Multivariable and Vector Calculus 16.8 Unified Divergence Theorem

Review of Stoke’s Theorem
Many of you have asked about the difference between Stokes” Theorem and Green’s Theorem, so I will
try to elucidate for you. First, let us look at the statements.

THEOREM 5—Green’s Theorem (Circulation-Curl or Tangential Form) Let C be
a piecewise smooth, simple closed curve enclosing a region R in the plane. Let
F = Mi + Nj be a vector field with M and N having continuous first partial
derivatives in an open region containing R. Then the counterclockwise circu-
lation of F around C equals the double integral of (curl F) - k over R.
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If you notice, the curve C is a planar curve living in the xy-plane. However, Green’s Theorem relates the
circulation of F around C is the double integral of the k-th component of the curl of F over the region
bounded by C.

THEOREM 6—Stokes’ Theorem  Let S be a piecewise smooth oriented surface
having a piecewise smooth boundary curve C. Let F = Mi + Nj + Pk be a
vector field whose components have continuous first partial derivatives on an
open region containing S. Then the circulation of F around C in the direction
counterclockwise with respect to the surface’s unit normal vector n equals the
integral of V. X F+n over S.
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In Stokes’” Theorem, the curve, C, is a space curve and the region it bounds is an orientable smooth
surface. As in Green’s Theorem, Stokes’ Theorem relates the circulation around the curve with the double

integral of the curl of the vector field over the region bounded by the curve.
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FIGURE 16.58 A hemisphere and a disk,
FIGURE 16.57 Comparison of Green’s each with boundary C (Examples 2 and 3).

Theorem and Stokes’ Theorem.
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THEOREM 7—Curl F = 0 Related to the Closed-Loop Property IfV X F = 0at
every point of a simply connected open region D in space, then on any piecewise-
smooth closed path C in D,

f F-dr = 0.

FIGURE 16.65 Stokes’ Theorem also
holds for oriented surfaces with holes.

The following diagram summarizes the results for conservative fields defined on con-
nected, simply connected open regions.

Theorem 2,

Section 16.3
F conservativeon D < F= Vvf onD
Theorem 3, Vector identity (Eq. 8)
Section 16.3 (continuous second

partial derivatives)
fF-dr=0 < V x F = 0 throughout D
z Theorem 7
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Domain's simple
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Stokes' Theorem
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Divergence Theorem

Remember in section 16.4, Green’s Theorem, we learned about the divergence, or flux density of a vector
field, and one of the versions of Green’s Theorem, related outward flux of a vector field across a curve
with the divergence of the vector field over the region bounded by the curve. However, the curve and
region were planar.

THEOREM 4—Green's Theorem (Flux-Divergence or Normal Form) Let C be a
piecewise smooth, simple closed curve enclosing a region R in the plane. Let
F = Mi + Nj be a vector field with M and N having continuous first partial
derivatives in an open region containing R. Then the outward flux of F across C
equals the double integral of div F over the region R enclosed by C.
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The last theorem of the class relates the outward flux of a vector field, F, across a smooth orientable
surface with the integral of the divergence of the vector field, V-F , over the three-dimensional domain
that was bounded by the surface.

THEOREM 8—Dbivergence Theorem  Let F be a vector field whose components
have continuous first partial derivatives, and let S be a piecewise smooth oriented
closed surface. The flux of F across S in the direction of the surface’s outward
unit normal field n equals the integral of V - F over the region D enclosed by the
surface:

é]F-ndo-=£/V-FdV. (2)
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G @ FIGURE 16.68 A uniformly expanding
FIGURE 16.67 Velocity fields of a gas flowing in space (Example 1). vector field and a sphere (Example 2).
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We will sketch the proof for a particular case of a surface whose projection onto the xy-plane is a region,
ny , for which the z-coordinate of the surface can be written as a function of (X, y) in ny . For general
regions, we will break up the smooth orientable surface into piecewise surfaces that do satisfy this

property.
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FIGURE 16.69 We prove the Divergence FIGURE 16.71 The region D enclosed by
Theorem for the kind of three-dimensional the surfaces S| and S, projects vertically
region shown here. onto R, in the xy-plane.

If F(x,y,2)=(M(X,Y,2),N(X,Y,2),P(X,Y,2)) then we will only show

JfPn ds= J1f, S av

The lower surface will be f,(X,Y) and the upper surface will be written as f,(X,Y). The rest of the

components of the integral can be proven the same way.

oP 2(x.y) OP
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= H P(X,y, f,(X,¥)) = P(x, Y, f,(x,y))dxdy

Since the surface can be parameterized by the xy plane, then the surface area element will be (0,0,1) for the
upper part of the surface and (0,0,-1) for the lower part of the surface. Therefore, the flux across the surface

can be computed by

[[Pds = [[P(x.y, T, (x, y)dxdy

S

and
[ Pds =—[[P(x.y. f,(x, y))dxdy

oP
Adding up the two flux, we get the flux across S. Therefore, HIDa_ dv = H P-n dS. Using this same
Z s

idea, we prove the other components and then the general form of the Divergence Theorem.
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Green’s Theorem and Its Generalization to Three Dimensions

Normal form of Green’s Theorem: ‘?{F. nds = f/ V-F dd
X

Divergence Theorem: [/F'ndg = /]/V-Fdr/
Ky b

Tangential form of Green’s Theorem: y{F-dr s //V X F-kdA
¢

Stokes’ Theorem: ){F-dr = //\7 X Frndo
¢ 5

A Unifying Fundamental Theorem

The integral of a differential operator acting on a field over a region equals the
sum of the field components appropriate to the operator over the boundary of the
region.

THE END
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