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1. The polynomial zn

Let w = zn for some n ∈ Z.
Then w = (reiθ)n = rneniθ.

It is clear from this that z = r
1
n eiθ is a solution.

However, so is z = r
1
n ei(θ+2πn ).

Hence, zn is a mapping from the complex z-plane to the complex w-plane,
which wraps the punctured disc around itself 5 times and then is glued together
at the ends. As we have already found, the nth root function is a n-valued
function for which each value is in one of the n sectors of equal area given by
the following construction:
Let S0 = {z ∈ C | 0 ≤ arg(z) < 2π

n }.
Let S1 = {z ∈ C | 2πn ≤ arg(z) < 4π

n }
and Sk = {z ∈ C | 2kπn ≤ arg(z) < 2kπ+π

n }.
Then Sn = S0.
We can also view this phenomenon as n distinct functions,

φk : C→ Sk.

We call φ0 the principal branch of nth root .
Since winding around the origin in the z-plane results in 5 winds around the
origin in w-space, it follows that the pull-back of one wind around the origin in
w space would only be one-fifth of a wind in z-space. Hence, if we started at one
branch of nth root and wound around the origin in w-space, we would end up at
the next branch of nth root in z-space. Yet, we can avoid all of this confusion by
omitting the portion of the domain space that causes all these problems. Namely,
the positive real axis.
If we may a ”cut ” along the positive real axis, and prohibit ourselves from
crossing this axis, then the branch problem is avoided. We call this a branch cut.
We call the origin a branch point because winding around it causes us to move
from one branch to another.

Can a similar analysis be made for p(z) = (z − a)n, where a is a complex
number?
Algebraically, if w = reiθ = (z − a)n then z − a = |r| 1n ei( θ+2π

n ), which implies

z = |r| 1n ei(
θ+2π
n ) + a.

Geometrically, we can compose p with a translation by a, Ta(z) = z + a which
maps bijectively and continuously onto the complex plane, and see that, topolog-
ically, the map acts identically on the plane with the exception that the branch
point is no longer the origin, but a.

Date: January 22, 2008.

1



2

2. The exponential function

The function exp(z) = ez = ex+iy = exeiy is like zn on steroids. Since
| exp(z)| = e<(z) and arg(z) = =(z), we can see that every horizontal strip of
length 2π maps to the entire punctured complex plane. In fact,for every k, the
line, Lk = {a + 2πik | a ∈ R , k ∈ Z}, maps to the positive real axis. So we
can imagine that the exponential function rolls the plane into a cylinder which
wraps around itself infinitely many times. Although, the fact that the length
of the image vector increases exponentially would be lost by this interpretation.
The exponential function is not surjective onto the complex plane because the
length of the image is given by the exponential of the real part of z, which is
never zero. Hence

exp : C→ C \ {0}
Recall, C is a group under addition, and C∗ = C \ {0} is a group under multi-
plication.
Since

exp(z + w) = exp(z) exp(w)

then we can see that the exponential function is a group homomorphism, which
means it sends addition to multiplication. The kernel of the map, or the preimage
of the identity 1, is the set {2πik | k ∈ Z}. This implies that the exponential
map is not an isomorphism, but

exp : C/< 2πik >→ C∗

is an isomorphism.

[caption=

3. The Inverse of the exponential function

To find an inverse of exp(z), we set exp(z) = w.
If z = x+ iy where x, y ∈ R, then

w = exeiy.

This yields

|w| = ex which implies x = log(|w|)
and

arg(w) = y.
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However, z′ = x+ iy + 2πi also maps to w via the exponential function. Hence
for every w in the image space, there exist many z ∈ C in the domain space on a
vertical line through log(|w|) equally spaced at intervals of 2π in the imaginary
direction.

To show that log(z) has a branch point at 0, consider z = reiθ. Then

log(z) = log(reiθ)

= log(r) + log(eiθ

= log(r) + iθ

Now wrap around the origin once in the clockwise direction. This has increased
you argument by 2π, but z = rei(θ+2π), so

log(z) = log(r) + i(θ + 2π).

Reiterating indefinitely will yield infinitely many solutions to w = log(z). Thus,
wrapping around zero causes us to leap from one branch of log to another,
without hope of ever returning.

We define the principal branch of log to be the branch for which the image of
the positive real axis is real. In other words, the branch which maps to the set
given by D = {x+ iy|x ∈ R , 0 ≤ y < 2π}.

4. Branch of Inverse

This leads us to a discussion of the function za where a is a complex number.
There are two ways to define this function.
First, one may think of z = reiθ, allowing us to write za = raeiaθ.
Unfortunately, this does not help us understand the function much, so one may
also allow a = c+id. Then we could write za = rc+idei(c+id)θ. By distribution, we
achieve za = rcrideicθ−dθ = rc(e−dθ)rideic. As you can see, this does little to help
us understand the mapping. It is more common to define za = exp(a log(z)) =
exp(a(log(r) + iθ))), where log(z) is the principal branch of logarithm. If a =
x+ iy, one can also view them as

exp(a log(z)) = exp((x+ iy)(log(a))) = ex log(a)ei log(a).

Do we need a branch of inverse for za?
If so, what would it be?

We will soon find that all multi-valued functions can be described in terms of
branch of log. For instance,

cos(z) =
eiz + e−iz
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If w = cos(z) and log : C∗ → D is the principal branch of log mapping to D as
defined above, then

w = cos(z)

w =
eiz + e−iz

2

2weiz = (eiz)2 + 1

0 = (eiz)2 − 2weiz + 1

This is a quadratic equation with roots

eiz =
1

2
2w ±

√
4w2 − 4

eiz = w ±
√
w2 − 1

iz = log(w ±
√
w2 − 1)

z = −i log(w ±
√
w2 − 1)

Therefore,

arccos(w) = −i log(w ±
√
w2 − 1).

We can also see that

(w +
√
w2 − 1)(w −

√
w2 − 1) = w2 − (w2 − 1) = 1

and, hence, are multiplicative inverses. Since we have the property

a = bc then
1

a
= b−c,

this implies

arccos(w) = ±i log(w +
√
w2 − 1).

This last result reflects the evenness of cos(z), and the branch of log reflects the
periodicity of cosine.
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Problem 1. Express arcsin(w) in terms of log. [Hint: See if you can show that
sin(z) = cos(π2 − z).]

Problem 2. Express arctan(w) in terms of the principal branch of log.

Problem 3. Show that these functions are differentiable, and find their deriva-
tive.
You don’t have to prove the Cauchy-Riemann Equations hold. You can go the
more elegant route of using the derivative properties.

(a) log(z)
(b) arccos(z)
(c) arcsin(z)
(d) arctan(z)
(e) za

Problem 4. How can one define the “angle” between two complex numbers?
Use this to show that the locus to the equation zn = a form the vertices of a
regular polygon.
This will lead us to conformal mappings and explicitly defined stereographic
projection.

Department of Mathematics, Arkansas School of Mathematics, Sciences and the

Arts
E-mail address: baileym@asmsa.org


