Signals in Space: How, Where & What

Presented by Steve Bossert, exclusively for TCF2023

Today we will cover.....

Hi, my name is Steve Bossert. I think there is a biography of me in the TCF pamphlet. My amateur radio callsign is K2GOG and my email is <u>K2GOG@HVDN.ORG</u> if you would like a copy of this presentation.

✓ <u>Brief</u> history of PAST "man made" signals from space!!

✓ Where in the radio spectrum to find these signals TODAY....

 \checkmark How to find them.....

 \checkmark And what you can do once you find them!

Brief History of "Man Made" Radio Signals from "Space"

- **1946** January 1st "official" signals received back from the Moon
 - "Experimentation" in 1943 from Germany, but 3 years later.....
 - Confirmed signals in 1946.... and from New Jersey!!
 - More on this in Al Katz's "EME" presentation after this!!
- **1957** October Sputnik-1 22 days in LEO orbit
 - Transmitted at 20.005 MHz and 40.002 MHz
 - Frequencies chosen for atmospheric reasons
- **1957** November Sputnik-2 162 days in LEO orbit
 - 2nd satellite + canine "Laika" passenger + advanced telemetry
- 1958 January Explorer 1 111 days in LEO orbit
 3rd satellite. Transmitted at 108.0 MHz and 108.03 MHz
- **1958** March Vanguard 1 Still in orbit!!!
 - 4th and oldest still in orbit. Expected to decay another 190 years?
 - No longer transmitting on 108.0 MHz and 108.03 MHz.
- 1959 January Lunik 1 Stuck on the Moon after 62 hours!
 - 5th man made object in space. 19.993 MHz, 183 MHz, 102 MHz used.
 - Released a sodium cloud to help spot it. Looked like a comet!

Brief History of "Man Made" Radio Signals from "Space"

- 1961 April 1st human sent into orbit via Vostok 1
 - Poyekhali!!! Yuri Gagarin was his name and sounded like....
 - 143.625 MHz and for many missions since. Also 9.019, 20.006, 19.995 MHz
 - Audio, telemetry and VIDEO transmitted
- 1961-1962 May, July & August– Shepard, Grissom, Titov, Glenn next into space
 - Freedom 7, Liberty Bell 7 did not orbit. Friendship 7 first to orbit for US.
 - Vostok 2 circled Earth 17 times
 - US develops global ground station footprint. Not needing HF as much anymore.
- 1950's Summary
 - 14 satellites successfully placed into orbit from USA and Soviet Union in <u>3 years</u>.
 - Even more firsts and advancement in communications, but not enough time for that today.
- 1960's Summary (Excluding Planetary Landing Related)
 - 42 satellites successfully into orbit from USA, USSR, UK (Ariel 1), Canada (Alouette 1), Italy (San Marco 1), France (Asterix), Australia (WRESAT), W. Germany (Azur). 1st Commercial communications satellite INTELSAT-1 (April 1965)
 - 70 humans into Earth orbit including 1st woman (1963, Tereshkova), 1st space walk (1965, Leonov), 1st computer (1965, Gemini 3), 1st live TV (1968, Apollo 7), and to orbit the Moon (1968, Apollo 8). And, then Moon landings!! (1969-1972)
 - 1st Successful Amateur Radio Satellite OSCAR 1 in order December 1961. More on this later.

Brief History of "Man Made" Radio Signals from "Space"

- 1970's Summary Space Station Competition
 - Higher success rate for satellites placed in orbit. Roughly 70 in total.
 - Japan, West Germany, USSR, France, UK, USA, China, Canada, India, Netherlands, Indonesia, Czechoslovakia as countries placing into orbit.
 - ~85 humans placed into orbit around Earth, and 12 on Moon.
 - Skylab and Salyut space stations!!
 - Increased use of communications satellite and radio spectrum
 - Interplanetary exploration to Venus and Mars
 - 6 amateur radio satellites between USA and Russia
 - 1st modern GPS satellite launched (Block 1, 1978)
 - OSCAR-7 (1974) still semi-functional in 2023.
- 1980's Summary Bigger in the 80's!
 - More the 80 satellites placed into orbit
 - Many <u>classified</u> military satellites not accounted for?
 - Lots of "Free To Air" satellite options "unencrypted"
 - Mir Space Station cosmonauts make Earth contact with radio amateurs
 - US Space Shuttle Program goes mainstream and MIREX/SAREX contacts
 - 7 amateur radio satellites + first ham radio from space (1983, Dr. Owen Garriott W5LFL)
 - So much more.....

ALMOST ENOUGH WITH THE HISTORY LESSON !!!

Modern "Man Made" Radio Signals from "Space"

• 1990's Summary – Building Something Big

- Most of the 1990's had a human in Earth orbit
- Mir had international visitors
- Hubble space telescope
- International Space Station start construction 1998
- The most AMSAT satellites launched so far.
- More LEO satellites for educational use
- More reliance on satellite for entertainment and communications

• 2000's Summary – Digital Decade

- Most of the 2000's had MORE THAN ONE human in orbit
- Only for a short time in early 2000 was this not the case
- Mir deorbited after 28 crews over 20 years
- Free-To-Air entertainment starts to decline (C-Band, the BIG ONES!)
- Rise of DTH/DVB "Small 20 Inch Satellite Dishes"
- Last Space Shuttle flight (2011, 135 missions)

• 2010+ Summary – The time is now!!

- 104 satellites launched at once (2017, former record was 37 in 2014)
- Educational LEO satellites very common (145 & 435-438 MHz)
- China space station (2021, Tiangong) More experimentation not just analog signals

CUBESAT

HF (3-30 MHz)

AO-7 (Launched 1974) | CAS-5A (FO-118, Fengtai-OSCAR 118, CAMSAT

Launched December 2022

DOWNLINK 29 MHz 10m HF Amateur Radio Band

UPLINK Non-Operational 1981 Rebirth 2001

- DL 29.4-29.5 MHz SSB/CW
- DL 29.5020 MHz BEACON
- DL 145.975-145.925 SSB/CW
- DL 145.9775 MHz CW TLM
- DL 435.100 MHz CW TLM
- UL 145.850-145.950 SSB/CVV
- UL 432.125-432.175 SSB/CW

DOWNLINK

- DL 435.570 MHz BEACON
- DL 435.650 MHz TELEMETRY 4800/9600bps
- DL 435.540 MHz (V/U 30kHz Linear Transponder)
- DL 435.600 MHz (V/U 16 kHz FM Transponder)
- DL 435.505 MHz (H/U 15 kHz Transponder)
- DL 145.975 MHz (Photo via FM, DTMF Control)
- UL 145.820 MHz (V/U 30 kHz Linear Transponder)
- UL 145.925 MHz (V/U 16 kHz FM Transponder)
 - UL 21.435 MHz (H/U 15 kHz Transponder)

21 MHz 15m HF Amateur Radio Band

VHF (30-300 MHz)

RTL-SDR.COM

VHF Weather Satellites

NOAA-15 (1998-2024)

• 137.62 MHz APT

NOAA-18 (2005-2024) • 137.9125 MHz APT

NOAA-19 (2009-2024) • 137.10 MHz APT

METEOR M2 (2014 – JAN 2023)

• 137.10 MHz LRPT

Amateur Satellites (VHF Downlink)

AO-91 (2017- Present)

• 145.960 MHz FM

PO-101 (2018- Present)

• 145.900 MHz FM

ISS (1998- Present)

- 145.800 MHz FM
- 145.825 MHz APRS

TIANHE-1 (2021- Present)

- 145.98723 MHz FM (NOT ACTIVE YET)
- 145.985 MHz FM (NOT ACTIVE YET)
- 145.825 MHz APRS (NOT ACTIVE YET)
- 145.985 MHz SSTV (NOT ACTIVE YET)

VHF (30-300 MHz)

UFO & FLTSATCOM

- Operated by US D.O.D
- Transponder satellites
- Directional antenna needed
- Listen between 240-270 MHz
- Easy to find. They do not move.
- Visit <u>www.uhf-satcom.com</u> for details

Radar & Ionospheric Modelling (NIMS)

- Long range radar & sensing
- 149/150, 180 MHz Pulse Transmissions

UHF (300-3000 MHz)

[ransponder/	Repeater a	ctive <mark>Telemetry</mark>	/Beacon only	No sig	nal Conflic	ting reports	ISS Crew (Vo	ice) Active
Name	Mar 18	Mar 17	Mar 16		Mar 15	Mar ?	14 Mar	13
<u>AO-109</u>				1				
AO-27		1		<u>1</u>			<u>1</u>	
<u>AO-73</u>	<u>1</u>		<u>1</u>		<u>21</u>	<u>11</u>		
<u>AO-7[A]</u>					<u>211 11</u>	<u>1</u> 11		<u>1</u>
<u>AO-7[B]</u>	<u>1</u>	<u>111</u> <u>23</u>	<u>1</u> <u>2121</u>		<u>41</u>		<u>1</u> 1	<u>1</u>
<u>AO-85</u>			<u>1</u>					
AO-91	<u>1 112</u>	<u>233</u> 22	<u>1</u> 2211 1	<u>11</u>	<mark>3</mark> 5 <u>11</u> 1	<mark>1</mark> <u>431</u>	<u>1 1 52</u>	<u>2</u> <u>11</u>
<u>AO-</u>	1							
<u>92_U/v</u>	<mark>†</mark>							
AO-					1			
95_U/v								
CAS-2T	<u>1</u> <u>1</u>							1
CAS-4A		<u>1</u>	<u>1</u>				<u>1</u> <u>1</u>	1
CAS-4B	<u>212</u> <u>1</u>	<u>111</u> 1 2211	<u>1 213 2 1</u>	. <mark>2</mark> 2	<u>12 1 1</u>	<u>12</u> 2 2 1	<u>1 113 1</u>	<u>111</u>
<u>EO-88</u>	2	<u>2</u> <u>2</u>	<u>141 1</u>	<u>2</u> 3	1	<u>1</u> 1	<u>1 1 </u>	<u>1</u> <u>1</u>
FO-		11	2		22 1	11		
118[H/u]								
FO-								
118[V/u		1 111	1 1	1	1_		11	
FM]								
FO-		221	1 2	12	121 1	1 11	1 21 1	
118[V/u]				÷=				0 4

www.amsat.org for full listing of UHF downlink and other details

ISM & 70cm Amateur Band

432 MHz & 435-438 MHz

Too many downlinks to list!

SPOTLIGHT

IO-117 Greencube

- MEO Elliptical Orbit (Rare)
- Launched by Italy 2022
- Botany experiments!
- 435.310 MHz
- Digipeater

UHF (300-3000 MHz)

- Signals are very data focused. Is that boring?
- Antenna are small. 88cm dish with 3.5 turn helical feed easy to build
- Likely you will need a pre-amplifier
- Signals make it easy to figure out where they are coming from
- Most transmissions are space to Earth
- Some effects from water but not an issue for space-to-space communications
- Great details on uhf-satcom.com website.
- You will need something better than the rtl-sdr V3
- ADALM Pluto, Lime SDR or HackRF is what you need

S BAND !! "Space Band"

2-4 GHz

SHF (3-30 GHz)

C-Band Highlight: INMARSAT Active Series (1996-Present)

- Focused on maritime safety plus aviation support
- Global coverage through multiple satellites
- Able to monitor text, data and voice communications
- Inmarsat-2 F2 was in use from 1996 to 2014. Set a record.
- Easy to build antenna like used for S-Band
- Same equipment as Lime SDR, HackRF, ADALM Pluto
- Geostationary satellites easy to find.
- Guess what website is a good resource? www.uhf-satcom.com
- Also look at www.rtl-sdr.com blog

X-Band Highlight: Mostly weird military stuff.

- Most easy to find equipment won't work this high up
- This is for real deep divers

Ku Band Highlights: Some cool Free To Air + Starlink

- Easy to use cheap down converter known as an "LNB"
- Drops 12-18 GHz signals to 900-1200 MHz to use with cheap rtl-sdr V3
- Regular and easy to find satellite dishes work great.

C BAND !! 4-8 GHz X BAND !! 8-12 GHz

Ku BAND !! 12-18 GHz

MAX (* 8865 000

How to find these "space" signals?

Radio Hardware:

- Mostly covered already, but you need a receiver of some type
- The right antenna is <u>VERY</u> critical
- Higher the frequency the right antenna is EVEN MORE critical
- Feedline connecting receiver to antenna very important.

Computer Hardware

- Unless VHF/UHF audio transmissions, you need a computer for everything.
- More complicated signals need a good computer.
- Not some Win95/98 beige toaster oven! Level up please. 64 bit is your friend!
- Its good to record signals. I/Q recordings are fun. Benefit of SDR.

Software Recommendations

- SDRangel For decoding and tracking
- SDR++ For decoding, recording, etc
- HRPT Decoder For those high-res weather images
- Inmarsat std-c decoder For Inmarsat phone intercept
- Tracking Too many to list. Orbitron, SatPC32, ones for your smartphone.

Is that all.... IS THAT ALL?????

HOW COULD I COVER SUCH A HUGE TOPIC IN A SHORT TIME WHILE KEEPING YOUR ATTENTION

