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Divergence: 

Let 1 2( , )( ,( ), , )) (F x y x y f x yf be the velocity field of a fluid flowing in the plane, and that the first 

partial derivatives of  1 2 and f f are continuous at each point in a region R. Suppose A is a small rectangle 

with one corner at ( , )x y , whose sides are parallel to the coordinate axes, and such that A R . Also, 

suppose that the side lengths are  and x y  . 
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Notice that the vector field is dotted with the vector in the direction of the red arrows to denote the rate at 
which the fluid is leaving the rectangle in that direction. To approximate the flow rate at the point (x, y), 
we calculate the approximate flow rates across each edge in the directions of the red arrows, add these 

rates up, then divide the sum by the area of A. To get the actual area, we allow 0 and 0.x y     

The fluid flow rate across the  
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When  you add the top and bottom flow rates, you get  
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When you add the right and left flow rates, you get 
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The approximations are due to the continuity of the partial derivatives of 1 2and .f f  Therefore, the flux 

across the boundary is given by 1 2( )
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. Since we still have to divide by the area, we get  
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The figures below represent the velocity field of a gas flowing in the xy-plane. What is the divergence of 
each vector field and what is its physical meaning? 

 
 

(a) Uniform expansion or compression: ( , ) ( , )F x y cx cy  

(b) Uniform rotation: ( , ) ( , )F x y cy cx   

(c) Shearing Flow: ( , ) ( ,0)F x y y  

(d) Whirlpool Effect: 
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k-th component of Curl and Circulation Density 
 
" This idea gives some sense of how the fluid is circulating around axes located at different points and 
perpendicular to the region." (Thomas, p. 934) This is called the circulation density, and we will later find 
out that it is the third coordinate function of a more general concept we call, the curl.  
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We use the exact same concepts as we did to compute the divergence.  

Top 
1( , )x y yf x     

Bottom 
1( , )xf y x  

Right 
2 ( , )x xf y y    

Left 
2 ( , )f x y y   

 
When  you add the top and bottom flow rates, you get  
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When you add the right and left flow rates, you get 
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The approximations are due to the continuity of the partial derivatives of 1 2and .f f  Therefore, the flux 

across the boundary is given by 1 2( )
f f
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The figures below represent the velocity field of a gas flowing in the xy-plane. What is the curl of each 
vector field and what is its physical meaning? 

 
 

(a) Uniform expansion or compression: ( , ) ( , )F x y cx cy  

(b) Uniform rotation: ( , ) ( , )F x y cy cx   

(c) Shearing Flow: ( , ) ( ,0)F x y y  

(d) Whirlpool Effect: 
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"The k-th component of the curl at a point, P,  gives a way to measure how fast and in what direction a 
small paddle wheel spins if it is put into the water at the point P with its axis perpendicular to the plane 
and parallel to (0,0,1)." (Thomas, p. 935) 
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Green's Theorem 
Recall that in section 16.2, we defined the flow of a vector field , F, along a curve,  C, and the outward 
pointing flux of a vector field, F, across a curve, C, with normal vector n is 

 Flux across  o ·f 
C

nC F F ds   

Also, recall that we computed a differential form of the flux of F across a simple closed curve, C, given 
by  

1 2Flux across  of ·
C

ff dyC F dx   

Green's Theorem relates the flux of a vector field across a simple closed curve with the divergence of the 
vector field, and the flow of a vector field along a simple closed curve with the circulation density of the 
vector field.   

To see the relationship, let [ , ] , [ ,) | ]( , }{ a b y c dR x y x   be the rectangle with boundary paths, Ci. 

Let C be the concatenation of all the curves, Ci, which yields a clockwise boundary path for R.  
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Note that y is constant over the curves 13 and C C , then 
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A similar method can be used to show that  
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Greens Theorem for Flux: 
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Exercise: Prove the following other version of Green's Theorem. 

 
Proof: 


