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Abstract

Standard models in quantitative linguistics assume that word usage follows a fixed frequency distri-
bution, often Zipf’s law or a close relative. This view, however, does not capture the near daily varia-
tions in topics of conversation, nor the short-term dynamics of language change. In order to understand
the dynamics of human language use, we present a corpus of daily word frequency variation scraped
from online news sources every 20 min for more than 2 years. We construct a simple time-varying
model with a latent state, which is observed via word frequency counts. We use Bayesian techniques to
infer the parameters of this model for 20,000 words, allowing us to convert complex word-frequency
trajectories into low-dimensional parameters in word usage. By analyzing the inferred parameters of
this model, we quantify the relative mobility and drift of words on a day-to-day basis, while accounting
for sampling error. We quantify this variation and show evidence against “rich-get-richer” models of
word use, which have been previously hypothesized to explain statistical patterns in language.

Keywords: Bayesian modeling; Corpus methods; Quantitative linguistics

1. Introduction

As languages change, words come and go according to external influence of culture, poli-
tics, and technology (Michel et al., 2011). These changes have been examined quantitatively
on the timescale of decades (Lieberman, Michel, Jackson, Tang & Nowak, 2007), reveal-
ing the growth and death of words over time (Petersen, Tenenbaum, Havlin, & Stanley, 2012;
Petersen, Tenenbaum, Havlin, Stanley, & Perc, 2012), and relationships between language use
and external factors (Lau, Huang, Ferreira & Vul, 2019). Even on the timescale of days, word
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frequencies are complex. The use of words in, for instance, the news, will change according
to many social, cultural, and political factors, as topics come and go in public discourse—as
politicians win or lose elections, as fads come and go, or as interest in specific recent events
waxes and wanes. With improvements in data collection and computational power, there has
been an increase in corpus-based studies that study language change in large diachronic cor-
pora with improved temporal sensitivity from a variety of sources, such as news and social
media, that allow for more nuanced analyses of these complex dynamic processes (Davies,
2013, 2017; Grieve, Nini, & Guo, 2018). For example, Nini et al. applied growth modeling
to emerging words in a corpus of North American tweets to show they follow a cubic s-
curve (Grieve, Nini & Guo, 2017; Nini, Corradini, Guo, & Grieve, 2017), and other work has
shown that the perseverance of new words can be predicted by a natural selection model of
lexical evolution (Grieve, 2018). Altmann et al. show that the temporal distribution of word
usage exhibits “bursts” and “lulls” that deviate from static frequency distributions (Altmann,
Pierrehumbert, & Motter, 2009). Indeed, work suggests that factors beyond simple frequency
counts, like local frequency changes (i.e., “momentum”), contribute to language selection in
the choice of children’s names (Gureckis & Goldstone, 2009). Other work has applied dynam-
ical models to test hypotheses about cultural transmission beyond language, such as novelty
biases in baby names (O’dwyer & Kandler, 2017), and random copying as an explanation
for innovation and imitation in pop culture (Bentley, Lipo, Herzog & Hahn, 2007). Linguis-
tic changes have also been analyzed through dynamical models with the goal of parsing the
variability in word use over time, for example, by controlling for topical fluctuations in cor-
pora (Karjus, Blythe, Kirby & Smith, 2020). These models tease apart random drift from
meaningful sociocultural trends by grouping words into topics by weighted co-occurrence,
and suggest that a significant portion of the change in word frequencies can be attributed to
topical fluctuations.

Perhaps surprisingly, the complex dynamics of language usage give rise to stable statistical
“laws” that are the object of study in statistical linguistics (Altmann & Gerlach, 2016; Baayen,
2001). For instance, word frequencies approximately follow a power-law distribution (“Zipf’s
law”) (Piantadosi, 2014; Tsonis, Schultz & Tsonis, 1997; Zipf, 1936, 1949), the growth rate of
tokens in a document follows a predictable scaling relationship (“Heaps’ law”) (Heaps 1978),
and the size of a linguistic unit is systematically related to the size of its components (“Men-
zerath’s law”) (Altmann & Schwibbe, 1989; Milička, 2014). Many authors have attempted
to show how such large-scale patterns can be explained by specific dynamical patterns—for
instance, Simon (1955) showed how a stochastic process that preferentially reuses tokens can
give rise to power laws, building on earlier work by Yule (1944) (see also Lü, Zhang, and
Zhou, 2013; Mitzenmacher, 2004). Preferential reuse implements a “rich-get-richer” scheme
where if a word is used frequently, it will tend to be reused even more frequently. Mak &
Twitchell (2020) suggest there may be cognitive bases for the emergence of rich-get-richer
dynamics showing that preferential attachment can arise in semantic networks where well-
connected nodes are better at acquiring new links in paired association tasks. Importantly,
however, these kinds of in-principle statistical models have been criticized for making unre-
alistic assumptions about the processes generating language—people do not choose words at
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random—as well as not being empirically tested in any meaningful way (Herdan 1960; Howes
1968; Piantadosi 2014). Indeed, such models arguably target the wrong aspect of language:
they derive a coarse pattern like Zipf’s law with unrealistic and untested generative assump-
tions, instead of discovering and formalizing the real underlying dynamics of word usage.

Our goal here is to quantify patterns in real-world frequency use. Indeed, when detailed
patterns of word usage are examined, it becomes clear that the overall distribution of frequen-
cies (e.g., Zipf’s law) is relatively uninteresting compared to the complex dynamical patterns
which even common individual words follow. We use a novel statistical model that is able to
infer and summarize dynamical properties of words; this model provides a rich picture of how
frequencies in natural language behave, and a way to quantify the influence of specific dynam-
ical properties, including growth/decay, random noise, and momentum. We use this model to
answer basic questions about word dynamics: (1) do words that are used more frequently
tend to grow in frequency (“rich get richer”), (2) do high-frequency words tend to be the ones
that gain (or change) frequency, (3) are the observed changes in frequency well-characterized
with random-walk models, and (4) do words really change substantially in frequency, or are
apparent changes due to sampling error? For each of these questions, our analyses break the
lexicon down by part of speech and word frequency, allowing us to examine whether different
syntactic categories or word frequencies exhibit different behavior.

The model we develop is probabilistic and also flexible, meaning that its parameters can
encode a variety of qualitatively different behaviors, including simple growth, decay, oscil-
lations, self-reinforcing trends, random drift, and variations thereof as a function of part of
speech or word frequency. The key intuition behind our model is that complex dynamics can
often be summarized with a few key parameters. A close analog of our model is the dynamics
of a physical spring attached to a weight with a damper. In this simple setup, if the spring is
stretched some distance x, it experiences a restoring force proportional to a spring constant
k times how far it has moved. It may also feel a damping effect c times its velocity which
works against movement. Importantly, varying the parameters c and k through positive and
negative values leads to very different dynamics, from oscillators that return to rest, to those
which speed off to infinity with a small displacement. If one measured the precise dynam-
ics of the spring and fit parameters, one could then discover the trends in the underlying
dynamics of what might otherwise be complex-looking dynamics. Reducing the complex-
ity of word dynamics to a few key parameters shares the spirit of dimensionality reduction
techniques in machine learning (e.g., Maaten & Hinton, 2008; Tenenbaum, De Silva and
Langford, 2000; Torgerson, 1952), but relies on a model-based framework. Specifically, we
use recently tools for Bayesian inference to infer posterior distributions on the parameters of
a stochastic dynamical system, and treat these parameters as the low-dimensional characteri-
zation each word’s dynamics.

We apply this analysis to a large, novel collection of news stories gathered from the inter-
net every 20 min for 876 days from November 2015 until May 2018. This period of time has
seen significant social changes, including the 2016 presidential election, the #MeToo move-
ment, and various global and national political changes, including the beginning of the Trump
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Fig. 1. Observed log frequency counts for 12 words over 876 days. Each word displays qualitatively different
dynamics over the time period; some exhibit seasonal spikes on long (a) or short (b) timespans, while others
exhibit fluctuations related to topically relevant world events (c–h). Figures (i– l) show politically related words as
the time of collection centered around the 2016 Election (denoted by a red vertical line).

presidency. Our corpus is similar in scope to the English portion of the NOW corpus Davies
(2017), except that it was gathered independently and is distributed freely. For analysis, we
have selected the 20,000 most common words (data and analysis available on Github1). Our
analysis method notably controls for the volatility in sampling words of different frequencies
by inferring not just dynamical parameters, but each word’s latent sequence of log probabil-
ities. These latent log probabilities are not fit nor equated with relative token counts, but are
inferred in a Bayesian setup where uncertainties in these frequencies are correctly propagated
through to inferences on the dynamical parameters. We begin by presenting a qualitative pic-
ture of patterns in the word frequency corpus, and then describe the dynamical model and
the parameters.

2. Descriptive analysis

Fig. 1 shows the frequency of 12 words over the time span of the corpus. In this figure, the
x-axis is the day (starting November 2015) and the y-axis corresponds to the log frequency
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of each word, normalized by the total number of word token counts on each day. Upon first
inspection, it is clear that there are qualitatively very different trends exhibited across the
words. Seasonal trends exist, such as those intuitively exhibited every summer for the word
“summer” in Fig. 1a. A cyclical effect on much smaller timescales also exists, such as for
days of the week (Fig. 1b). Other words, such as “fire” (Fig. 1c), “violence” (Fig. 1d), “crisis”
(Fig. 1e), “Mexico” (Fig. 1g), and “privacy” (Fig. 1h), exhibit sporadic sharp peaks as they
become topically relevant to the news cycle, but do not exhibit clear linear trends of increase
or decrease over the period of observation. Still different are the dynamics of words like
“Amazon” (Fig. 1f) and “collusion” (Fig. 1i), which have linearly increasing trends during
the observed time period. These trends can be caused by individual events that spark the
word into relevancy, or instead build gradually as they gain prominence. These different paths
are shown in the qualitative difference between “Amazon,” which does not appear to have a
clearly defined event that led to this trend, and “collusion,” which began to increase shortly
after Election Day 2016 and seems to have stabilized around a new baseline mean frequency
that is significantly greater than pre-election levels.

Furthermore, since the data collection window centered around the 2016 US Presidential
Election, we can also observe substantially different trends for the words “Trump,” “Clinton,”
and “Obama” before and after the election. In Fig. 1j, the trend for the word “Trump” is
shown. The observed log frequency increases up to Election Day 2016, then levels off. An
opposite effect is seen with “Clinton,” depicted in 1(k), where a precipitous drop in frequency
follows the 2016 election. Fig. 1l depicts “Obama” which is steady up to Election Day, then
decreases following Inauguration Day 2017. These trends intuitively follow the change in
media coverage of these politicians as their careers began or ended.

One difficulty in interpreting these trends is that it is not obvious how to separate mean-
ingful changes from noise. If we assume that the number of times a word is used each day is
sampled from an underlying probability distribution over words, then just by chance, a word’s
observed day-to-day frequencies will vary with time. This makes it difficult to separate such
sampling noise from meaningful linguistic changes, or indeed to ask whether some words are
actually more volatile than others because such volatility will be dependent on frequency. We
address these concerns with a model.

3. Model-based analysis

The central assumption of our model is that each word has a latent probability of use on
each day and that this probability may vary in time. We assume that the latent probability
evolves according to a drift model with some unknown bias, analog of restoring force, and
momentum terms. Formally, we assume that each word has a baseline latent log probability µ
which is adjusted via A · t for the t’th day, plus an adjustment lt . We assume that the lt s vary
in time according to a mixture of drifting from previous values and being resampled from
a baseline distribution centered on 0. These correspond, respectively, to slow changes in the
topics under discussion in the corpus, or sudden changes due to topic changes that may be
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driven by events in the world. Formally,

lt ∼
{

Normal(B · lt−1 + C · (lt−1 − lt−2), 1) with probability logit−1(θ )
Normal(0, σ jump) with probability 1 − logit−1(θ ).

(1)

The parameter θ quantifies the relative contribution of drift versus independent sampling. We
assume θ ∼ Normal (0, 3). Thus, with probability logit−1(θ ), the word will be determined
by the previous days’ lt value via B and C. With probability 1 − logit−1(θ ), the deviation
lt will be resampled from centered around 0, corresponding to a “jump” in log frequency
over and above the mean frequency µ and linear trend A. An important difference between
our analysis and prior analyses of word frequencies is that we treat the lt as latent variables
whose influence is only observed through their influence on frequency counts:

ct ∼ Binomial(exp(µ + s · lt + A · t/T ), Nt ) (2)

where ct is how many times the word has been observed on day t , Nt is the total number
of words observed on day t , and s ∼ Exponential (1) gives the size (scale) of influence of
the lt on the outcome.2 Here, t is a variable for time, and it is scaled by T , the total number
of days, so that A corresponds to changes over the entire duration of the corpus, rather than
each day. In this model, if a word happens not to be observed on a given day (ct = 0), the
inferred probability is not undefined (or negative infinity) and in fact is inferred from the zero
count and the other parameters of the model. Thus, this model is a form of autoregressive
hidden-Markov model which treats lt as potentially autocorrelated deviation from a linear
effect µ + A · t/T on log probability.

By varying the parameters, this model is able to capture many qualitatively different kinds
of behavior. To illustrate, it is easiest to first consider the case when A = C = 0 and B ̸= 0.
Then, when B = 1, this model acts as a simple random walk on log probabilities, where
each lt is centered on lt−1. When B < 1, the value of lt tends to be less than lt−1, meaning that
deviations from µ tend to be corrected down to zero. In this situation, there is a restoring force
to push deviations lt from µ toward zero, and thus word frequency toward a µ. When B > 1, lt
will tend to be more extreme than lt−1, corresponding to rich-get-richer dynamics. For any of
these, having A < 0 will tend to bias log probabilities day-to-day down, and A > 0 will tend
to bias them up, independent of the previous day. The C term is a kind of “momentum” where
when C > 0, increases in lt will be followed with more increases; when C < 0, the model will
act to “damp” deviations from µ caused by lp. Overall, then, a rich-get-richer scheme predicts
B > 1 (the next daily deviation tends to be greater than the last) and/or C > 0 (words that
are increasing/decreasing tend to do so more in the future). Fig. 2 shows several qualitative
patterns that the model can exhibit as A, B, and C are varied. Since these parameters can
encode importantly different dynamics, and effectively reduce the dimensionality of the time
series, inferring their values from data tests between different hypotheses about how words
behave. Moreover, examination of how these parameters relate across words provides a rich
space of hypotheses that allow us to determine if words of different frequencies are engaged
in similar or different dynamics. We note that the present model differs from prior work like
(Nini et al., 2017) in that it focuses on a stochastic model with very simple (linear) underlying
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Fig. 2. Simulations of possible dynamics arising from different parameterizations of the model (µ = −10, θ = 5,
σ jump = 0.5, s = 1, unless otherwise stated). The “baseline” starting frequency is shown by the red line. (a-b) A
pure, random noise model where each day is randomly sampled from a normal distribution centered at the baseline,
with small variance s = 0.1 (a) and large varaince s = 0.8 (b). Two examples of rich-get-richer dynamics in (c)
and (d) where recent deviations from baseline increase in subsequent days. And (e-f) decay models where daily
variations decrease in conjunction with the overall frequency, where the parameter C determines the “momentum”;
the extent to which changes are followed by more changes, or are damped.

dynamics, as opposed to growth curves. This simplification was made intentionally due to the
difficulties of large-scale statistical inference (e.g., with hundreds of latent lt for each word
and 20,000 words), but an important direction for future work will be in connecting these
modeling approaches by including nonlinear dynamics.

We applied this model to the data using an implementation in RStan Carpenter et al. (2017).
Analyses were run on words tagged with part of speech (thus “run” the noun and “run” the
verb were considered as different words) (see Methods). We collapsed tagger output to a
simplified tag set consisting of nouns (NN), adjectives (JJ), verbs (VB), adverbs (RB), and
other function words (FW).

4. Results

Fig. 3 shows each word’s µ (baseline frequency) on the x-axis, and inferred model
parameters on the y-axis. The levels (colors) represent the density of words in the given
category. Subplots are divided by part of speech (columns) and key model parameters (rows).
In general, due to the large sample size of 20,000 total words, we focus on the qualitative
distribution of parameter values shown in these contours. We discuss each of the patterns
these words exhibit in turn.
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Fig. 3. Hexbin density plots showing the relationship between each key parameter and µ for words in a given part
of speech. A reference line at y = 0 has been added for the A and C parameters.

4.1. Rich words do not get richer

Rich-get-richer models hypothesize that words that are high in frequency, or increasing
in frequency will continue to do so. Our model provides evidence that this is not how word
frequencies change on the timescale of our corpus. The main difference between our results
and previous rich-get-richer analyses is that instead of arguing how theoretical distributions
might arise from statistical processes (Yule 1944; Simon 1955), we instead parameterize
the model is such a way that we can empirically test a variety of rich-get-richer hypotheses.
Specifically, our model could potentially have discovered four different versions of rich-get-
richer dynamics. If A were positively correlated with µ, then words with high frequency
would tend to continue to grow in frequency since A represents the overall increase in
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frequency. However, this is not the case: just in raw numbers, A is negatively correlated with
µ (rτ = −0.23, p < 0.001). Second, if A tended to be positive for high-frequency words and
negative elsewhere, that might support a version of rich-get-richer dynamics. This is shown
not to be true, especially for the large open class categories NN and VB: as µ increases, the
average A tends toward zero, which reflects no overall change. For the function words FW, A
tends to be zero uniformly throughout the range of µ, which should be expected if these are
a stable core of the linguistic system.

A third way that rich-get-richer dynamics could arise is if B > 1. In this case, daily devi-
ations lt would tend to be followed by larger daily deviations on lt+1. However, for 99.6%
of words, B < 1, indicating that the average daily deviation is smaller than the previous day,
in the drift part of the model. This represents the opposite of rich-get-richer dynamics where
deviations from µ tend to be squashed in the future.

Finally, if C > 0, then words that increased in frequency previously would tend to increase
more on the next day. Our results show that C is typically negative, uniformly across word
categories, or tending toward 0 for function words. This indicates that language tends to work
against changes, so that increases in lp one day will tend to be followed by decreases in lp

the next.

4.2. Words frequencies change, but not all change is random drift

Fig. 3 also shows that there are systematic patterns and trends in word frequencies, as
shown by the many words with A ̸= 0, scale > 0, and so on. Moreover, inference of these
parameters is done on latent probabilities rather than the actual frequency counts, meaning
that these patterns within words are not due to sampling error. Instead, these patterns reflect
the best guess about the underlying patterns of change on the latent log probabilities.

Some derivations of Zipf’s law derive it from random walks on logarithmic scales (e.g.,
Kawamura & Hatano, 2002), but our analyses show that there are likely factors at play beyond
random walks. There are two random walk models that our results provide strong evidence
against. If each word’s daily frequency was independently sampled, then we would find θ ≪ 0
for all words; instead, we find θ > 0. The distribution of θ values depicted in Fig. 3 shows
that the majority of words have a θ value above 0, indicating that there exists meaningful
autocorrelation between the lt . A second simple random walk might be one where each word’s
value was a random adjustment to the previous day, corresponding to θ > 0 and A ≈ 0, B ≈ 1,
C ≈ 0). Instead, we find that B < 1, meaning that each day’s lt tends to be closer to zero
than the previous; and in fact, many words have nonzero A and nonzero C, meaning that we
find evidence for other factors at play beyond simple random walk dynamics. However, it is
important to note that the model is still stochastic—it is a random walk of some sort—but one
that formalizes nontrivial influences on usage.

4.3. Part of speech differences in burstiness

While the general distribution of parameters is similar across parts of speech, there are
some key differences that demonstrate that word dynamics are not the same for all types of
words. Altmann et al. (2009) have previously shown the semantic type of a word can influence
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Fig. 4. Relationship between inferred probability µ and total corpus frequency count (left). Average A parameters
for words as a function of overall log probability µ. Due to data sparsity, words with µ < −15 have been adjusted
to have µ = −15 (right).

the extent to which it exhibits “bursty” recurrence patterns, but their model only looked at the
dynamics with respect to the gaps between uses and not any other local frequency changes.
In our model, the scale parameter, which scales the daily adjustments lt , can be thought
of as capturing the “burstiness” of the word since it quantifies how large of a change the lt
correspond to. This parameter has much higher variance for nouns than function words, which
suggests the former are subject to much larger daily adjustments. This would be expected if
nouns are the words that primarily vary with topic, and function words tend not to vary daily.
Similarly, the A parameter has the largest range for nouns, followed by adjectives and verbs,
compared to relatively little variation for function words, which are tightly packed around
A ≈ 0. These suggest that variability is driven by open-class, content words.

4.4. Low-frequency words experience “churn”

Fig. 4 (right) shows the average linear trend in log probability, A, as a function of µ in order
to better visualize how frequency typically changes. Since A represents a scalar adjustment
to the mean of the normal distribution from which a word’s daily log frequency is sampled,
positive values of A would indicate the word is increasing in frequency.3 This figure shows
that very low µ words tend to have A > 0 corresponding to increases in overall frequency.
Words with µ between around −12 and −6 tend to have a negative A, while the highest µ
words tend to have A ≈ 0. This illustrates again that higher frequency words do not tend
to increase in frequency. In fact, among the low-frequency words, the opposite is true: the
lowest-frequency words tend to increase, and moderate frequency words tend to decrease.
For example, some words that are infrequent (low µ), but are rising in frequency (high A)
are: “bitcoin” (µ = −14.20 , A = 3.45), “timeline” (–14.07, 3.34), “bosnia” (–14.17, 3.03),
and “meddling” (–14.02, 3.46), while words that are churning out of the lexicon (higher µ
with negative A) are: “miles” (µ = −8.80 , A = −0.40), “syrian” (–8.97, –0.73), “turkey”
(–8.84, –0.98), and “trial” (–8.67, –0.85). This trend may be related to the two “regimes” of
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word frequency reported in Ferrer i Cancho and Solé (2001), and also may reflect a kind of
regression to the mean for low frequencies, but note that the sampling errors are controlled to
some extent because these parameters are estimated over and above lt . This generally provides
support for a kind of global stability in word distributions, despite documented variation: there
is a stable, high-frequency core, and a collection of lower-frequency words that come in and
out of use.

4.5. Overall probability and µ

Finally, Fig. 4 (left) shows the relationship between inferred µ for each word (x-axis) and
the word’s total frequency in the corpus (y-axis). The very high correlations here indicate that
generally the model’s inferences align with the overall frequency, especially for closed-class
words like function words. However, the plot for nouns shows that there are a substantial
proportion of low-frequency nouns which tend to have slightly different µ than would be
expected from their overall frequency. This indicates that the total frequencies observed for
these words in a corpus are subject to additional forces like those modeled here. In fact, one
does not discover their “true” overall probability without modeling these additional factors,
showing that studies of word frequency may need to model dynamical patterns in usage rather
than rely on total frequency.

5. Discussion and conclusion

We have shown how a simple probabilistic model can capture some of the patterns gov-
erning day-to-day changes in lexical usage. This model was applied to a massive corpus of
news articles collected over multiple years and sheds light on the dynamics giving rise to
previously observed statistical patterns. By inferring the parameters of this model from data,
we were able to test key assumptions of statistical language models. These results show that
words vary in frequency, over and above sampling error, with measurable differences across
parts of speech and frequency. Our results also show that previously proposed rich-get-richer
dynamics do not match patterns in word usage. Instead, these results suggest that there is a
relatively stable core of high-frequency words, with some nontrivial dynamics as moderate
frequency words tend to become rare, and rare words tend to become frequent. Our results
show typically negative momentum terms (C < 0) corresponding to word dynamics which do
not self-reinforce, but push words back to an average baseline value, and θ > 0 corresponding
to strong day-to-day autocorrelation.

The corpus collected for this paper is a powerful new data set for future linguistic research.
Its focus on news articles makes it especially informative about local and emerging social
trends, and its high temporal resolution highlights temporary fluctuations. Indeed, when it
is recognized that languages change on the order of days—if not minutes—it becomes clear
that the laws of statistical linguistics are really statements about the average behavior of a
very complex dynamical system. Fully understanding the dynamics of language use and the
statistical laws that emerge from it will require formalizing and testing causal theories of the
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underlying dynamics of human communication. Our model, for instance, is consistent with
several different possible causal accounts of parameter change: for example, A > 0 could
reflect changes in communicative need, changes in style, changes in sociolinguistic demo-
graphic factors, and so on. The model is agnostic about these causes, and in fact, its results
motivate further work to search for and evaluate such factors.

Our general approach has illustrated that one first step in understanding complex dynamics
like those found in word frequencies may be to parameterize a space of possible dynamical
patterns, and infer the parameters of these dynamics from the data. If the model is appro-
priately constructed, existing theoretical proposals may map on to particular values of these
parameters; inference of the parameters, therefore, effectively works to tests the theories. In
this way, model-bases analyses function somewhat like dimensionality-reduction techniques,
providing a simpler, low-dimensional characterization of what is sure to be a complex con-
junction of social forces.

6. Methods

Data collection: The data were collected using a custom script implemented that scraped
online articles every 20 min for 873 days over a 903 day span beginning on November 25,
2015. This script used the HT ML :: ContentExtractor Perl library in order to extract text
from HTML news articles. Previously loaded URLs were stored in database in order to ensure
that news stories were only added to the database once (note this has the possibility of adding
the same story twice if it appears at different URLs). For simplicity, the extracted text was
converted to lowercase and words were defined as between 1 and 12 consecutive letters which
contained a vowel (aeiouy) and no numbers. Word tokens were then summed for each day and
stored, along with the day’s total token count. These are publicly available on the [ ]. Though
our analysis focused on daily variations in unigram frequency, we have made available the full
dataset, including bigrams, allowing further fine-grained analysis by other research groups.

This script was left to run on a Linux server for several years, with several interruptions for
server maintenance, building maintenance, a large-scale DDOS attack, and network outages.
This led to a few gaps (the longest of which was 26 days between day 677 and 703 – This gap
is visible in the graphs in Fig. 1). These gaps do not substantially affect the data analysis here
because the true log probability for each day is treated as a latent variable, and these gaps are
simply days with zero counts, which have imputed probabilities.

Tagging: Tagged was done using the Natural Language Toolkit (NLTK) part-of-speech
tagger in Python, but we collapsed to a simplified tag set consisting of nouns (NN), adjectives
(JJ), verbs (VB), adverbs (RB), and other function words (FW) (including cardinal numbers,
prepositions, particles, personal pronouns, modals, conjunctions, determiners, and predeter-
miners). Otherwise, tags with fewer than 10 word types were removed.

Statistical inference: We used Stan’s implementation of the No-U-Turn Sampler (NUTS)
(Carpenter et al. (2017)) which performs similarly to a traditional Hamiltonian Monte Carlo
algorithm without user specified step sizes (Hoffman & Gelman, 2014). The Stan script is
available on Github,4 including R scripts for our analysis and visualization. To do this, the
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corpus was separated into individual files for each word, and each was run separately using
GNU parallel Tange (2011). Each word was run in two separate chains with random starting
positions, for 10,000 samples. In the primary analyses, we included all words run regardless of
convergence assessment because in general the words showed good convergence properties.
For instance, the average (across words) median (within parameters, including lt , for a single
word) R̂ (Brooks & Gelman, 1998) was 1.01. The average maximum R̂ was 1.45, but this was
mostly found in the lt parameters. One challenge with this model was divergent transitions:
we found 13,257 words ran with zero divergent transitions. The Supplementary Information
shows that we find similar results when the measured words are restrained to only those with
zero divergent transitions (Fig. S1) or very small R̂ (Fig. S2).

Notes

1 https://github.com/choldawa/Word-Frequency
2 This parameterization is analogous to choosing Normal(B · lt−1 + C · (lt−1 − lt−2), s),

but easier for statistical inference.
3 Note that the y scale on this plot must be interpreted with care because these are adjust-

ments to log probability, and so the effect of A on nonlogged probability will depend on
µ.

4 https://github.com/choldawa/Word-Frequency
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Supporting Information

Additional supporting information may be found
online in the Supporting Information section at the end
of the article.

Figure S1: A version of Fig. 3 using only words with
zero divergent transitions.

Figure S2:A version of Fig. 3 where maximum R̂ <
1.1.
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