credentials invalid

 ; Compare Username content (fixed length)
 mov rdi, input_user ; First string (input)
 mov rsi, stored_user ; Second string (stored)
 mov rcx, stored_user_len ; Length to compare (20)
 cld ; Clear direction flag (forward comparison)
 repe cmpsb ; Repeat compare string byte while equal
 jne .invalid_credentials ; If comparison failed (ZF=0), credentials invalid

 ; Check Password length
 cmp r13, stored_pass_len ; Compare input length with expected length (20)
 jne .invalid_credentials ; If lengths differ, credentials invalid

 ; Compare Password content (fixed length)
 mov rdi, input_pass ; First string (input)
 mov rsi, stored_pass ; Second string (stored)
 mov rcx, stored_pass_len ; Length to compare (20)
 cld
 repe cmpsb ; Repeat compare string byte while equal
 jne .invalid_crede
1000
ntials ; If comparison failed (ZF=0), credentials invalid

 ; THEN (Credentials matched)
.mfa_check:
 ; DISPLAY "Enter Security Code: " WITH NO ADVANCING.
 mov rdi, prompt_code ; Load address of prompt string
 call print_string_z ; Call helper to print it

 ; ACCEPT Security-Code.
 mov rdi, input_code ; Load buffer address
 mov rsi, 8 ; Max buffer size (7 digits + potential newline)
 call read_input ; Read user input
 mov r14, rax ; Store actual length read (excluding newline) in r14

 ; Check if read was successful and length > 0
 cmp r14, 0
 jle .invalid_code ; Treat empty/error input as invalid code

 ; Convert Security-Code input string to integer for comparison
 mov rdi, input_code ; Address of the input string
 mov rsi, r14 ; Length of the input string
 call atoi ; Convert to integer -> result in rax, status in rcx

 ; Check if atoi conversion was successful
 cmp rcx, 0
 jne .invalid_code ; If atoi failed (rcx=1, non-digit input), code is invalid

 ; rax now holds the integer value entered by the user

 ; IF Security-Code = Stored-Code1 OR Security-Code = Stored-Code2
 ; Compare input integer (rax) with Stored-Code1
 mov rbx, [stored_code1_val] ; Load stored numeric value 1
 cmp rax, rbx
 je .access_granted ; If equal, jump to grant access

 ; Compare input integer (rax) with Stored-Code2
 mov rbx, [stored_code2_val] ; Load stored numeric value 2
 cmp rax, rbx
 je .access_granted ; If equal, jump to grant access

 ; ELSE (Security code did not match either stored code)
 jmp .invalid_code ; Jump to invalid code handling

 ; THEN (Security code matched)
.access_granted:
 ; MOVE "Y" TO Verification-Status
 mov byte [verification_status], "Y" ; Update status flag

 ; DISPLAY "Access Granted. System Secured."
 mov rdi, msg_granted ; Load address of success message
 call print_string_z ; Print the message
 jmp .exit_program ; Proceed to program termination

 ; ELSE (Security code was invalid)
.invalid_code:
 ; DISPLAY "Invalid Security Code. Access Denied."
 mov rdi, msg_denied_code ; Load address of invalid code message
 call print_string_z ; Print the message
 jmp .exit_program ; Proceed to program termination

 ; ELSE (Credentials were invalid)
.invalid_credentials:
 ; DISPLAY "Invalid Credentials. Access Denied."
 mov rdi, msg_denied_creds ; Load address of invalid credentials message
 call print_string_z ; Print the message
 jmp .exit_program ; Proceed to program termination

.exit_program:
 ; STOP RUN.
 mov rax, 60 ; syscall number (sys_exit)
 xor rdi, rdi ; exit code 0 (successful termination)
 syscall ; Make the system call to exit
ATO: Authorization to Operate
Focus: Ensuring secure system functionality.
Software design:
Develop access control lists (ACLs) that define user roles and permissions explicitly.
Use certificate-based authentication to validate users and devices.
Schedule regular security audits within the application and automate compliance checks.
Create a “pre-launch” scanning process for security vulnerabilities before systems go live.
create {
 // Initialization and instructions.
 instructions: "This software implements access control, certificate-based authentication, security audits, and vulnerability scanning to ensure secure system functionality.",
 .start {
 // Step 1: Initialize Access Control Lists (ACLs).
 acl {
 roles: ["Admin", "User", "Guest"],
 permissions: {
 Admin: ["read", "write", "delete"],
 User: ["read", "write"],
 Guest: ["read"]
 }
 }
 // Step 2: Implement Certificate-Based Authentication.
 certificate {
 validation: {
 issuer: "TrustedAuthority",
 expiration-check: "enabled"
 }
 }
 // Step 3: Schedule Regular Security Audits.
 audit {
 frequency: "monthly",
 automated-checks: ["access violations", "system updates"]
 }
 // Step 4: Pre-launch Vulnerability Scanning.
 prelaunch-scan {
 scan-modules: ["network integrity", "malware detection"],
 resolve-before-launch: "critical issues"
 }
 }
}

 IDENTIFICATION DIVISION.
 PROGRAM-ID. Authorization-to-Operate.
 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 ACL-Database.
 05 Role PIC X(10) VALUE "Admin".
 05 Permission PIC X(20) VALUE "read, write, delete".

 01 Certificate-Details.
 05 Issuer PIC X(30) VALUE "TrustedAuthority".
 05 Expiration PIC X(10) VALUE "2025-12-31".

 01 Audit-Schedule.
 05 Frequency PIC X(10) VALUE "Monthly".

 01 Vulnerability-Scan.
 05 Module1 PIC X(20) VALUE "Network Integrity".
 05 Module2 PIC X(20) VALUE "Malware Detection".

 PROCEDURE DIVISION.
 DISPLAY "Initializing Access Control Lists...".
 DISPLAY "Role: " Role ", Permissions: " Permission.

 DISPLAY "Validating Certificate...".
 IF Issuer = "TrustedAuthority"
 AND Expiration > "2025-04-25"
 THEN
 DISPLAY "Certificate Valid."
 ELSE
 DISPLAY "Invalid Certificate. Access Denied."
 END-IF.

 DISPLAY "Scheduling Security Audits...".
 DISPLAY "Frequency: " Frequency.

 DISPLAY "Performing Pre-Launch Vulnerability Scanning...".
 DISPLAY "Scanning Modules: " Module1 ", " Module2.
 DISPLAY "Critical Issues Resolved. Ready to Operate.".

 STOP RUN.

Features Included:
Access Control Lists (ACLs): Role-based permissions are defined explicitly in both examples.
Certificate-Based Authentication: Validation of certificates ensures secure user/device operations.
Automated Security Audits: Regular checks are scheduled to maintain system compliance.
Pre-Launch Scanning: Vulnerabilities are analyzed and resolved before deployment.

ATD: Advanced Threat Detection
Focus: Identifying sophisticated threats.
Software design:
Incorporate machine learning models to detect anomalies in user behavior or network traffic.
Develop modules to analyze log files for patterns consistent with attacks.
Use sandboxing to safely inspect and analyze suspicious files or code in isolation.
Real-time monitoring systems with alert mechanisms for detected threats.

· create {
· // Initialization and instructions.
· instructions: "This software detects sophisticated threats using anomaly detection, log analysis, sandboxing, and real-time monitoring with alerts.",
· .start {
· // Step 1: Initialize Threat Detection System.
· detection-system {
· machine-learning {
· model: "Anomaly-Detection",
· training-data: ["user-behavior", "network-traffic"],
· threshold: "0.95"
· }
· }
· // Step 2: Analyze Log Files for Attack Patterns.
· log-analysis {
· log-files: ["syslog", "auth.log"],
· patterns: ["multiple failed login attempts", "unexpected network activity"]
· }
· // Step 3: Implement Sandboxing for Suspicious Files.
· sandbox {
· isolation: "enabled",
· scan-modules: ["file-behavior", "malware-signatures"]
· }
· // Step 4: Real-Time Monitoring and Alert System.
· monitoring {
· alert-mechanisms: ["email", "SMS", "dashboard-alerts"],
· response-time: "immediate",
· alerts: ["unauthorized access detected", "suspicious file execution"]
· }
· }
· }
 IDENTIFICATION DIVISION.
 PROGRAM-ID. Advanced-Threat-Detection.
 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 Threat-Parameters.
 05 ML-Threshold PIC 9(4)V99 VALUE 0.95.
 05 Suspicious-Patterns PIC X(30) VALUE "Multiple Failed Logins".
 05 Isolation-Status PIC X(8) VALUE "Enabled".
 05 Alert-Methods PIC X(30) VALUE "Email, SMS, Dashboard".

 01 Real-Time-Monitoring.
 05 Unauthorized-Access-Flag PIC X(3) VALUE "N".

 PROCEDURE DIVISION.
 DISPLAY "Initializing Threat Detection System...".
 DISPLAY "Machine Learning Threshold: " ML-Threshold.

 DISPLAY "Analyzing Log Files for Patterns...".
 IF Suspicious-Patterns = "Multiple Failed Logins"
 THEN
 DISPLAY "Threat Detected! Initiating Sandboxing...".
 DISPLAY "Isolation Status: " Isolation-Status.

 DISPLAY "Real-Time Alerts Sent via: " Alert-Methods.
 MOVE "Y" TO Unauthorized-Access-Flag
 ELSE
 DISPLAY "No Threats Detected. Monitoring Continues.".
 END-IF.

 DISPLAY "Monitoring System Active. Waiting for Alerts...".
 STOP RUN.
Imagine a system that learns regular user activity, like logging in at specific times or visiting certain websites.
An ML model flags anomalies, such as a user suddenly accessing the system from another country late at night. This suggests unauthorized access.
If a spike in data usage occurs that doesn't fit the typical pattern (e.g., downloading gigabytes of sensitive files), the system raises an alert.
In COBOL, a threshold (e.g., "abnormal behavior score above 0.95") triggers actions such as isolating the user's session or revoking access temporarily until verified.
2. Log File Analysis
Consider a log file tracking login attempts. It records each failed or successful attempt and includes timestamps.
The software scans logs and notices 15 failed login attempts in a short timeframe, indicating a brute-force attack.
Another example: Analyzing a network log shows an IP address sending irregular amounts of data, a sign of data exfiltration.
Both the create code and COBOL system would take these patterns and initiate protective measures, like locking the affected account or disconnecting suspicious network activity.
3. Sandboxing Suspicious Files
A file attached to an email looks harmless but acts oddly when opened (e.g., it starts accessing system files).
Before allowing the file to run, the sandbox isolates it in a virtual environment to study its behavior safely.
If the file tries to copy sensitive data or execute commands without permission, the sandbox blocks it and marks it as malware.
For example, the sandbox might detect a script within a PDF file attempting unauthorized access to user credentials. It alerts administrators before any damage occurs.
4. Real-Time Monitoring and Alerts
The system monitors activities in real-time, such as login attempts, file transfers, or changes to permissions.
If an unauthorized user gains access or someone attempts to modify admin rights, the software sends an alert via email, SMS, or displays a dashboard warning.
For instance, an admin receiving an SMS might see: “Alert! Suspicious user behavior detected: multiple failed logins followed by file access.”
Real-time alerts help administrators act immediately, preventing further security breaches.

Explanation of Features
Machine Learning Anomaly Detection:
The create code includes an ML model trained on user behavior and network traffic.
In COBOL, the threat detection threshold ensures anomalies exceeding the limit trigger actions.
Log File Analysis:
Both versions examine logs for attack patterns (e.g., failed login attempts).
Sandboxing Suspicious Files:
Suspicious files are isolated for further examination, limiting potential damage.
Real-Time Monitoring and Alerts:
Real-time alerts are implemented in both formats to notify administrators immediately of unauthorized access or other issues.
ATS: Automated Threat Systems
Focus: Reacting to and neutralizing threats.
Software design:
Build response automation scripts that quarantine infected systems or restrict access during a breach.
Integrate event-driven triggers for specific types of threats (e.g., DDoS attacks, unauthorized logins).
Use decision-making algorithms to categorize threats and initiate appropriate countermeasures.
Combine with ATD for real-time detection and immediate response.
create {
 // Initialization and instructions.
 instructions: "This Automated Threat System detects and neutralizes threats by quarantining infected systems, triggering event-based responses, and using decision-making algorithms.",
 .start {
 // Step 1: Initialize Threat Response Automation.
 response-automation {
 actions: {
 quarantine: "infected-system",
 restrict-access: "unauthorized-users"
 }
 }
 // Step 2: Define Event-Driven Triggers.
 event-triggers {
 threats: ["DDoS attack", "unauthorized login"],
 responses: {
 "DDoS attack": "block IP address, reroute traffic",
 "unauthorized login": "lock account, send alert"
 }
 }
 // Step 3: Decision-Making Algorithm.
 decision-engine {
 criteria: {
 severity-level:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. Automated-Threat-System.
 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 Threat-Parameters.
 05 Threat-Type PIC X(20).
 05 Severity-Level PIC X(10).
 05 Action-Quarantine PIC X(30) VALUE "Infected System Quarantined".
 05 Action-Restrict PIC X(30) VALUE "Unauthorized Access Restricted".

 01 Event-Triggers.
 05 DDoS-Response PIC X(50) VALUE "Blocked IP and Rerouted Traffic".
 05 Unauthorized-Login PIC X(50) VALUE "Locked Account and Sent Alert".

 01 Monitoring-Tools.
 05 Anomaly-Detection PIC X(20) VALUE "Active".
 05 Real-Time-Alerts PIC X(20) VALUE "Enabled".

 PROCEDURE DIVISION.
 DISPLAY "Monitoring System Active...".
 DISPLAY "Enter Detected Threat Type: " WITH NO ADVANCING.
 ACCEPT Threat-Type.

 IF Threat-Type = "DDoS Attack"
 THEN
 DISPLAY DDoS-Response
 DISPLAY Action-Quarantine
 ELSE IF Threat-Type = "Unauthorized Login"
 DISPLAY Unauthorized-Login
 DISPLAY Action-Restrict
 ELSE
 DISPLAY "Threat Type Unknown. Escalating to Security Team.".
 END-IF.

 DISPLAY "Severity Assessment in Progress...".
 DISPLAY "Enter Severity Level (Low, Medium, High): " WITH NO ADVANCING.
 ACCEPT Severity-Level.

 IF Severity-Level = "High"
 THEN
 DISPLAY "Blocking System and Notifying Admin...".
 ELSE
 DISPLAY "Monitoring Threat. Awaiting Updates...".
 END-IF.

 STOP RUN.
Examples in Plain English
1. Quarantining Infected Systems
Suppose a computer starts sending large volumes of traffic to random IPs (a symptom of being part of a botnet). The system quarantines the infected computer, disconnecting it from the network to stop further damage.
2. Event-Driven Triggers
A DDoS attack floods the network with traffic. The software automatically blocks the offending IP addresses and reroutes traffic to ensure availability for legitimate users.
When someone tries to log in repeatedly with incorrect credentials, their account is locked, and the admin is notified.
3. Decision-Making Algorithms
A detected threat is classified based on severity. For a low-severity threat, the system monitors it. For a high-severity threat, such as malware spreading, the system blocks access and alerts the security team.
4. Combining ATS with ATD
An anomaly detection tool notices a sudden surge in data transfers from an unusual location. Real-time alerts are sent, and the system restricts access to critical files until the issue is resolved.
5. Real-Time Alerts
If a user is detected attempting unauthorized actions, like accessing admin privileges without authorization, the system immediately sends a text message alert to the admin team.

ATV: Anti-Tampering Verification
Focus: Ensuring systems remain untampered.
Software design:
Develop cryptographic hash functions to verify the integrity of files or firmware.
Include mechanisms to compare checksums and report anomalies.
Build audit trails for changes, paired with user or device authentication logs.
Use secure boot sequences to verify the integrity of the software stack during startup.
create {
 // Initialization and instructions.
 instructions: "This Anti-Tampering Verification system checks file integrity, verifies checksums, builds audit trails, and ensures secure boot sequences to prevent tampering.",
 .start {
 // Step 1: Cryptographic Hash Functions.
 hash-function {
 algorithm: "SHA-256",
 input: ["system files", "firmware"],
 output: "file-integrity-hash"
 }
 // Step 2: Compare Checksums.
 checksum-verification {
 files: ["critical_config.sys", "secure_firmware.bin"],
 actions: {
 mismatch: "alert-admin, lock-system"
 }
 }
 // Step 3: Build Audit Trails.
 audit-trail {
 log-events: ["file-modification", "user-authentication"],
 paired-logs: ["device-ID", "timestamp"]
 }
 // Step 4: Implement Secure Boot.
 secure-boot {
 sequence-verification: "enabled",
 checks: ["BIOS integrity", "firmware integrity"],
 alerts: ["report anomaly during startup"]
 }
 }
}
 IDENTIFICATION DIVISION.
 PROGRAM-ID. Anti-Tampering-Verification.
 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 Tampering-Parameters.
 05 Hash-Algorithm PIC X(10) VALUE "SHA-256".
 05 File-Checksum PIC X(64).
 05 Expected-Checksum PIC X(64).
 05 Audit-Log PIC X(100).
 05 Secure-Boot-Status PIC X(10) VALUE "Enabled".

 PROCEDURE DIVISION.
 DISPLAY "Checking File Integrity using Hash Function...".
 DISPLAY "Algorithm: " Hash-Algorithm.
 DISPLAY "Enter File Checksum: " WITH NO ADVANCING.
 ACCEPT File-Checksum.

 DISPLAY "Enter Expected Checksum: " WITH NO ADVANCING.
 ACCEPT Expected-Checksum.

 IF File-Checksum NOT = Expected-Checksum
 THEN
 DISPLAY "Checksum Mismatch! Alerting Admin and Locking System...".
 MOVE "File Tampered" TO Audit-Log
 ELSE
 DISPLAY "File Integrity Verified.".
 END-IF.

 DISPLAY "Building Audit Trails...".
 DISPLAY "Logging Events with Device ID and Timestamp...".

 DISPLAY "Verifying Secure Boot Sequence...".
 IF Secure-Boot-Status = "Enabled"
 THEN
 DISPLAY "Secure Boot Active. System Startup Verified.".
 ELSE
 DISPLAY "Anomaly Detected During Startup. Reporting...".
 END-IF.

 STOP RUN.
Examples in Plain English
1. Cryptographic Hash Functions
A hash function like SHA-256 generates a unique digital fingerprint for each file. If a system file has been changed (even by one character), the hash won’t match its original fingerprint, indicating tampering.
2. Checksum Verification
Imagine a critical configuration file has a checksum value of 123abc. The software periodically calculates the checksum of the file and compares it to the stored 123abc. If the checksum is now 456xyz, it alerts the admin because the file has been altered.
3. Building Audit Trails
When a user modifies a file or logs in, the system creates a record. For example:
“User X modified config.sys at 10:05 AM on Device Y.”
These logs help track who made changes and when, enabling quick identification of suspicious actions.
4. Secure Boot Sequence
During startup, the system checks the integrity of the BIOS and firmware to ensure no tampering occurred. For instance:
If malware altered the firmware, the system detects this anomaly during boot and halts startup while notifying the admin.
5. Reporting Anomalies
If any tampering is detected during startup or regular checks, the system takes immediate action (e.g., locking the affected component, disconnecting it from the network) and sends alerts for investigation.

ATX: Active Threat Exchange
Focus: Sharing threat intelligence.
Software design:
Establish APIs for secure communication between organizations’ systems.
Use standardized data formats like STIX (Structured Threat Information eXpression) for sharing intelligence.
Implement encryption for all exchanged threat data to prevent interception.
Create real-time dashboards for monitoring and sharing updates on emerging threats.
create {
 // Initialization and instructions.
 instructions: "This Active Threat Exchange system securely shares threat intelligence using APIs, STIX format, encryption, and real-time dashboards.",
 .start {
 // Step 1: Establish APIs for Secure Communication.
 api-communication {
 endpoints: {
 organization1: "https://org1-threat-api.com",
 organization2: "https://org2-threat-api.com"
 },
 protocols: ["HTTPS", "REST"],
 authentication: "OAuth 2.0"
 }
 // Step 2: Use STIX Data Format for Threat Intelligence.
 threat-intelligence-format {
 standardized-format: "STIX",
 attributes: ["threat-type", "indicators", "response-actions"]
 }
 // Step 3: Implement Data Encryption.
 encryption {
 algorithm: "AES-256",
 keys: {
 public: "organization1-key",
 private: "organization2-key"
 },
 exchange-method: "Secure Key Exchange Protocol"
 }
 // Step 4: Create Real-Time Dashboards.
 dashboards {
 components: {
 visualization: ["charts", "heatmaps", "logs"],
 updates: "live",
 alerts: ["emerging threats", "resolved issues"]
 }
 }
 }
}
 IDENTIFICATION DIVISION.
 PROGRAM-ID. Active-Threat-Exchange.
 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 Threat-Exchange-Parameters.
 05 API-Endpoints.
 10 Org1-Endpoint PIC X(50) VALUE "https://org1-threat-api.com".
 10 Org2-Endpoint PIC X(50) VALUE "https://org2-threat-api.com".
 05 Encryption-Algorithm PIC X(10) VALUE "AES-256".
 05 STIX-Format PIC X(15) VALUE "STIX Format".
 05 Dashboard-Components PIC X(100) VALUE "Charts, Heatmaps, Logs".

 PROCEDURE DIVISION.
 DISPLAY "Establishing Secure Communication via API...".
 DISPLAY "Connecting to Endpoint: " Org1-Endpoint.
 DISPLAY "Connecting to Endpoint: " Org2-Endpoint.

 DISPLAY "Using Standardized Threat Intelligence Format: " STIX-Format.
 DISPLAY "Encrypting Data with Algorithm: " Encryption-Algorithm.

 DISPLAY "Initializing Real-Time Dashboard...".
 DISPLAY "Dashboard Components Active: " Dashboard-Components.
 DISPLAY "Alerts Enabled for Emerging Threats and Resolved Issues.".

 DISPLAY "Active Threat Exchange System Online. Secure Intelligence Sharing Active.".

 STOP RUN.
Examples in Plain English
1. Establishing APIs for Secure Communication
APIs act as bridges between organizations. For example:
Organization A detects a malware strain and shares its details via https://org1-threat-api.com.
Organization B receives this information using a secure connection and updates its systems.
2. Using Standardized STIX Format
STIX (Structured Threat Information eXpression) ensures all data is shared in a common format. For instance:
"Threat Type: Ransomware. Indicators: Encrypted Files. Response Action: Isolate Network."
By using STIX, both organizations quickly understand the details without compatibility issues.
3. Implementing Data Encryption
Encryption protects shared data from interception. For example:
Threat intelligence sent by Organization A is encrypted using AES-256 and decrypted by Organization B using shared keys.
If intercepted, the data remains unreadable to unauthorized parties.
4. Real-Time Dashboards
Dashboards display live updates of threats. For example:
A heatmap shows regions targeted by phishing attacks.
Charts visualize increasing DDoS attempts over time.
Logs list incoming threats with timestamps, allowing organizations to act promptly.
5. Alerts for Emerging Threats
Alerts notify organizations when new threats appear. For instance:
"New ransomware strain detected in the UK. Suggested Response: Patch Vulnerabilities."

ATG: Advanced Threat Guard
Focus: Proactive threat prevention.
Software design:
Introduce heuristic algorithms to predict potential vulnerabilities before exploitation.
Implement frequent automatic updates to patch known vulnerabilities.
Use network segmentation to limit the impact of a threat if breached.
Include simulated attacks (penetration testing) to strengthen the system over time.
create {
 // Initialization and instructions.
 instructions: "This Advanced Threat Guard system prevents threats using heuristic algorithms, frequent updates, network segmentation, and penetration testing.",
 .start {
 // Step 1: Introduce Heuristic Algorithms.
 heuristic-algorithms {
 prediction-method: "pattern recognition",
 vulnerability-detection: ["weak passwords", "open ports"],
 action: "flag potential risks for resolution"
 }
 // Step 2: Implement Automatic Updates.
 automatic-updates {
 update-frequency: "daily",
 patch-types: ["security vulnerabilities", "system bugs"],
 testing-before-deployment: "enabled"
 }
 // Step 3: Use Network Segmentation.
 network-segmentation {
 segments: {
 "critical-data": "restricted access",
 "general-data": "normal access"
 },
 impact-mitigation: "limit breach to single segment"
 }
 // Step 4: Simulated Attacks (Penetration Testing).
 penetration-testing {
 test-types: ["phishing simulations", "SQL injection tests"],
 frequency: "monthly",
 reports: "detailed logs of vulnerabilities"
 }
 }
}
 IDENTIFICATION DIVISION.
 PROGRAM-ID. Advanced-Threat-Guard.
 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 Threat-Guard-Parameters.
 05 Heuristic-Method PIC X(20) VALUE "Pattern Recognition".
 05 Vulnerabilities PIC X(50) VALUE "Weak Passwords, Open Ports".
 05 Update-Frequency PIC X(10) VALUE "Daily".
 05 Network-Segment PIC X(50) VALUE "Critical Data: Restricted Access, General Data: Normal Access".
 05 Penetration-Test PIC X(50) VALUE "Phishing, SQL Injection".

 PROCEDURE DIVISION.
 DISPLAY "Using Heuristic Algorithms to Predict Vulnerabilities...".
 DISPLAY "Method: " Heuristic-Method.
 DISPLAY "Detected Vulnerabilities: " Vulnerabilities.

 DISPLAY "Implementing Automatic Updates...".
 DISPLAY "Update Frequency: " Update-Frequency.
 DISPLAY "Testing Patches Before Deployment...".

 DISPLAY "Applying Network Segmentation to Restrict Access...".
 DISPLAY "Segments and Access Control: " Network-Segment.

 DISPLAY "Conducting Simulated Attacks for Penetration Testing...".
 DISPLAY "Test Types: " Penetration-Test.
 DISPLAY "Generating Reports for Vulnerabilities Detected.".

 STOP RUN.
Examples in Plain English
1. Heuristic Algorithms
Imagine software that predicts vulnerabilities, such as identifying open network ports that hackers might exploit. It flags these issues for administrators to resolve before an attack.
2. Automatic Updates
The system automatically installs patches daily. For example:
A new vulnerability in a web browser is identified. The software downloads and applies an update to fix this flaw without requiring manual intervention.
3. Network Segmentation
Critical data, such as financial records, is stored in a restricted network segment that only authorized users can access.
If a breach occurs in the general segment, it doesn’t affect the critical segment due to segmentation.
4. Simulated Attacks (Penetration Testing)
The software simulates phishing emails to test employee awareness. For example:
It logs who clicked the email and accesses fake login forms, helping improve training programs.
It also tests for SQL injection vulnerabilities in web applications and generates reports for developers to fix the flaws.
5. Impact Mitigation
If a vulnerability is exploited, the system limits the attack’s impact to the breached network segment while safeguarding other areas.

ATB: Anti-Tampering Barriers
Focus: Physical or digital security against tampering.
Software design:
Build encryption layers to secure stored and transmitted data.
Embed security seals in software that can detect and log tampering attempts.
Provide alerts when unusual changes are detected in sensitive modules.
Employ redundancy to maintain system reliability despite tampering attempts.
create {
 // Initialization and instructions.
 instructions: "This Anti-Tampering Barriers system secures data with encryption, detects tampering using security seals, provides alerts, and employs redundancy for system reliability.",
 .start {
 // Step 1: Build Encryption Layers.
 encryption-layers {
 storage: {
 encryption-type: "AES-256",
 applied-on: ["database", "backup-files"]
 },
 transmission: {
 encryption-type: "TLS 1.3",
 applied-on: ["network traffic", "API endpoints"]
 }
 }
 // Step 2: Embed Security Seals.
 security-seals {
 detection-method: "file-hash comparison",
 sensitive-modules: ["critical_config.sys", "firmware.bin"],
 actions-on-tampering: ["log-attempt", "alert-admin"]
 }
 // Step 3: Provide Alerts.
 alert-system {
 monitored-modules: ["system-core", "user-authentication"],
 notification-methods: ["email", "SMS", "dashboard"],
 response
 IDENTIFICATION DIVISION.
 PROGRAM-ID. Anti-Tampering-Barriers.
 ENVIRONMENT DIVISION.
 DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 Encryption-Parameters.
 05 Storage-Encryption PIC X(10) VALUE "AES-256".
 05 Transmission-Encryption PIC X(10) VALUE "TLS 1.3".

 01 Security-Seals.
 05 File-Hash PIC X(64).
 05 Expected-Hash PIC X(64).
 05 Tampering-Log PIC X(50) VALUE "Tampering Detected. Admin Notified.".

 01 Alert-System.
 05 Notification-Methods PIC X(50) VALUE "Email, SMS, Dashboard".

 01 Redundancy-Settings.
 05 Components PIC X(50) VALUE "Server Cluster, Data Replication".
 05 Failover-Status PIC X(15) VALUE "Automatic".

 PROCEDURE DIVISION.
 DISPLAY "Encrypting Data for Storage and Transmission...".
 DISPLAY "Storage Encryption: " Storage-Encryption.
 DISPLAY "Transmission Encryption: " Transmission-Encryption.

 DISPLAY "Checking Security Seals...".
 DISPLAY "Enter Current File Hash: " WITH NO ADVANCING.
 ACCEPT File-Hash.
 DISPLAY "Enter Expected File Hash: " WITH NO ADVANCING.
 ACCEPT Expected-Hash.

 IF File-Hash NOT = Expected-Hash
 THEN
 DISPLAY Tampering-Log
 ELSE
 DISPLAY "File Integrity Verified.".
 END-IF.

 DISPLAY "Monitoring System Modules for Tampering...".
 DISPLAY "Alerting Admin via: " Notification-Methods.

 DISPLAY "Ensuring System Redundancy...".
 DISPLAY "Redundant Components: " Components.
 DISPLAY "Failover Status: " Failover-Status.

 STOP RUN.

Examples in Plain English
1. Building Encryption Layers
Imagine your system encrypts data stored in databases and backup files using AES-256. This ensures that even if someone accesses the raw data, they cannot read it without the encryption key.
All transmitted data, such as user logins or API calls, is encrypted using TLS 1.3 to prevent eavesdropping during network communication.
2. Embedding Security Seals
Think of security seals as digital locks. For example:
A system file, critical_config.sys, is monitored using a hash value (a unique fingerprint of its content).
If the hash of the file changes, it means the file has been tampered with. The system logs this attempt and alerts the administrator.
3. Providing Alerts
If unauthorized changes occur in sensitive modules like the system core or user authentication processes, alerts are sent immediately.
For example, if the system core detects unusual behavior, an email and SMS are sent to the admin while a warning is displayed on the monitoring dashboard.
4. Employing Redundancy
Redundant systems, such as server clusters and data replication, ensure system reliability even during tampering.
For instance, if one server is compromised, the system automatically switches to another server (failover) without disrupting user services.
5. Real-Time Monitoring
The software continuously monitors for tampering attempts and proactively takes actions like disconnecting compromised modules or alerting users about potential risks.

