

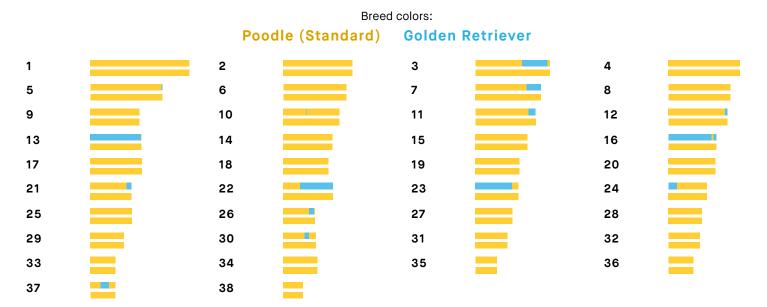
Test Date: May 10th, 2024

embk.me/montgomeryohpython

BREED ANCESTRY

Poodle (Standard) : 93.0%
Golden Retriever : 7.0%

GENETIC STATS


Predicted adult weight: **72 lbs** Life stage: **Young adult** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-48950674 Swab number: 31220910508688

BREED ANCESTRY BY CHROMOSOME

Our advanced test identifies from where Monty inherited every part of the chromosome pairs in his genome.

Test Date: May 10th, 2024

embk.me/montgomeryohpython

POODLE (STANDARD)

The Standard Poodle is a popular, water-loving dog used for centuries as a bird dog and popular pet. Poodles were established in Germany by the 15th century. Oddly enough, they are the national dog breed of France, and they were the most popular breed of dog in the United States throughout the 1960s and 70s. They're still quite popular today, owing to their intelligence, trainability, and non-shedding coats. Although well-known for their fancy fur, they're one of the most intelligent breeds of dog and require a lot of exercise and stimulation.

Fun Fact

From 1989 to 1991, John Suter raced a team of Poodles in the Iditarod. Although his teams placed in the back half of the pack, he managed to win \$2,000 in prize money before retiring his poodle team. The Iditarod has since changed its rules to specify that only northern dog breeds can compete.

Fun Fact

A Golden Retriever is also pictured in the Guinness Book of World's Records for "Most tennis balls held in mouth" (with 6). Test Date: May 10th, 2024

embk.me/montgomeryohpython

GOLDEN RETRIEVER

The Golden Retriever was developed in the early 19th century as an ideal hunting companion, able to retrieve birds on both land and water in the marshy Scottish countryside. Their friendliness and intelligence makes the both a popular family pet and an excellent working dog, well suited for being a service dog, therapy dog or for search and rescue. The third most popular breed in the US, the American and Canadian Goldens are generally lankier and darker than their British counterparts. Their wavy, feathered topcoat is water resistant, their undercoat helps them with thermoregulation and both coats have a tendency for heavy seasonal shedding. Goldens need lots of exercise (especially when younger), and their love of play and water means their owners usually get a lot of exercise too! In 2013, the 100th anniversary of Britain's Golden Retriever Club, Goldens from around the world came made the pilgrimage to the breed's birthplace in Scotland, where 222 of them posed in a single record-breaking photo. At the same time, the Golden Retriever Lifetime Study was getting started in the United States, recruiting 3,000 Golden Retrievers for a lifetime study aimed at understanding how genetics, lifestyle and environment influences healthy aging and cancer risk in Goldens.

Test Date: May 10th, 2024

embk.me/montgomeryohpython

MATERNAL LINE

Through Monty's mitochondrial DNA we can trace his mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: B1

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

HAPLOTYPE: B84

Part of the large B1 haplogroup, this haplotype occurs most frequently in Golden Retrievers, Beagles, and Staffordshire Terriers.

Test Date: May 10th, 2024

embk.me/montgomeryohpython

PATERNAL LINE

Through Monty's Y chromosome we can trace his father's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1b

For most of dog history, this haplogroup was probably quite rare. However, a couple hundred years ago it seems to have found its way into a prized male guard dog in Europe who had many offspring, including the ancestors of many European guard breeds such as Doberman Pinchers, St. Bernards, and Great Danes. Despite being rare, many of the most imposing dogs on Earth have it; strangely, so do many Pomeranians! Perhaps this explains why some Poms are so tough, acting like they're ten times their actual size! This lineage is most commonly found in working dogs, in particular guard dogs. With origins in Europe, it spread widely across other regions as Europeans took their dogs across the world.

HAPLOTYPE: Ha.44

Part of the A1b haplogroup, this haplotype occurs primarily in Poodles and Belgian Sheepdogs.

Test Date: May 10th, 2024

embk.me/montgomeryohpython

RESULT

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** variant do not produce dark hairs and will express a red pigment called pheomelanin over their entire body. The shade of red, which can range from a deep copper to white, depends on other genetic factors, including the Intensity loci. In addition to determining if a dog can develop dark hairs, the E Locus can give a dog a black "mask" or "widow's peak" unless the dog has overriding coat color genetic factors.

Dogs with one or two copies of the **E**^m variant may have a melanistic mask (dark facial hair as commonly seen in the German Shepherd Dog and Pug). In the absence of **E**^m, dogs with the **E**^g variant can have a "grizzle" phenotype (darker color on the head and top with a melanistic "widow's peak" and a lighter underside, commonly seen in the Afghan Hound and Borzoi and also referred to as "domino"). In the absence of both **E**^m and **E** variants, dogs with the **E**^a or **E**^h variants can express the grizzle phenotype. Additionally, a dog with any combination of two of the **E**^g, **E**^a, or **E**^h variants (example: **E**^g**E**^a) is also expected to express the grizzle phenotype.

No dark mask or grizzle (Ee)

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are **ee** at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the k^yk^y genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as K^Bk^y may be brindle rather than black or brown.

More likely to have a mostly solid black or brown coat (K^BK^B)

Test Date: May 10th, 2024

embk.me/montgomeryohpython

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

No impact on coat pattern (Intermediate Red Pigmentation)

RESULT

Not expressed (a^ya^t)

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Dark areas of hair and skin are not lightened (DD)

Test Date: May 10th, 2024

embk.me/montgomeryohpython

TRAITS: COAT COLOR (CONTINUED)

TRAIT RESULT Cocoa (HPS3) Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. No co alleles, not Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. expressed (NN) Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus. **B Locus (TYRP1)** Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Brown hair and skin Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. (bb) E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red". Saddle Tan (RALY) The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Not expressed (NN) Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus at allele, so dogs that do not express at are not influenced by this gene.

S Locus (MITF)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely solid colored, but may have small amounts of white (Ssp)

Test Date: May 10th, 2024

embk.me/montgomeryohpython

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "non-expressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

RESULT

One merle allele; may express merle (M*m)

Note: This locus includes several alleles. At the time this dog was genotyped Embark we could not distinguish all of the possible alleles.

Test Date: May 10th, 2024

embk.me/montgomeryohpython

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Panda White Spotting

Panda White Spotting originated in a line of German Shepherd Dogs and causes a mostly symmetrical white spotting of the head and/or body. This is a dominant variant of the KIT gene, which has a role in pigmentation.

Dogs with one copy of the I allele will exhibit this white spotting. Dogs with two copies of the I allele have never been observed, as two copies of the variant is suspected to be lethal to the developing embryo. Dogs with the **NN** result will not exhibit white spotting due to this variant.

Not expected to display Panda pattern (NN)

Test Date: May 10th, 2024

embk.me/montgomeryohpython

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2)

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two I alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely furnished (mustache, beard, and/or eyebrows) (FI)

Test Date: May 10th, 2024

embk.me/montgomeryohpython

Likely long coat (LhLh)

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.

The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

Test Date: May 10th, 2024

embk.me/montgomeryohpython

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Shedding (MC5R)

Dogs with at least one copy of the ancestral C allele, like many Labradors and German Shepherd Dogs, areLikely light sheddingheavy or seasonal shedders, while those with two copies of the T allele, including many Boxers, Shih Tzus(CC)and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2(the furnishings gene) tend to be low shedders regardless of their genotype at this gene.

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, **Likely curly coat (TT)** but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Hairlessness (FOXI3)

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth
 shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and
 Chinese Crested (other hairless breeds have different mutations). Dogs with the NDup genotype are likely
 to be hairless while dogs with the NN genotype are likely to have a normal coat. The DupDup genotype has
 never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that
 this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

Test Date: May 10th, 2024

embk.me/montgomeryohpython

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Likely not albino (NN)

Test Date: May 10th, 2024

embk.me/montgomeryohpython

Likely medium or long

muzzle (CC)

RESULT

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Unlikely to have hind dew claws (CC)

Likely normal-length

tail (CC)

Test Date: May 10th, 2024

embk.me/montgomeryohpython

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Chondrodysplasia (Chr. 18 FGF4 Retrogene)

Dogs with one or two copies of the I allele will exhibit a short-legged trait known as chondrodysplasia (CDPA). CDPA is a breed-defining characteristic of many breeds exhibiting the "short-legged, longbodied" appearance known as disproportionate dwarfism, including the corgi, dachshund and basset hound. The impact of the I allele on leg length is additive. Therefore, dogs with the II result display the largest reduction in leg length. Dogs with the **NI** genotype will have an intermediate leg length, while dogs with the **NN** result will not exhibit leg shortening due to this variant. Breeds that display disproportionate dwarfism also frequently inherit a genetic variant known as the chondrodystrophy (CDDY) variant. The CDDY variant also shortens legs (in a less significant amount than CDPA) but, secondarily, increases the risk of Type I Intervertebral Disc Disease (IVDD). Test results for CDDY are listed in this dog's health testing results under "Intervertebral Disc Disease (Type I)". In contrast, the CDPA variant has NOT been shown to increase the risk of IVDD.

Not indicative of chondrodysplasia (normal leg length) (NN)

RESULT

Less likely to have blue eyes (NN)

Blue Eye Color (ALX4) Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as

Back Muscling & Bulk, Large Breed (ACSL4)

predictive as direct tests of the mutation in some lines.

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

DNA Test Report	Test Date: May 10th, 2024	embk.me/montgomeryohpython
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1)		Larger (NN)
The I allele is associated with smaller body size.		20.90. (III)
Body Size (IGFR1)		Larger (GG)
The A allele is associated with smaller body size.		
Body Size (STC2)		Larger (TT)
The A allele is associated with smaller body size.		
Body Size (GHR - E191K)		Larger (GG)
The A allele is associated with smaller body size.		Laiger (00)
Body Size (GHR - P177L)		Larger (CC)
The T allele is associated with smaller body size.		

DNA Test Report	Test Date: May 10th, 2024	embk.me/montgomeryohpython
TRAITS: PERFORMANCE		
TRAIT		RESULT
Altitude Adaptation (EPAS1)		
found at high elevations. Dogs with at	ecially tolerant of low oxygen environments (hypoxia), suc least one A allele are less susceptible to "altitude sickne reeds from high altitude areas such as the Tibetan Mastif	ess." This tolerance (GG)
Appetite (POMC)		
dogs with no copies of the mutation (likely to have high food motivation, wh percentage, and be more prone to obe	und primarily in Labrador and Flat Coated Retrievers. Com NN), dogs with one (ND) or two (DD) copies of the mutatinich can cause them to eat excessively, have higher body esity. Read more about the genetics of POMC, and learn h st (https://embarkvet.com/resources/blog/pomc-dogs/) st.	ion are more Normal food y fat motivation (NN) now you can

Test Date: May 10th, 2024

embk.me/montgomeryohpython

HEALTH REPORT

How to interpret Monty's genetic health results:

If Monty inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Monty for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Monty is not at increased risk for the genetic health conditions that Embark tests.

Clear results

Breed-relevant (17)

Other (247)

Test Date: May 10th, 2024

embk.me/montgomeryohpython

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Monty, and may influence his chances of developing certain health conditions.

Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant)	Clear
Degenerative Myelopathy, DM (SOD1A)	Clear
Opstrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant)	Clear
GM2 Gangliosidosis (HEXB, Poodle Variant)	Clear
Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3)	Clear
Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)	Clear
Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant)	Clear
Ichthyosis, ICH2 (ABHD5, Golden Retriever Variant)	Clear
Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12)	Clear
Muscular Dystrophy (DMD, Golden Retriever Variant)	Clear
Neonatal Encephalopathy with Seizures, NEWS (ATF2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)	Clear
Osteochondrodysplasia (SLC13A1, Poodle Variant)	Clear
Osteogenesis Imperfecta (COL1A1, Golden Retriever Variant)	Clear
Progressive Retinal Atrophy, prcd (PRCD Exon 1)	Clear
Retina Dysplasia and/or Optic Nerve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant)	Clear
✓ Von Willebrand Disease Type I, Type I vWD (VWF)	Clear

Test Date: May 10th, 2024

embk.me/montgomeryohpython

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Monty. Review any increased risk or notable results to understand his potential risk and recommendations.

2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
ALT Activity (GPT)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
 Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant) 	Clear

DNA Test Report	Test Date: May 10th, 2024	embk.me/montgomeryohpython
OTHER RESULTS		
Oranine Multiple System Degeneration (SE	RAC1 Exon 4, Chinese Crested Variant)	Clear
O Canine Multiple System Degeneration (SE	RAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile Mortality (Y	ARS2)	Clear
Centronuclear Myopathy, CNM (PTPLA)		Clear
🔗 Cerebellar Hypoplasia (VLDLR, Eurasier Va	riant)	Clear
🔗 Chondrodysplasia (ITGA10, Norwegian Elk	hound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADAMTS20, I	Nova Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron 2, Nova Sco	tia Duck Tolling Retriever Variant)	Clear
Cobalamin Malabsorption (CUBN Exon 8, E	Beagle Variant)	Clear
Cobalamin Malabsorption (CUBN Exon 53,	Border Collie Variant)	Clear
Collie Eye Anomaly (NHEJ1)		Clear
Omplement 3 Deficiency, C3 Deficiency (C3)	Clear
Ongenital Cornification Disorder (NSDHL	, Chihuahua Variant)	Clear
Ongenital Hypothyroidism (TPO, Rat, Toy,	Hairless Terrier Variant)	Clear
Ongenital Hypothyroidism (TPO, Tenterfie	eld Terrier Variant)	Clear
Ongenital Hypothyroidism with Goiter (TI	PO Intron 13, French Bulldog Variant)	Clear
Ongenital Hypothyroidism with Goiter (S	_C5A5, Shih Tzu Variant)	Clear
⊘ Congenital Macrothrombocytopenia (TUB	B1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear

DNA Test Report	Test Date: May 10th, 2024	embk.me/montgomeryohpython
OTHER RESULTS		
Ongenital Myasthenic Syndrome, CMS (CO	LQ, Labrador Retriever Variant)	Clear
Ongenital Myasthenic Syndrome, CMS (CH	AT, Old Danish Pointing Dog Variant)	Clear
Ongenital Myasthenic Syndrome, CMS (CH	RNE, Jack Russell Terrier Variant)	Clear
Ongenital Stationary Night Blindness (LRIT	3, Beagle Variant)	Clear
Ongenital Stationary Night Blindness (RPE	65, Briard Variant)	Clear
Ocpper Toxicosis (Accumulating) (ATP7B)		Clear
Ocpper Toxicosis (Attenuating) (ATP7A, Labr	ador Retriever)	Clear
Ocpper Toxicosis (Attenuating) (RETN, Labra	ador Retriever)	Clear
Craniomandibular Osteopathy, CMO (SLC374	A2)	Clear
Craniomandibular Osteopathy, CMO (SLC374	A2 Intron 16, Basset Hound Variant)	Clear
Oystinuria Type I-A (SLC3A1, Newfoundland	Variant)	Clear
🔗 Cystinuria Type II-A (SLC3A1, Australian Catt	le Dog Variant)	Clear
Orstinuria Type II-B (SLC7A9, Miniature Pins	cher Variant)	Clear
Oarier Disease (ATP2A2, Irish Terrier Variant))	Clear
Day Blindness (CNGB3 Deletion, Alaskan Ma	lamute Variant)	Clear
🔗 Day Blindness (CNGA3 Exon 7, German Shep	herd Variant)	Clear
Day Blindness (CNGA3 Exon 7, Labrador Retr	iever Variant)	Clear
Day Blindness (CNGB3 Exon 6, German Shor	thaired Pointer Variant)	Clear

DNA Test Report	Test Date: May 10th, 2024	embk.me/montgomeryohpython
OTHER RESULTS		
Deafness and Vestibular Syndrome	e of Dobermans, DVDob, DINGS (MYO7A)	Clear
Demyelinating Polyneuropathy (SE	BF2/MTRM13)	Clear
Oental-Skeletal-Retinal Anomaly (MIA3, Cane Corso Variant)	Clear
Diffuse Cystic Renal Dysplasia and	d Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Varia	ant) Clear
Dilated Cardiomyopathy, DCM (RBI	M20, Schnauzer Variant)	Clear
Dilated Cardiomyopathy, DCM1 (PE)	DK4, Doberman Pinscher Variant 1)	Clear
Dilated Cardiomyopathy, DCM2 (TT)	TN, Doberman Pinscher Variant 2)	Clear
Disproportionate Dwarfism (PRKG2	2, Dogo Argentino Variant)	Clear
Ory Eye Curly Coat Syndrome (FAN	183H Exon 5)	Clear
Oystrophic Epidermolysis Bullosa	(COL7A1, Central Asian Shepherd Dog Variant)	Clear
Early Bilateral Deafness (LOXHD1 E	Exon 38, Rottweiler Variant)	Clear
Early Onset Adult Deafness, EOAD	(EPS8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
🔗 Early Onset Cerebellar Ataxia (SEL	1L, Finnish Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Doberma	an Pinscher Variant)	Clear
Ehlers-Danlos Syndrome (EDS) (Co	OL5A1, Labrador Retriever Variant)	Clear
S Enamel Hypoplasia (ENAM Deletio	n, Italian Greyhound Variant)	Clear
🔗 Enamel Hypoplasia (ENAM SNP, Pa	arson Russell Terrier Variant)	Clear
Episodic Falling Syndrome (BCAN))	Clear

DNA Test Report	Test Date: May 10th, 2024	embk.me/montgomeryohpython
OTHER RESULTS		
Exercise-Induced Collapse, EIC (DNI	M1)	Clear
Sactor VII Deficiency (F7 Exon 5)		Clear
Sactor XI Deficiency (F11 Exon 7, Kerr	ry Blue Terrier Variant)	Clear
🧭 Familial Nephropathy (COL4A4 Exon	3, Cocker Spaniel Variant)	Clear
Samilial Nephropathy (COL4A4 Exon	30, English Springer Spaniel Variant)	Clear
🧭 Fanconi Syndrome (FAN1, Basenji Va	ariant)	Clear
Setal-Onset Neonatal Neuroaxonal D	Dystrophy (MFN2, Giant Schnauzer Variant)	Clear
🧭 Glanzmann's Thrombasthenia Type I	l (ITGA2B Exon 13, Great Pyrenees Variant)	Clear
🧭 Glanzmann's Thrombasthenia Type I	I (ITGA2B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy, Krabbe	e disease (GALC Exon 5, Terrier Variant)	Clear
Glycogen Storage Disease Type IA, V	/on Gierke Disease, GSD IA (G6PC, Maltese Variant)	Clear
Glycogen Storage Disease Type IIIA,	GSD IIIA (AGL, Curly Coated Retriever Variant)	Clear
Glycogen storage disease Type VII, F and English Springer Spaniel Variant	Phosphofructokinase Deficiency, PFK Deficiency (PFI t)	KM, Whippet Clear
 Glycogen storage disease Type VII, F Wachtelhund Variant) 	Phosphofructokinase Deficiency, PFK Deficiency (PFI	KM, Clear
GM1 Gangliosidosis (GLB1 Exon 2, Po	ortuguese Water Dog Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 15, S	Shiba Inu Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 15, A	Alaskan Husky Variant)	Clear
GM2 Gangliosidosis (HEXA, Japanes	e Chin Variant)	Clear

DNA Test Report	Test Date: May 10th, 2024	embk.me/montgomeryohpython
OTHER RESULTS		
🔗 Goniodysgenesis and Glaucoma, Pectinate	Ligament Dysplasia, PLD (OLFM3)	Clear
🔗 Hemophilia A (F8 Exon 11, German Shepher	d Variant 1)	Clear
Hemophilia A (F8 Exon 1, German Shepherc	l Variant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer Variant)		Clear
Hemophilia B (F9 Exon 7, Terrier Variant)		Clear
🔗 Hemophilia B (F9 Exon 7, Rhodesian Ridget	back Variant)	Clear
Hereditary Ataxia, Cerebellar Degeneration	(RAB24, Old English Sheepdog and Gordon Setter	Variant) Clear
Hereditary Cataracts (HSF4 Exon 9, Australi	an Shepherd Variant)	Clear
Hereditary Footpad Hyperkeratosis (FAM83	G, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkeratosis (DSG1, I	Rottweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV39H2 I	ntron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosis, HNPK (SUV	39H2)	Clear
Hereditary Vitamin D-Resistant Rickets (VD	R)	Clear
🔗 Hypocatalasia, Acatalasemia (CAT)		Clear
Hypomyelination and Tremors (FNIP2, Wein	naraner Variant)	Clear
🔗 Hypophosphatasia (ALPL Exon 9, Karelian E	ear Dog Variant)	Clear
🔗 Ichthyosis (NIPAL4, American Bulldog Varia	nt)	Clear
Chthyosis (ASPRV1 Exon 2, German Sheph	erd Variant)	Clear

DNA Test Report	Test Date: May 10th, 2024	embk.me/montgomeryohpython
OTHER RESULTS		
O Ichthyosis (SLC27A4, Great Dane Variant)		Clear
🔗 Ichthyosis, Epidermolytic Hyperkeratosis (k	(RT10, Terrier Variant)	Clear
Inflammatory Myopathy (SLC25A12)		Clear
Inherited Myopathy of Great Danes (BIN1)		Clear
Inherited Selected Cobalamin Malabsorptic	on with Proteinuria (CUBN, Komondor Variant)	Clear
Intestinal Lipid Malabsorption (ACSL5, Aust	ralian Kelpie)	Clear
Junctional Epidermolysis Bullosa (LAMA3 E	xon 66, Australian Cattle Dog Variant)	Clear
Junctional Epidermolysis Bullosa (LAMB3 E	xon 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)		Clear
Juvenile Laryngeal Paralysis and Polyneuro	pathy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (DIRAS1)		Clear
🔗 L-2-Hydroxyglutaricaciduria, L2HGA (L2HGE	0H, Staffordshire Bull Terrier Variant)	Clear
⊘ Lagotto Storage Disease (ATG4D)		Clear
Laryngeal Paralysis (RAPGEF6, Miniature Budget)	ull Terrier Variant)	Clear
Late Onset Spinocerebellar Ataxia (CAPN1)		Clear
Ate-Onset Neuronal Ceroid Lipofuscinosis	, NCL 12 (ATP13A2, Australian Cattle Dog Variant)	Clear
Leonberger Polyneuropathy 1 (LPN1, ARHGE	EF10)	Clear
C Leonberger Polyneuropathy 2 (GJA9)		Clear

DNA Test Report	Test Date: May 10th, 2024	embk.me/montgomeryohpython
OTHER RESULTS		
O Lethal Acrodermatitis, LAD (MKLN1)		Clear
Leukodystrophy (TSEN54 Exon 5, Stand	ard Schnauzer Variant)	Clear
O Ligneous Membranitis, LM (PLG)		Clear
C Limb Girdle Muscular Dystrophy (SGCD,	, Boston Terrier Variant)	Clear
C Limb-Girdle Muscular Dystrophy 2D (SG	GCA Exon 3, Miniature Dachshund Variant)	Clear
O Long QT Syndrome (KCNQ1)		Clear
Lundehund Syndrome (LEPREL1)		Clear
Macular Corneal Dystrophy, MCD (CHST	6)	Clear
Malignant Hyperthermia (RYR1)		Clear
May-Hegglin Anomaly (MYH9)		Clear
Medium-Chain Acyl-CoA Dehydrogenas Variant)	se Deficiency, MCADD (ACADM, Cavalier Kin	ng Charles Spaniel Clear
Methemoglobinemia (CYB5R3, Pit Bull	Terrier Variant)	Clear
Methemoglobinemia (CYB5R3)		Clear
Microphthalmia (RBP4 Exon 2, Soft Coa	ted Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB, Sanfilippo	Syndrome Type B, MPS IIIB (NAGLU, Schipp	berke Variant) Clear
 Mucopolysaccharidosis Type IIIA, Sanfil Variant) 	lippo Syndrome Type A, MPS IIIA (SGSH Exc	on 6, Dachshund Clear
 Mucopolysaccharidosis Type IIIA, Sanfil Huntaway Variant) 	lippo Syndrome Type A, MPS IIIA (SGSH Exc	on 6, New Zealand Clear
 Mucopolysaccharidosis Type VI, Marote Variant) 	eaux-Lamy Syndrome, MPS VI (ARSB Exon 5	5, Miniature Pinscher Clear

DNA Test Report	Test Date: May 10th, 2024	embk.me/montgomeryohpython
OTHER RESULTS		
Mucopolysaccharidosis Type VII, Sly Syndr	rome, MPS VII (GUSB Exon 3, German Shepherd Var	riant) Clear
O Mucopolysaccharidosis Type VII, Sly Syndr	ome, MPS VII (GUSB Exon 5, Terrier Brasileiro Varia	ant) Clear
Multiple Drug Sensitivity (ABCB1)		Clear
Muscular Dystrophy (DMD, Cavalier King Cl	harles Spaniel Variant 1)	Clear
Musladin-Lueke Syndrome, MLS (ADAMTS)	L2)	Clear
O Myasthenia Gravis-Like Syndrome (CHRNE	, Heideterrier Variant)	Clear
🔗 Myotonia Congenita (CLCN1 Exon 23, Austr	ralian Cattle Dog Variant)	Clear
🔗 Myotonia Congenita (CLCN1 Exon 19, Labra	ador Retriever Variant)	Clear
🔗 Myotonia Congenita (CLCN1 Exon 7, Miniat	ure Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 1, Dachshund Va	ariant)	Clear
Narcolepsy (HCRTR2 Intron 4, Doberman P	inscher Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, Labrador Re	triever Variant)	Clear
Nemaline Myopathy (NEB, American Bulldo	og Variant)	Clear
Neonatal Cerebellar Cortical Degeneration	(SPTBN2, Beagle Variant)	Clear
Neonatal Interstitial Lung Disease (LAMP3)	Clear
Neuroaxonal Dystrophy, NAD (VPS11, Rottw	veiler Variant)	Clear
Neuroaxonal Dystrophy, NAD (TECPR2, Spa	nish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 1, NCL 1 (Pl	PT1 Exon 8, Dachshund Variant 1)	Clear

DNA Test Report	Test Date: May 10th, 2024	embk.me/montgomeryohpython
OTHER RESULTS		
O Neuronal Ceroid Lipofuscinosis 10, NCL 10) (CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear
Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 7, NCL 7 (N	MFSD8, Chihuahua and Chinese Crested Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Exon 2, English Setter Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Insertion, Saluki Variant)	Clear
 Neuronal Ceroid Lipofuscinosis, Cerebella Variant) 	ar Ataxia, NCL4A (ARSG Exon 2, American Staffordsl	hire Terrier Clear
Oculocutaneous Albinism, OCA (SLC45A2	Exon 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2	, Small Breed Variant)	Clear
Oculoskeletal Dysplasia 2 (COL9A2, Samo	yed Variant)	Clear
Osteogenesis Imperfecta (COL1A2, Beagl	e Variant)	Clear
Osteogenesis Imperfecta (SERPINH1, Dac	hshund Variant)	Clear
P2Y12 Receptor Platelet Disorder (P2Y12)		Clear
Pachyonychia Congenita (KRT16, Dogue c	le Bordeaux Variant)	Clear
Paroxysmal Dyskinesia, PxD (PIGN)		Clear
Persistent Mullerian Duct Syndrome, PMD	DS (AMHR2)	Clear

DNA Test Report	Test Date: May 10th, 2024	embk.me/montgomeryohpython
OTHER RESULTS		
Pituitary Dwarfism (POU1F1 In	ntron 4, Karelian Bear Dog Variant)	Clear
Platelet Factor X Receptor De	ficiency, Scott Syndrome (TMEM16F)	Clear
Polycystic Kidney Disease, PK	(D (PKD1)	Clear
Pompe's Disease (GAA, Finnis)	sh and Swedish Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKE	31 Exon 8)	Clear
Primary Ciliary Dyskinesia, PC	CD (NME5, Alaskan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PC	CD (STK36, Australian Shepherd Variant)	Clear
Primary Ciliary Dyskinesia, PC	CD (CCDC39 Exon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGXT)		Clear
Primary Lens Luxation (ADAM)	TS17)	Clear
Primary Open Angle Glaucoma	a (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucoma	a (ADAMTS10 Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucoma	a (ADAMTS10 Exon 9, Norwegian Elkhound Variant)	Clear
 Primary Open Angle Glaucoma Variant) 	a and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pe	ei Clear
Progressive Retinal Atrophy (SAG)	Clear
Progressive Retinal Atrophy (IFT122 Exon 26, Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy, E	Bardet-Biedl Syndrome (BBS2 Exon 11, Shetland Sheepdog Varia	nt) Clear
Progressive Retinal Atrophy, C	CNGA (CNGA1 Exon 9)	Clear

DNA Test Report	Test Date: May 10th, 2024	embk.me/montgomeryohpython
OTHER RESULTS		
Progressive Retinal Atrophy, crd1 (PDE6	BB, American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, crd4/cord	I (RPGRIP1)	Clear
Progressive Retinal Atrophy, PRA1 (CNG	B1)	Clear
Progressive Retinal Atrophy, PRA3 (FAN	1161A)	Clear
Progressive Retinal Atrophy, rcd1 (PDE6	6B Exon 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy, rcd3 (PDE	6A)	Clear
Proportionate Dwarfism (GH1 Exon 5, Cl	nihuahua Variant)	Clear
Protein Losing Nephropathy, PLN (NPHS	\$1)	Clear
Pyruvate Dehydrogenase Deficiency (P	DP1, Spaniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon	5, Basenji Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon	7, Beagle Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon	10, Terrier Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon	7, Labrador Retriever Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon	7, Pug Variant)	Clear
Raine Syndrome (FAM20C)		Clear
Recurrent Inflammatory Pulmonary Dise	ease, RIPD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma and Nodula	r Dermatofibrosis (FLCN Exon 7)	Clear
Sensory Neuropathy (FAM134B, Border	Collie Variant)	Clear

DNA Test Report	Test Date: May 10th, 2024	embk.me/montgomeryohpython
OTHER RESULTS		
Severe Combined Immunodeficiency, SC	ID (PRKDC, Terrier Variant)	Clear
Severe Combined Immunodeficiency, SC	ID (RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (PLP1, English	Springer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory Disease, SPA	ID, Shar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (COL11A2, Labr	ador Retriever Variant)	Clear
Skin Fragility Syndrome (PKP1, Chesapea	ake Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SCN8A, Alpine Da	achsbracke Variant)	Clear
Spinocerebellar Ataxia with Myokymia ar	nd/or Seizures (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Ata	axia 1 (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Ata	axia 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4 Exon 28, Labra	ador Retriever Variant)	Clear
Succinic Semialdehyde Dehydrogenase	Deficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, Americ	can Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, Basser	t Hound Variant)	Clear
O Thrombopathia (RASGRP1 Exon 8, Landso	eer Variant)	Clear
O Trapped Neutrophil Syndrome, TNS (VPS	13B)	Clear
O Ullrich-like Congenital Muscular Dystrop	hy (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
Illrich-like Congenital Muscular Dystrop	hy (COL6A1 Exon 3, Landseer Variant)	Clear

DNA Test Report	Test Date: May 10th, 2024	embk.me/montgomeryohpython
OTHER RESULTS		
O Unilateral Deafness and Vestibular Syr	ndrome (PTPRQ Exon 39, Doberman Pinscher)	Clear
⊘ Urate Kidney & Bladder Stones (SLC2A)	.9)	Clear
O Von Willebrand Disease Type II, Type II	vWD (VWF, Pointer Variant)	Clear
Von Willebrand Disease Type III, Type I	II vWD (VWF Exon 4, Terrier Variant)	Clear
Von Willebrand Disease Type III, Type I	II vWD (VWF Intron 16, Nederlandse Kooikerhondje Va	riant) Clear
Von Willebrand Disease Type III, Type I	II vWD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
X-Linked Hereditary Nephropathy, XLH	N (COL4A5 Exon 35, Samoyed Variant 2)	Clear
X-Linked Myotubular Myopathy (MTM1	, Labrador Retriever Variant)	Clear
X-Linked Progressive Retinal Atrophy	I, XL-PRA1 (RPGR)	Clear
X-linked Severe Combined Immunode	ficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
X-linked Severe Combined Immunode	ficiency, X-SCID (IL2RG, Corgi Variant)	Clear
Xanthine Urolithiasis (XDH, Mixed Bree	ed Variant)	Clear
🧭 β-Mannosidosis (MANBA Exon 16, Mixe	ed-Breed Variant)	Clear
Mast Cell Tumor		No result

Test Date: May 10th, 2024

embk.me/montgomeryohpython

11%

INBREEDING AND DIVERSITY

CATEGORY

Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

Your Doy's COI: 11%

RESULT

High Diversity

How common is this amount of diversity in mixed breed dogs:

High Diversity

How common is this amount of diversity in mixed breed dogs:

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.