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Review of Stoke’s Theorem 
Many of you have asked about the difference between Stokes’ Theorem and Green’s Theorem, so I will 
try to elucidate for you. First, let us look at the statements. 

 
If you notice, the curve C is a planar curve living in the xy-plane. However, Green’s Theorem relates the 
circulation of F around C is the double integral of the k-th component of the curl of F over the region 
bounded by C.  

 
In Stokes’ Theorem, the curve, C, is a space curve and the region it bounds is an orientable smooth 
surface. As in Green’s Theorem, Stokes’ Theorem relates the circulation around the curve with the double 
integral of the curl of the vector field over the region bounded by the curve.  
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Divergence Theorem 
Remember in section 16.4, Green’s Theorem, we learned about the divergence, or flux density of a vector 
field, and one of the versions of Green’s Theorem, related outward flux of a vector field across a curve 
with the divergence of the vector field over the region bounded by the curve. However, the curve and 
region were planar.  

 
The last theorem of the class relates the outward flux of a vector field, F, across a smooth orientable 
surface with the integral of the divergence of the vector field, F , over the three-dimensional domain 
that was bounded by the surface.  
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We will sketch the proof for a particular case of a surface whose projection onto the xy-plane is a region, 

xyR , for which the z-coordinate of the surface can be written as a function of (x, y) in xyR . For general 

regions, we will break up the smooth orientable surface into piecewise surfaces that do satisfy this 
property. 

              
 

If ( , , ) ( ( , , ), ( , , ), ( , , ))F x y z M x y z N x y z P x y z  then we will only show  
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The lower surface will be 1( , )f x y  and the upper surface will be written as 2 ( , )f x y . The rest of the 

components of the integral can be proven the same way.  
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Since the surface can be parameterized by the xy plane, then the surface area element will be (0,0,1) for the 
upper part of the surface and (0,0,-1) for the lower part of the surface. Therefore, the flux across the surface 
can be computed by 
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Adding up the two flux, we get the flux across S. Therefore,   
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idea, we prove the other components and then the general form of the Divergence Theorem. 
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THE END‼‼ 
 
 


