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1. This BRMT summary description identifies the essential functions, components, and 

operations of the prohibited Brain Remote Management Technology (BRMT) bioweapon and 

bioweapon delivery system. The illegal BRMT bioweapon and bioweapon delivery system is a 

weapon used to hijack the human brain, not a beneficial medical use of technology.  

2. BRMT’s continuing illegal secret development and existence was forensically reverse 

engineered by Lead Plaintiff in 2021-2022 using personal experience and access to open source 

(and sometimes deliberately blocked and/or hacked) information. This functional and operational 

summary of the illegal BRMT bioweapon system references independent explanations of the 

basic technologies used in field operation, shown at LP Evidentiary Exhibits pages 6645-6884. It 

includes limited examples of defendant UNITED STATES’ illegal acts, violations and injuries 

against Lead Plaintiff during field operations which are illustrative of similar injuries to other 

members of this class of plaintiffs. No classified information has been used in this forensic 

process or in the development of this document nor in the Complaint it accompanies. 

3. BRMT and all other bioweapons and bioweapons delivery systems were globally 

banned by 1972 Bioweapons Treaty, and its possession and operation are illegal under 18 U.S.C. 

§ 175, which includes a prohibition on extra-territorial operations. Its continued use and 

development by Defendant UNITED STATES has and does violate the human, civil, and 

constitutional rights of its citizens (Complaint paragraphs 251-259, 322-327).  

Origins of BRMT   

4. BRMT’s illegal biomedical experiments on human subjects from at least 1968 to the 

present without consent was preceded by the abject failures of CIA’s MKUltra, a program of 149 

similarly illegal medical experiments on human subjects using 100 million secretly administered 

doses of LSD on unsuspecting member of the public who were then left to their own devices in 
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public places while hallucinating, creating mayhem and violence to themselves and other 

members of the public. MKUltra was built by CIA on the Nazi Dachau Death Camp World War 

II era experiments on religious, ethnic, political, and “social deviant” prisoners. US and Aliied 

nation prosecutors sought and secured death, life imprisonment, and long prison sentences for 

participating Nazi doctors at the Nuremberg Trials in 1946-1947. CIA’s MKUltra, was a 20 year 

program (1953-1973) of surreptitious illegal LSD druggings of US and Canadian citizens and 

soldiers by CIA (Science Directorate) and ARMY (Bioweapons Lab), which made CIA the 

world’s largest drug dealer during the 10-15 most active years of that illegal program. When 

MKUltra was abandoned after 20 years of abject failure, mayhem, injury, and death, it was 

replaced by the then evolving BRMT program.   

5. The fifty-five or more year evolution of the prohibited BRMT bioweapon program has 

been built on successive generations of medical research and technological advances in 

semiconductors, computing, computer software, communications, and space-based systems. It 

has also been built on the systematic exploitation of human subjects without their consent, on 

forced behavioral patterns hijacked and manipulated to and including lethality attempts and 

deaths, and on racketeering crimes committed by federal police powers agencies acting well 

outside legal bounds with the knowing consent and willful blindness of defendant DOJ, by 

military services operating in secret among the general public in violation of posse comitatus and 

the Third Amendment, and by the intelligence community in broad violations of the Constitution, 

US laws, and international treaties. medical abuses, and a wide variety of indirect violence to US 

persons and their families.  

Evolution of BRMT  
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6. Early versions of BRMT in the late 1960s and into the 1980s caused hormone driven 

behavioral changes ranging from moderate effects of hormonal overdoses (1968, Complaint 

paragraph 417) and other imbalances (such as sleep, lust, depression, and bipolar mood swings, 

Complaint paragraph ??) to extreme forms of human emotion, which give rise to blood lust and 

murder (Complaint paragraph ??). See LP Evidentiary Exhibits pages 6686-6699 for an 

explanation of human hormones which regulate emotions among many other bodily functions. 

These early BRMT devices were relatively cumbersome and heavy locally operated tube-based 

systems in an equipment box in the late 1960s. This locally operated device has gradually 

evolved from that analog technology to an analog device locally placed which could be remotely 

triggered by a cell phone signal in the mid-1980s, through the development and further 

miniaturization of  semiconductors, reduced power consumption and computing and software 

technologies.  

7. Modern BRMT operation is a fully remote operation using pulsed energy precisely 

delivered from afar to a space-based burst style precision aimed weapons system which can 

operated fully remotely through either live video feeds or an encrypted local device about the 

size and complexity of a cell phone. Using modern technologies and massive advances in 

neuroscience research, BRMT hijacks and commands the victim’s brain with tightly 

choreographed sequences to orchestrate a broad array of artificially contrived manipulations. The 

prohibited BRMT bioweapon and bioweapon delivery system can emulate or interrupt virtually 

any sequence of human activity from the lowest level of involuntary body functions such as 

breathing, heart rate, and heart rhythm, to the highest levels of consciousness, reasoning, and 

executive functioning.     
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8. Neuroscience research has dramatically advanced scientific understanding of the 

connections between the brain and unconscious functions like breathing and heart rhythms, and 

with conscious functions like thinking, reasoning, problem solving, and playing golf. See LP 

Evidentiary Exhibits pages 6645-6685 and 59-139 for basic explanations of neuroscience and 

recent advances in brain-to-computer interfaces. An early stage commercial version was 

approved for human trials by FDA in 2021 and first implanted by Synchron in 2022, see LP 

Evidentiary Exhibits pages 11-25. NeuraLink, an Elon Musk company, implanted its first similar 

device in January 2024. These are legally permitted brain to computer interfaces, beneficial 

medical devices to assist disabled persons in everyday tasks, such as for quieting ALS tremors 

and operating personal computers using thought only. BRMT is an internationally prohibited 

illegal bioweapon built on Nazi style illegal medical experiments on human subjects, without 

their consent. 

9. Development of the prohibited BRMT bioweapon and bioweapon delivery system is 

more than five decades and billions of dollars ahead of the beneficial commercial implants from 

Synchron and NeuraLink. Its illegal evolution of uses follows the same pattern as GPS, which 

was used in classified service by the military in the 1960s, and did not become common in 

commercial navigation for ships, aircraft and vehicles until the late 1980s, before it appeared on 

your smartphone in the last ten years or so. But most importantly, while commercial medical and 

BRMT both use the same basic neuroscience and some shared technologies, the prohibited 

BRMT is a computer-to-brain offensive weapon system which commands the victim, NOT a 

beneficial brain to-computer interface controlled by the user for their own personal benefit,  

Normal Brain Pathways Are Hijacked By Brain Remote Management Technology   

10. The modern version of the prohibited BRMT bioweapon system is used by Defendant  
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UNITED STATES to command (hijack) brain and central nervous system connections and 

functions. The brain and a supercomputer both work in roughly similar, though certainly not 

identical, manner. Consider the jerky, gross motor movements of a tiny infant, as compared with 

the much more subtle movements of a teenage high school basketball star to understand the 

progression of coordination as learned through experience and practice by the human brain using 

eyes, trial and error and muscle sensations to develop hand-eye coordination.  

11. BRMT development has progressed in similar fashion across its generations of 

development. Myriad simultaneous brain and central nervous system interactions occur to, for 

example, move your little finger a specific distance. The physical movement is accomplished by 

the transfer of biological chemicals (tiny amounts of energy) in brain cells on one side of a 

cellular boundary across a gap to other cells to command a specific muscle manipulation for 

example. Vastly oversimplified, this biochemical transfer from a brain cell generates a tiny bit of 

energy (a signal) in a receiving nerve cell which in turn generates a biochemical message (a set 

of commands) which travel, using routing instructions, through the central nervous system 

(similar to a network of cables) to specific muscle receptors in the little finger. The muscle 

receptor tells the muscle or muscles to contract or relax a certain distance at the desired speed to 

complete the desired movement. All while you don’t spill your coffee, as you watch an infant 

learn how not to spill their plastic cup of milk at the dinner table.  

Forensic Reverse Engineering Of BRMT 

12. Lead Plaintiff’s knowledge of the prohibited BRMT system is based on thought 

experiments used to repeat and verify the existence of this technology and repeatability of these 

thought experiments. He was then able forensic reverse engineering and to validate the evolution 

of the illegal BRMT system using his years of unwitting participation as an illegally hijacked 
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victim of these medical experiments on humans without their consent; his university science and 

technology education; his decades of professional experience in computer systems and 

technology, technology integration, national security sensitive facilities and applications, 

government and commercial organizations and practices; and legal research into the decades of 

persistent constitutional violations by defendant UNITED STATES; and the compelling necessity 

of his developing counterintelligence skills; all integrated to decipher and decode the methods 

used against him by defendant UNITED STATES over the past fifty years, to create this forensic 

reconstruction of the illegal BRMT system, its evolution, and its contemporary form. This 

process occurred mostly in 2021-2022, In 2023, he was able to connect this technology to the 

specific identities of the federal perpetrators in Summer and Fall 2023. Fraudulent concealment 

by defendant UNITED STATES’ specific suppressions of publicly available information 

dramatically slowed early progress.   

BRMT System Description - Illegal Brain Hijacking System: 18 U.S.C. § 175 and Ratified 
1972 Bioweapons Treaty 
 

13. The contemporary BRMT system integrates six key elements across a space-based 

hyper-focused pulsed energy system to deliver commands from ground-based command and 

control: 

A. Hardware Platform: Supercomputer system supporting ultra-high rate floating point 

operations, BIOS (digital basic input output system), operating system which translates 

user-level software commands to BIOS, and monitors hardware system integrity.  

B. Software System: Command system (user application) software used to pre-assemble 

operational sequences and support on-the-fly remote field improvisations; supports 

motion predictive analytics and behavioral predictive analytics; provides development 

and test platform to support analytics. Operational software system used for foreground 
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and background operations, including brain hijacking command sequences execution 

with extreme precision as to intensity, timing, frequency and hyper-precision location 

instruction in a single command set sequence to the bioweapon platform; victim target 

tracking to support automated and direct pico-second cycle time remote system aiming 

and burst sequences; software system to monitor and trap field feedback on system 

stability, security, integrity, and accuracy for operational support, diagnostics, and 

analytics.    

C. Augmented Hyper-Precision Location Accuracy System: integration with proximate 

ground-based augmentation systems inputs (cell phone towers are precisely located, for 

example) to enhance precision aiming of the satellite-based or other remotely located 

pulsed signal (energy) source. 

D. Pulsed Directional Transmission to Victim: Command sequences delivered using 

software sequencing technology control of pulsed variable energy nanometer wavelength 

signals (energy) with dynamic hyper-precision location accuracy (similar to burst 

communications used in narrowcast highly directional espionage communications 

systems used for satellite-based communications with intelligence assets where direct 

human contact is too high risk but regular communication s essential). 

E. Artificial Intelligence Platform: software system for testing, analysis, learning and 

refinement of hijacking command sequences, to monitor and enhance system efficiency 

and test incremental software and system components enhancements, support fail-safe 

operational integrity. Supports continual system software upgrades using advanced 

research in neuroscience and field tests observations to enhance granularity and accuracy 
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e.g., moving a command set from initial crude on/off control to intensity variations (like a 

dimmer switch)  and to intermittent operational outcomes (sporadic episodic sequencing). 

F. Systems Integration: Advanced earth based platforms and space based platforms are 

integrated by leveraging DOD command and control technologies (such as 

communications and encryption systems) and physical platforms (such as dispersed 

earth-space communications system nodes and satellite constellations used for fail-safe 

operations across the various components of DOD – air, land, sea, and space). 

Technologies Adapted For Prohibited Brain Remote Management Bioweapon System 

14. The five base technologies and the sixth element, systems integration, which 

comprise this illegal bioweapon and bioweapon delivery system are summarized as follows:   

A. Hardware Platform: A supercomputer and its operating system, programmed with a 

familiar style of user interface for human management similar to a Windows or MacIntosh 

operating system on personal computer platform hosing user applications like MS-Word and 

Excel. The supercomputer converts basic operator commands to the specific sequence of 

hijacking commands and precise timing using its operating system, which are sequenced using 

its internal clock and/or cues from the victim’s environment, to effect a particular command 

sequence in a particular precise moment of action. For example, dropping a victim’s foot onto a 

curb or step to cause the victim to fall into vehicle traffic lanes or to somersault on a set of stairs 

(both occurred to Lead Plaintiff in late 2022, see Complaint Interline Exhibit 14, page 127 for the 

latter incident).   

A1. The supercomputer orchestrates these types of preprogrammed sets of brain hijacking 

commands (external biochemical hijacking interrupts of the victim’s normal brain function) 

based upon the operator’s desired outcomes. These brain hijacking commands can include 
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branching options in a specific sequence or randomized series of brain hijacking commands, 

and/or can respond to environmental cues by processing and reacting to a remote sensing feed 

using neural networking and/or artificial intelligence. Numerous supercomputers centers 

currently operated in the Department of Defense and other Defendant UNITED STATES 

departments and agencies can process three quadrillion operations per second, equal to about 

30% of the brain’s processing power. A supercomputer with the processing power of a human 

brain is scheduled for completion this year at Argonne National Laboratory.  See LP Evidentiary 

Exhibits pages 6700-6714.   

B. Software System: The modern version of BRMT has extremely complex software 

providing the commands used to hijack the executive functions like thinking and speech, the 

more basic functions like voluntary muscle movements, and the involuntary functions like the 

hearing, vision, swallowing, and breathing of the hijacked victim to orchestrate the operator’s 

commanded non-autonomous reality or outcome directed at the victim, or even at a third party 

through the hijacked acts of the victim on that third party. The complexity of this software is 

similar to the complexity of, for example, global weather simulation models or modern 

econometric models, which require supercomputer processing power to model billions to 

quadrillions of operations in seconds.  

 C. Augmented Hyper-Precision Location Accuracy System: Precision location 

technology is used to enhance the accuracy of a remotely located signal source. Prior generations 

of this technology likely required specific placement of a ground-based signal source to provide 

adequate location accuracy. Today, commercially available location augmentation technology 

like precisely located cell phone towers make it practical to use a space-based signal source with 

the current generation of BRMT. For example, commercially available RTK augmentation 
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technology for farming currently provides about one-third inch in one mile accuracy, that is, 1 

inch in 63,360 inches, at a distance of up to 25 miles from the RTK tower site. BRMT can 

reference a fixed point on the victim, so it is possible to apply this same level of precisely 

augmented location accuracy to a human head, even as the head moves in normal activity. This 

level of augmented location precision as applied to the head is about 2/1,000ths of an inch, 5,080 

nanometers. Classified versions of commercial technologies are typically several generations 

ahead of commercial versions.  Since an individual brain cell is 2,000 to 5,000 nanometers, it is 

straightforward to locate very specific addresses in the victim’s brain. See LP Evidentiary 

Exhibits pages 6739-6810.    

D. Pulsed Directional Transmission to Victim: A human hair is 80,000 to 100,000 

nanometers in diameter. A typical brain cell is 2000-5000 nanometers in size. Nanometers scale 

signals (which are invisible forms of energy just like x-rays and radio signals) are used to send 

commands to specific brain addresses to activate or block biochemical messages. The short 

wavelength of nanometer signals allows them to easily penetrate concrete, dirt, rock, bone, etc., 

to reach the victim’s brain virtually anywhere on earth using Defendant United States’ global 

coverage satellite constellation and precision location augmentation (a highly advanced and 

encrypted form of GPS such as used for other modern military applications). See LP Evidentiary 

Exhibits pages 6739-6810.   

E. Artificial Intelligence Platform: BRMT uses its accumulated set of learned patterns of 

the victim reactions to command sets to drive many small experiments on some victims to 

advance the encyclopedia of knowledge used to command human brains. These incremental 

experiments, which can be conducted in millions of variations by supercomputer in relatively 

short periods of time (all prohibited by law and treaty) are imposed on the unwitting victim 
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without their consent, to grow the body of knowledge and commands which can be used in 

various combinations and in various settings to achieve the desired outcomes of the commander 

of this prohibited bioweapon system. See LP Evidentiary Exhibits pages 6715-6738.   

E1. Continuing enhancements support additional developments by further abuses of 

unwitting research victims: MRI enhanced knowledge of research victims’ fine brain structure 

can be used to further development of prohibited BRMT bioweapon use against a high-value 

target, and to advance general bioweapon capabilities. Lead Plaintiff was subjected to this 

baseline MRI brain mapping as a result of a potentially lethal fall during his second colonoscopy 

in two months in a New Jersey hospital in April 2022. See Complaint Subordinate Count L-13, 

pages 335-339. The Lead Plaintiff has had several such MRI image scans over the years in 

hospital settings, including in preparation for nasal surgery in the 1990s. These stored digital 

MRI images are easily accessible to medical researchers through the use of intelligence and 

police powers facilities, both through certain legal and extra-legal means.    

F. Systems Integration: Billions of dollars and years of research and development are 

required to build such complex integrated systems. Moment to moment operations are managed 

by artificial intelligence and/or neural networks, so BRMT can simultaneously and sequentially 

execute instructions and issue hijacking commands to the victim on the millisecond level time 

intervals required to generate complex nonautonomous patterns of human thinking, speech, and 

involuntary actions. See LP Evidentiary Exhibits pages 6811-6814.  

Body/Mind Manifestations of Biochemical Disruptions of Normal Brain Activity Using 
BRMT 
 

15. The prohibited BRMT bioweapon and bioweapon delivery system can be used to 

hijack any function of any brain, including human brains. It can disturb normal body rhythms 

and processes, including balance, muscle responses, sleep rhythms, vision, and hearing. It can 
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disturb, disrupt or induce thoughts and movement patterns. For example, prior to a planned 

motion it can detect and disrupt or change that motion; during the thought process it can erase or 

block that thought or instill another thought in short-term memory; it can activate the central 

nervous system to paralyze or enhance body rhythms, activities, or movements; it can send pain 

signals and other messages to the brain. BRMT can induce sustained excess or deficient 

production of biochemicals, causing brain chemical imbalances to produce mental illness 

symptoms, such as depression or schizophrenia.  

16. All these are toxic interventions in the brain which violate 18 USC § 178(2) and the 

1972 Convention on the Prohibition of the Development, Production and Stockpiling of 

Bacteriological (Biological) and Toxin Weapons and on Their Destruction. Toxin is legally 

defined as: 

“the term “toxin” means the toxic material or product of plants, 
animals, microorganisms (including, but not limited to, bacteria, viruses, 
fungi, rickettsiae or protozoa), or infectious substances, or a recombinant or 
synthesized molecule, whatever their origin and method of production, and 
includes— 

(A ) any poisonous substance or biological product that may be 
engineered as a result of biotechnology produced by a living organism; or 

(B) any poisonous isomer or biological product, homolog, or derivative 
of such a substance;” 

 
The underlined words above precisely describe the means of toxic production used by the BRMT 

bioweapon when it hijacks the human victim’s brain as an excess production of any substance by 

this artificial means poisons (disrupts the normal organic functioning of) the brain’s delicate 

biochemical system. 

 
17. BRMT does not, nor does it need to, replace all brain functions. Instead, it uses 

specifically addressed and precisely delivered brain hijacking commands to interrupt, delay, 
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accelerate, magnify, distort, and/or diminish specific selected brain functions, ranging from a 

single function to a few dozen at a time. For example, breathing, speech, or body movements can 

be momentarily disrupted with a few commands, as the brain continues its normal processing of 

all other body functions such as muscle movement, speech, respiration, balance, heart rhythm, 

vision, smell, etc. So, it does not turn the victim into a completely controlled robot, it just hijacks 

what it needs to control, kind of like a parasite uses its host, or a bank robber uses a hostage.   

18. Select examples of BRMT central nervous system disruptions and distortions:   

i. Body pains – induced arm, leg, torso, pains and headaches;  

ii. Muscular control – induced twitches, tremors, yawns, coughs, itches, grip/grasp;   

iii. Loss of balance - induced falls and collisions with objects or people;  

iv. Body rhythms – induced heart, breathing irregularities, disturbed walking pace, sleep 

patterns;     

v. Organ function disruptions - bowel movements, sexual organs, kidney pain;  

vi. Aural and visual distortions – induced voices, floating visual distortions, visual cloaking, 

and visual nerve images;    

vii. Induced thinking and speech disturbances – thinking and executive function disruptions 

such as distraction, erasure, modifications, distortions of concepts and ideas, garbling of 

phrases, sentences;   

viii. Induced obsessions – including sexual urges, appetite, operating aircraft doors inflight, 

attraction to inappropriate targets, including repeated failed efforts to induce misconduct, 

such as, for example, assaults and child sexual abuse.  
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19. As forensically reverse engineered, these BRMT hijacking attempts and distortions 

have been directly experienced by Lead Plaintiff over many years. Lead Plaintiff has been forced 

to strongly resist any act on many of these BRMT bio-hijacking commands and distortions by 

defendant UNITED STATES’ human operator’s commanding this illegal system so as to avoid 

harms to others or to himself, including two long-running torturous sequences which led to 

suicide ideations (Complaint paragraphs 604, 606 HEXP-1, 3) and innumerable attempts to 

provoke assaults against undercover officers also acting to provoke at the same time, or to 

innocent third parties such as the elderly and children. Not all BRMT hijacking victims would 

have the necessary skills and self-control to avoid these types of harm to others or to themselves.  

Select Examples Of BRMT Violations Of Lead Plaintiff By Defendants   

20. Lead Plaintiff suffered induced mental illness from stress, brain distortions due to 

chemical imbalances, and the deprivation and functional blocking of medical interventions, with 

symptoms typical of a range of mental incapacity from mood disturbances in college to alleged 

symptoms of schizophrenia ascribed by psychiatrists when Lead Plaintiff accurately reported his 

symptoms in 2010. Lead Plaintiff is actually highly emotionally stable, according to independent 

tests as shown at LP Evidentiary Exhibits pages 193-236.  

21. Lead Plaintiff suffered numerous programmed falls in varying locations ranging from 

mountain trails to sidewalks to ladders to beds, to hospital recovery rooms, beginning in the 

1990s and continuing into the present. Each and every fall risked a collision by the Lead 

Plaintiff’s head with some intervening object which could have caused a disabling or fatal head, 

neck, or spine injury. See LETHL-2, 6, 7, 8, 10, 12, 13, and 15 in the Complaint. Many more 

examples of injuries resulting from Defendants malign acts using BRMT are related through the 

violations in the Complaint and LP Evidentiary Exhibits. The number of individual BRMT brain 
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hijacking sequences per day range from dozens to thousands against the Lead Plaintiff alone. 

These prohibited BRMT bioweapon system hijackings are conducted with and enhanced by other 

physical and psychological operations of Defendants in all kinds of public places, from grocery 

stores and shopping malls to sidewalks and street crossings, to buses, planes, trains, and 

subways. Any time they wish, anywhere on earth. Bear in mind that these are only a tiny 

selection of examples from more than 18,000 days of prohibited BRMT brain hijacking.  

Defendant United States Originates and Orchestrates Lawless Abuses Using BRMT  

22. Illegal “state secrets” abuses and abusive classification strategies are used by 

Defendant United States to claim improper “national security,” “police powers,” and “qualified 

immunity” exemptions. These are used as sword and shield by defendant United States and its 

coconspirator governmental Defendants to hide their patterns of racketeering acts and civil rights 

violations under the color of law. These fraudulently claimed exemptions perpetuate broad 

patterns of violations of rights, laws, and the Constitution by departments and agencies, by 

individual agents, officers, confidential informants and other permitted criminal actors which 

acts and injuries are not pursued by police powers operations as required by law. These acts, 

violations, and injuries perpetrated by defendant UNITED STATES and its co-conspirators 

violate constitutional rights, domestic and extra-territorially asserted U.S. law, ratified 

international treaties, and state laws in the numerous states where they have occurred. 



Synchron Announces First Human U.S. Brain-Computer Interface
Implant

- First U.S. Human Procedure Performed at Mount Sinai Health System in New York City

LP Evidentiary Exhibits Page 000011 10/05/2022

http://www.businesswire.com/
https://synchron.com/


July 19, 2022 08:00 AM Eastern Daylight Time

NEW YORK--(BUSINESS WIRE)--Synchron, an endovascular brain-computer interface (BCI) company, today announced
the first human BCI implant in the United States. This procedure represents a significant technological milestone for
scalable BCI devices and is the first to occur in the U.S. using an endovascular BCI approach, which does not require
invasive open-brain surgery.

The procedure was performed at Mount Sinai West in New York, led by clinical investigator Shahram Majidi, MD, assistant
professor of neurosurgery, neurology and radiology at the Icahn School of Medicine at Mount Sinai. The procedure was
performed in the angiography suite with a minimally invasive, endovascular approach. Mount Sinai’s Department of
Rehabilitation and Human Performance helped coordinate the procedure.

The procedure marks the first U.S. patient implant in Synchron’s COMMAND trial, which is being conducted under the first
investigational device exemption (IDE) awarded by the FDA to a company assessing a permanently implanted BCI. The
U.S.-based trial is being conducted with support from the NIH Neural Interfaces Program.

The COMMAND study will assess the safety and efficacy of the company’s motor BCI technology platform, including the
Stentrode™, in patients with severe paralysis with the goal of enabling the patient to control digital devices hands-free.
Study outcomes include the use of brain data to control digital devices and achieve improvements in functional
independence.

Stentrode™ is implanted within the motor cortex of the brain via the jugular vein in an
endovascular procedure.

LP Evidentiary Exhibits Page 000012 10/05/2022

https://www.businesswire.com/
https://cts.businesswire.com/ct/CT?id=smartlink&url=https%3A%2F%2Fwww.synchron.com%2F&esheet=52784381&newsitemid=20220719005248&lan=en-US&anchor=Synchron&index=1&md5=0821d274c1eb81e930515ab4c22ab408
https://cts.businesswire.com/ct/CT?id=smartlink&url=https%3A%2F%2Fsynchron.com%2Ftechnology&esheet=52784381&newsitemid=20220719005248&lan=en-US&anchor=Stentrode&index=2&md5=1972d30f0a9cf145a8273f1b1ab9112b


“This is an incredibly exciting milestone for the field, because of its implications and huge potential,” said Shahram Majidi,
MD, the neurointerventional surgeon who performed the procedure, and assistant professor of neurosurgery, neurology
and radiology at the Icahn School of Medicine at Mount Sinai. “The implantation procedure went extremely well, and the
patient was able to go home 48 hours after the surgery."

“We are beyond excited to get to work with our patient, guiding them through the training process as they learn to use this
device to live more independently and, most importantly, communicate with their family and friends,” said David Putrino,
PhD, PT, Director of Rehabilitation Innovation for the Mount Sinai Health System and a Principal Investigator of the
COMMAND study.

“The first-in-human implant of an endovascular BCI in the U.S. is a major clinical milestone that opens up new possibilities
for patients with paralysis,” said Tom Oxley, MD, PhD, CEO & Founder, Synchron. “Our technology is for the millions of
people who have lost the ability to use their hands to control digital devices. We’re excited to advance a scalable BCI
solution to market, one that has the potential to transform so many lives.”

The Stentrode is implanted within the motor cortex of the brain via the jugular vein in a minimally-invasive endovascular
procedure. Once implanted, it detects and wirelessly transmits motor intent using a proprietary digital language to allow
severely paralyzed patients to control personal devices with hands-free point-and-click. The trial will assess the impact of
everyday tasks such as texting, emailing, online shopping and accessing telehealth services, and the ability to live
independently. The FDA granted Breakthrough Device designation to Synchron in August 2020.

Synchron will continue to advance enrollment in its COMMAND trial as the industry-first FDA-approved clinical trial for a
permanently implanted BCI in the U.S. Recently reported long-term safety results have demonstrated this technology to be
safe in four patients out to 12 months in Synchron’s SWITCH trial in Australia, as reported at the 2022 American Academy
of Neurology Conference.

​​About the Stentrode™

Synchron’s flagship technology, the Stentrode, is an endovascular brain implant designed to enable patients to wirelessly
control digital devices through thought and improve functional independence. Synchron’s foundational technology, a motor
neuroprosthesis (MNP), or motor BCI, is implanted via the jugular vein using neurointerventional techniques commonly
used to treat stroke, and does not require drilling into the skull or open-brain surgery. The system is designed for patients
suffering from paralysis as a result of a range of conditions. It is designed to be user friendly and dependable for patients
to use autonomously.

About Synchron, Inc.

Synchron, an endovascular brain interface company, is a leader in implantable neural interface technology. The clinical-
stage company is developing a neuroprosthesis for the treatment of paralysis and the first endovascular implantable
neuromodulation therapy. Future applications include the potential to diagnose and treat conditions of the nervous system,
including Parkinson’s disease, epilepsy, depression, and hypertension. Synchron is headquartered in New York City, with
R&D facilities in Melbourne, Australia. For more information, visit www.synchron.com. Follow us on Twitter @synchroninc.

Contacts
Kimberly Ha


Synchron


kha@synchron.com

Tyler Hubin


Moxie Communications Group


synchron@moxiegrouppr.com
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Social Media Profiles

Synchron on Twitter

Synchron on LinkedIn

LP Evidentiary Exhibits Page 000014 10/05/2022

https://www.twitter.com/synchroninc
https://www.linkedin.com/company/synchron-inc./


LP Evidentiary Exhibits Page 000015 10/05/2022



LP Evidentiary Exhibits Page 000016 10/05/2022



LP Evidentiary Exhibits Page 000017 10/05/2022



LP Evidentiary Exhibits Page 000018 10/05/2022



LP Evidentiary Exhibits Page 000019 10/05/2022



LP Evidentiary Exhibits Page 000020 10/05/2022



LP Evidentiary Exhibits Page 000021 10/05/2022



LP Evidentiary Exhibits Page 000022 10/05/2022



LP Evidentiary Exhibits Page 000023 10/05/2022



LP Evidentiary Exhibits Page 000024 10/05/2022



LP Evidentiary Exhibits Page 000025 10/05/2022



SCIENCE & TECH SPOTLIGHT:

Science, Technology Assessment, 
and Analytics

BRAIN-COMPUTER  
INTERFACES

/// THE TECHNOLOGY

What is it? A brain-computer interface (BCI) enables a person to control 
an external device using brain signals. BCIs could aid people with 
disabilities and improve national defense capabilities, among other uses. 
For example, researchers are developing BCIs that allow people with 
paralysis to spell words on a computer screen or regain control of their 
limbs. In addition, researchers are developing BCI-controlled robotic limbs 
that can provide users with a sense of touch. BCIs could also augment 
human capabilities by allowing people to control computerized machinery 
using their thoughts, for example (see fig. 1). 

 
How does it work? New BCI users often undergo an iterative training 
process. The user learns to produce signals the BCI will recognize, and 
the BCI translates the signals to operate a device using machine learning. 

Generally, BCIs connect to the brain in two ways: through implanted 
or wearable devices (see fig. 2). Implanted BCIs are often surgically 
attached directly to brain tissue. They may be more appropriate for users 
with severe neuromuscular disorders or physical injuries. For example, 
a person with paralysis could use an implanted BCI that is attached 
to specific neurons to regain precise control of a limb. Implanted BCIs 
measure signals directly from the brain, reducing interference from other 
tissue. However, they pose surgical risks, such as infection and rejection. 

Some implanted BCIs reduce risk by placing electrodes on the surface of 
the brain, a method called electrocorticography (ECoG). 

Wearable BCIs often require a cap containing conductors that measure 
brain activity detectable on the scalp. A wearable BCI may be appropriate 
for purposes like augmented and virtual reality, gaming, or controlling an 
industrial robot. Most wearable BCIs use electroencephalography (EEG) 
to measure the brain’s electrical activity. An emerging method—functional 
near-infrared spectroscopy (fNIRS)—shines near-infrared light through the 
skull to measure blood flow, which can indicate information such as the 
user’s intentions.

To enhance mobility, researchers are developing BCIs that use portable 
methods to acquire data—for example, wireless EEG. These methods 
allow users to operate a smartphone or other device while moving freely. 

How mature is it? Most BCIs are experimental. Researchers first tested 
a wearable BCI in the early 1970s and implanted a BCI in a human for the 
first time in the late 1990s. BCI research has increased significantly in the 
21st century resulting in the publication of thousands of research papers. 
According to one leading BCI company, fewer than 40 people worldwide 
have implanted BCIs, all of them experimental. One of the main obstacles 
to BCI development is that each person generates unique brain signals. 
Another is the difficulty of measuring those signals. 

Historically, BCI research has focused on biomedical applications, such 
as helping people disabled by a stroke, physical injury, or neurological 
disorder. In April 2021, a device that uses a wireless EEG headset to help 
stroke patients regain arm and hand control became the first wearable 
BCI for rehabilitation to receive market authorization from the Food and 

Figure 1. Examples of BCI applications include a speller for communication, a  
smartphone interface, a BCI-operated drone, and a robotic limb.

Figure 2. Examples of implanted (left) and wearable (right) BCIs.

GAO-22-106118 Brain-Computer Interfaces

WHY THIS MATTERS
Brain-computer interfaces allow people to control 
machines using their thoughts. These interfaces can 
help people with disabilities as well as enhance human-
computer interactions. For example, warfighters might 
operate a drone hands-free on the battlefield. However, 
the technology remains largely experimental, and it 
raises questions about security, ethics, and equity.

SEPTEMBER 2022
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Science, Technology Assessment, 
and Analytics

Drug Administration. A number of other wearable and implanted BCIs for 
medical uses are currently in clinical trials. 

Researchers are also developing applications for military use and for 
systems whose proper operation is critical to safety. For example, 
researchers at the National Aeronautics and Space Administration have 
used BCIs to help detect when pilots and air traffic controllers are more 
likely to make mistakes. The Department of Defense has funded research 
on BCIs for hands-free control of drones. And the Federal Aviation 
Administration has looked into how to medically certify pilots who may one 
day use BCIs to control airplanes.

What are some concerns? Some researchers have noted possible 
legal and security implications of BCIs. For example, cyberattacks are 
a concern because hackers could use malware to intercept brain signal 
data stored on a smartphone. The Department of Commerce is currently 
reviewing whether exporting BCIs could pose national security concerns. 
For example, foreign adversaries could obtain a military or intelligence 
advantage. Its decision could affect how the technology is used and  
shared overseas.

Researchers have also pondered societal and ethical implications. 
Reported costs of wearable BCIs range from hundreds to thousands 
of dollars, which may result in unequal access. Additionally, learning 
to use some types of BCIs requires training, which may burden users. 
Researchers have also suggested that translation of brain signals to 
speech by a BCI could cause harm if it is not accurate. For example, 
inaccurate translation might indicate legal or medical consent that the 
person did not intend to give. 

/// OPPORTUNITIES

	■ Help people with disabilities. People paralyzed by physical injuries 
or neurological disorders could use BCIs to communicate and regain 
control of their limbs.

	■ Augment human capabilities and human-computer interactions. 
BCIs could accelerate and simplify interactions between humans and 
machines in fields like defense and space. Also, some researchers 
have suggested that BCI-controlled robots could assist people in 
hazardous environments, such as coal mines.

	■ Facilitate brain research. Scientists could use BCIs to improve 
understanding of the brain. Some researchers have used a BCI 
to detect the emotions of patients in a vegetative or minimally 
conscious state.

/// CHALLENGES

	■ Technical and user challenges. Each person generates unique 
brain signals, which are difficult to measure clearly. Also, learning to 
use a BCI can require substantial training.

	■ Ethical framework. BCIs may raise questions about what 
constitutes consent and about potential unfair advantages conferred 
by certain human enhancements. 

	■ Security and privacy. BCIs could be vulnerable to cyberattacks that 
expose brain data or interfere with a device’s function.

/// POLICY CONTEXT AND QUESTIONS

	■ As BCIs develop toward commercial and patient use, will they be 
accessible to all, and who will bear the cost?

	■ How should BCIs that augment human capabilities be regulated, if 
at all?

	■ What ethical issues might BCIs raise, and what applications might 
constitute unethical or controversial use of BCIs?

	■ What steps might help to mitigate potential security and privacy risks 
associated with the acquisition of brain signal data?

/// SELECTED GAO WORK

Science & Tech Spotlight: Extended Reality Technologies,  
GAO-22-105541.
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Breakthrough 

Technology 

for the Brain

JOIN THE TEAM

WATCH THE UPDATE

Understanding 

the Brain

G
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Create the 

Future with Us

Every day we’re building better tools
intended to communicate with the brain.
With the right team, the potential
applications for this technology are
limitless.

FIG. 1

SCIENCE

Interfacing 

with the Brain
FIG. 2

APPROACH

Engineering 

with the Brain
FIG. 3

APPLICATIONS
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Understanding 

the Brain

A web of communication that allows you to move, think, feel and sense.

PLAY VIDEO

There Are 86 Billion 

Neurons in Your Brain
Neurons send and receive information.
Although neurons come in many different types,
they generally have three parts: a dendrite
which receives a signal, a cell body called a
soma which computes the signal, and an axon
which sends a signal out.
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Neurons Are Connected 

Through Synapses
The neurons of your brain connect to each other
to send and receive signals through axon-
dendrite connections called synapses.

Neurons Communicate 

Through Electric Signals
Action potentials cause synapses to release
neurotransmitters. These small molecules bind
to receptors on dendrites, opening channels
that cause current to flow across the neuron’s
membrane. When a neuron receives the ‘right’
combination of spatiotemporal synaptic input, it
initiates an action potential.
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We Can Record Electrical 

Signals in the Brain
We place electrodes near neurons in order to
detect action potentials. Recording from many
neurons allows us to decode the information
represented by those cells. In the movement-
related areas of the brain, for example, neurons
represent intended movements. There are
neurons in the brain that carry information
about everything we see, feel, touch, or think.

LP Evidentiary Exhibits Page 000033 10/05/2022



9/30/22, 8:30 AM Science - Neuralink

https://neuralink.com/science/ 4/5

Learn More

WHY DO ELECTRODES NEED TO BE CONNECTED DIRECTLY TO THE

BRAIN?

Neural activity can be monitored from outside the head using non-
invasive techniques such as EEG. With these non-invasive techniques,
each channel records the summed activity of millions of neurons, which
means the details are blurred away. Imagine experiencing a sports event
through a microphone placed outside the stadium. From the roars or
groans of the crowd you can tell when something good or bad happens to
the home team, but you'll have a hard time distinguishing whether they
scored or made a great defensive play and you certainly wouldn’t be able
to hear what individual people were saying about the game. The same is
true for recording from the brain: recordings made at a distance provide
some useful, high-level information, but to access fine-scale information,
you need to be close to the source. Here, that means recording action
potentials, or “spikes,” from individual neurons. Currently, that can only
be done by placing electrodes inside the brain.

HOW DOES NEURAL STIMULATION WORK?

Interfacing 

with the Brain

OUR APPROACH
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FROM NEURON TO COMPUTER

The Link
We’re aiming to design a fully implantable, cosmetically invisible brain-
computer interface to let you control a computer or mobile device
anywhere you go.

Micron-scale threads would be inserted into areas of the brain that
control movement. Each thread contains many electrodes and connects
them to an implant called the “Link.”

Interfacing 

with the Brain

Innovation pushing the boundaries of neural engineering.
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NEURAL IMPLANT AND ELECTRODE ARRAY
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NEW APPROACH TO NEUROSURGERY

Sealed, implanted device that processes and
transmits neural signals.

LINK

Each small and flexible thread contains many
electrodes for detecting neural signals.

NEURAL THREADS

Compact inductive charger wirelessly connects to
the implant to charge the battery from the outside.

CHARGER
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REGAINING INDEPENDENCE

The Neuralink App
The Neuralink app is being designed to allow you to control your
keyboard and mouse directly with the activity of your brain, just by
thinking about it.

Precision Automated 

Neurosurgery
The threads on the Link are so fine and flexible that they can’t be inserted
by the human hand. Instead, we are building a robotic system that is
designed to reliably and efficiently insert these threads exactly where the
neurosurgeon wants them to be.
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BE IN CONTROL

The Neuralink app would guide you through exercises that would teach
you to control your device.

SIMULATION. 


NOT FDA-APPROVED OR AVAILABLE.

BE AUTONOMOUS

With a Bluetooth connection, you would be able to potentially control any
mouse or keyboard with your thoughts.

Learn More

WHAT IS NEURALINK DEVELOPING?

Neuralink is building a fully integrated Brain Computer Interface (BCI)
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system. Sometimes you'll see this called a brain-machine interface
(BMI). Either way, BCIs are technologies that enable a computer or other

digital device to be controlled directly with brain activity. For example,
prior research has demonstrated that a person with paralysis can control
a computer mouse or keyboard just by thinking about how they want to
move. Our goal is to build a system that is safe, fully implanted and
cosmetically invisible, available at home or out and about, and usable
without assistance. Our device, called the Link, aims to record from 1024
electrodes and is being designed to meet these criteria.

WHAT ARE THE BIGGEST CHALLENGES IN MAKING A SCALABLE

BCI?

HOW DOES THE NEURALINK SYSTEM DIFFER FROM OTHER BCI

DEVICES?

Engineering 
with the Brain

APPLICATIONS
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WHAT ARE THE BIGGEST CHALLENGES IN MAKING A SCALABLE

BCI?

Neuralink’s technology builds on decades of BCI research in academic
labs, some of which is currently being tested in ongoing clinical studies.
The BCI systems used in these aforementioned studies have no more
than a few hundred electrodes with connectors that pass through the
skin. Their use also requires laboratory equipment and personnel to be
present. Our challenge is to build a safe and effective BCI that is wireless
and fully implanted, scales up the number of electrodes, removes the
need for external equipment (other than the device being controlled),
and that users can take anywhere and operate by themselves. Recent
engineering advances in the field and new technologies developed at
Neuralink are paving the way for progress on each of these key technical
hurdles.


ELECTRODES

In order to optimize the compatibility of our threads with the surrounding
tissue, we believe that they should be on the same size scale as
neighboring neurons and as flexible as possible. The threads also have to
resist corrosion from fluid in the tissue. Therefore, we microfabricate the
threads out of thin film metals and polymers. To meet these criteria,
we’ve developed new microfabrication processes and made advances in
materials science. These include the integration of corrosion-resistant
adhesion layers to the threads and rough electrode materials that
increase their effective surface area without increasing their size.


CHIPS

Our Link needs to convert the small electrical signals recorded by each
electrode into real-time neural information. Since the neural signals in
the brain are small (microvolts), the Link must have high-performance
signal amplifiers and digitizers. Also, as the number of electrodes
increases, these raw signals become too much information to upload
with low power devices. Scaling our devices requires on-chip, real-time
identification and characterization of neural spikes. Our custom chips on
the Link meet these goals while radically reducing per-channel chip size
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the Link meet these goals, while radically reducing per channel chip size
and power consumption compared to current technology.


HERMETIC PACKAGING

The Link needs to be protected from the fluid and salts in the brain.
Making a water-proof enclosure can be hard, and it’s even harder when
that enclosure must be constructed from biocompatible materials,
replace the skull structurally, and allow over 1,000 electrical channels to
pass through it. To meet this challenge, we are developing innovative
techniques to build and seal each major component of the package. For
example, by replacing the connection of multiple components with a
process that builds them as a single component, we can decrease device
size and eliminate a potential failure point.


NEUROSURGERY

Our threads are too fine to be manipulated by hand and too flexible to go
into the brain on their own (imagine trying to sew a button with thread
but no needle). Yet, we need to safely insert them with precision and
efficiency. We are innovating on robot design, imaging systems, and
software to build a robot that can precisely and efficiently insert many
threads through a single 25 mm skull opening while actively avoiding
blood vessels on the surface of the brain.


NEURAL DECODING

Neural spikes contain a lot of information, but that information has to be
decoded in order to use it for controlling a computer. Academic labs have
designed computer algorithms to control a virtual computer mouse from
the activity of hundreds of neurons. Our device is intended to record from
over an order of magnitude more neurons, which we hope will provide
more precise and naturalistic control of electronic devices. To
accomplish this, we are building on recent advances in statistics and
algorithm design to improve the efficacy and robustness of neural
decoding. One challenge is to design adaptive algorithms that maintain
reliable and robust performance while continuing to improve over time.
Ultimately, we want these algorithms to run in real time on the implanted
device itself. 
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WHAT ARE THE BIGGEST CHALLENGES IN MAKING A SCALABLE

BCI?

HOW DOES THE NEURALINK SYSTEM DIFFER FROM OTHER BCI

DEVICES?

There are currently only a few approved BCI devices that record from
and/or stimulate the human brain, including devices for deep brain
stimulation (DBS), which can treat neurological disorders such as
Parkinson’s disease, and devices for the detection and disruption of
seizures. These approved devices are designed to modulate neural
activity over large brain areas, not to transfer information to and from the
brain. Therefore, they generally have a small number of electrodes (less
than 10), and these electrodes are much larger than our threads. For
example, DBS leads have only 4-8 electrodes and are about 800 times
larger in diameter.


There are also non-Neuralink BCI devices being tested in pilot clinical
trials. However, none of these devices have more than a few hundred
electrodes, and they are all either placed on the surface of the brain or in
fixed arrays of single rigid electrodes. The Link is being designed with an
order of magnitude more electrodes and with flexible threads that are
individually placed to avoid blood vessels and to best cover the brain
region of interest.


We are also designing the Link to provide unprecedented scale, with over
1024 channels of information from the brain. The Link is also being
designed to perform real-time spike detection on every channel and to
send this data wirelessly.
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Engineering 
with the Brain

APPLICATIONS
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REGAINING CONTROL

A Direct Link Between the Brain & Everyday
Technology
The initial goal of our technology is to help people with paralysis regain
independence through the control of computers and mobile devices. Our
devices are therefore currently being designed to one day give people
the ability to communicate more easily via text or speech synthesis, to
follow their curiosity on the web, or to express their creativity through
photography, art, or writing apps.

Engineering 

with the Brain

Working towards improving lives.
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RECONNECTING THOUGHT TO ACTION

The Future of 

Neural Engineering
The Link is a starting point for a new kind of brain-computer interface. As
our technology develops, we want to be able to increase the channels of
communication with the brain, accessing more brain areas and new
kinds of neural information. We believe this technology has the potential
to treat a wide range of neurological disorders, to restore sensory and
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g g , y
motor function, and eventually to expand how we interact with each other
and experience the world around us.

FIG. 1 FIG. 2

VISUAL CORTEX

AUDITORY CORTEX

SOMATOSENSORY CORTEX

MOTOR CORTEX
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Learn More

WHAT WILL THE LINK DO?

We are designing the Link to connect to thousands of neurons in the
brain, so that it may one day be able to record the activity of these
neurons, process these signals in real time, and translate intended
movements directly into the control of an external device. As a first
application of our technology, we hope to help people with quadriplegia
by giving them the ability to control computers and mobile devices
directly with their thoughts. We would start by recording neural activity
in the brain’s movement areas. As users think about moving their arms or
hands, we would decode those intentions, which would be sent over
Bluetooth to the user’s computer. Users would initially learn to control a
virtual mouse. Later, as users get more practice and our adaptive
decoding algorithms continue to improve, we expect that users would be
able to control multiple devices, including a keyboard or a game
controller.

WHO WILL THE LINK HELP?

WILL THE LINK BE SAFE?

WILL THE LINK OR FUTURE SYSTEMS BE AVAILABLE TO THE

GENERAL POPULATION?

HOW WILL YOU ADDRESS DEVICE SECURITY?
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Learn More

WHAT WILL THE LINK DO?

WHO WILL THE LINK HELP?

We hope our first application will enable people with quadriplegia to
control a point-and-click computer cursor. We believe there are many
other potential future applications for the Link. These may include
restoring motor, sensory, and visual function, as well as treatment of
neurological disorders.

WILL THE LINK BE SAFE?

WILL THE LINK OR FUTURE SYSTEMS BE AVAILABLE TO THE

GENERAL POPULATION?

HOW WILL YOU ADDRESS DEVICE SECURITY?

Expanding 

Our World
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WHAT WILL THE LINK DO?

WHO WILL THE LINK HELP?

WILL THE LINK BE SAFE?

We have not yet begun clinical trials, and so we do not have safety data in
humans, but safety has been at the core of the design process. In
particular, the Link includes technical innovations intended to improve
the safety of the surgical procedure compared to existing BCI devices or
traditional neurosurgery. Here are a few examples:


There is always risk associated with general anesthesia, and that risk is
reduced by shortening the time of the procedure. We’re designing the
Neurosurgical Robot so that it will be capable of efficient and reliable
electrode insertion. Also, the robot is being designed to insert threads
through a hole in the skull as small as 25 mm in diameter. Combined with
other advancements in robotic surgical tooling, this may eventually allow
us to eliminate general anesthesia and implant the device under
conscious sedation.


Inserting a device into the brain always carries some risk of bleeding. We
are trying to reduce that risk by using micron-scale threads, inserted
with a needle whose diameter is about the size of many neurons in the
brain. Furthermore, because each thread is individually inserted, the
Neurosurgical Robot is being designed so that it will aim each thread to
avoid damaging blood vessels at or near the surface of the brain.
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WHAT WILL THE LINK DO?

WHO WILL THE LINK HELP?

WILL THE LINK BE SAFE?

WILL THE LINK OR FUTURE SYSTEMS BE AVAILABLE TO THE

GENERAL POPULATION?

Neuralink is currently focused on developing medical devices. We believe
these devices have the potential to help people with a wide range of
injuries and neurological disorders, and we hope to develop treatments
for many of these conditions in the coming years. We expect that as our
devices continue to scale, and as we learn to communicate with more
areas of the brain, we will discover new, non-medical applications for our
BCIs. Neuralink's long-term vision is to create BCIs that are sufficiently
safe and powerful that the general population would want to have them.

HOW WILL YOU ADDRESS DEVICE SECURITY?
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WHAT WILL THE LINK DO?

WHO WILL THE LINK HELP?

WILL THE LINK BE SAFE?

WILL THE LINK OR FUTURE SYSTEMS BE AVAILABLE TO THE

GENERAL POPULATION?

HOW WILL YOU ADDRESS DEVICE SECURITY?

We understand that medical devices need to be secure and it takes
serious engineering to prevent unwanted access to such devices.
Security will be built into every layer of the product through strong
cryptography, defensive engineering, and extensive security auditing.

Expanding 

Our World
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Brain-Computer Interfaces
Established: June 29, 2018

Overview People Publications Videos Groups

Brain-Computer Interface (BCI) is a system that measures central nervous system (CNS) activity and converts it into artificial output that replaces,
restores, enhances, supplements, or improves the natural CNS output and thereby changes the ongoing interactions between the CNS and its
external or internal environment. BCI is direct communication pathway between an enhanced or wired brain and an external device.

The Brain-Computer Interfaces (BCI) project in Microsoft Research aims to enable BCI for the general population. This means non-intrusive methods,
fewer number of electrodes and custom-designed signal picking devices. We go towards interactive BCI, which means response times within
seconds and using EEG signals.

Activity of CNS
Direct measurement:

Electroencephalographic signals (EEG)

Functional Near Infrared Spectroscopy (fNIRS)

Magnetoencephalography (MEG)

Functional Magnetic Resonance Imaging (fMRI)

Positron Emission Tomography (PET)

Indirect indications:

heart rate, pupil dilation, galvanic skin resistance (GSR)

gaze dynamics, gesture/posture/gait dynamics

Neuroimaging modalities:

Recording method Abbr. SNR
Temporal
resolution

Spatial
resolution

Probably
portable

Invasive

Electrocorticography ECoG High High High Yes Yes
Electroencephalography EEG Mid to low High Mid to low Yes No
Magnetoencephalography MEG Mid High Mid No No
Function MRI fMRI Mid Low High No No
Function Near-Infrared
Spectroscopy

fNIRS Low Low Mid Yes No

Electrical activity of the brain
Action potentials:

Single neuron electrical activity

Spikes 40 mV/1-2 ms/0-1,000 Hz

Local field potentials (LFP):

Group of neurons
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50-350 µV, up to 350 Hz

Electrocorticography (ECoG):

Electrodes on the surface of the brain (4-32)

100 µV/200 Hz

Electroencephalography (EEG):

Electrodes on the skull (16-256): dry, gel, saline solution

1-10 µV/50 Hz

Frequency bands:

Band Frequency, Hz
Delta < 4
Theta from 4 to 8
Alpha from 8 to 14
Beta > 14

Types of BCI
Passive BCI:

Monitoring the human state: emotion, attention, cognitive load

Interactive BCI:

Direct EEG decoding

Imaginary/inducted/stimulated movements, typically from the motor cortex

Attention decoding to audio or video

Evoked potentials: steady state video, or audio, or haptic, or …

Event related potentials: P300

Active BCI:

All the above

Induction of stimulae

Evoked potentials
One of the approaches in the interactive BCI

Types of evoked potentials:

Visual: steady state visual evoked potentials (SSVEP)

Audio: auditory steady state response (ASSR)

Haptic: steady-state somatosensory evoked potential (SSSEP)

BCI as type of HMI
BCI can be treated as another input modality of the human-machine interface. As such it should be used where it is more convenient or there are no
other alternatives. Examples here are scenarios with augmented or virtual reality (AR/VR) glasses and hand-busy/eyes-busy situations. Such situation
can arise on the manufacturing floor when hands are holding tools or are in protecting gloves (no gesture input) and it is too noisy (no voice input).

Our current research directions
We target general population (non-intrusive pickup with low number of electrodes) in interactive BCI (signal limited to EEG or MEG) scenarios. The
most promising applications include augmenting the UI of AR/VR glasses with BCI components.

Follow us:
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Humans controlling machines with their minds 

may sound like something from a sci-fi movie, 

but it’s becoming a reality through 

braincomputer interfaces. Understanding this 

emerging technology now can help ensure that 

effective policies are in place before BCI 

becomes a part of everyday life. 

 

hree drones lift off, filling the air with their 
telltale buzz. They slowly sail upward as a 
fleet—evenly spaced and level—and then 
hover aloft. 

On the ground, the pilot isn't holding a remote control. 
In fact, he isn't holding anything. He's 

OVERVIEW 
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just sitting there calmly, controlling the drones with his 
mind. 

This isn't science fiction. This is a YouTube video from 
2016. 

In the clip, a mechanical engineering Ph.D. candidate at 
Arizona State University (ASU) sports an odd piece of 
headwear. It looks a bit like a swim cap, but with 
nearly 130 colorful sensors that detect the student's 
brain waves. These devices let him move the drones 
simply by thinking directional commands: up, down, 
left, right. 

Today, this type of brain-computer interface (BCI) 
technology is still being developed in labs like the one 
at ASU in 2016, which has since moved to the 
University of Delaware. In the future, all kinds of BCI 
tech could be sold to consumers or deployed on the 
battlefield. 

The fleet of mind-controlled drones is just one real-life 
example of BCI explored in an initial assessment of BCI 
by RAND Corporation researchers. They examined 
current and future developments in the world of BCI 
and evaluated the practical applications and potential 
risks of various technologies. Their study is part of 
RAND's Security 2040 initiative, which looks over the 
horizon and explores new technologies and trends that 
are shaping the future of global security. 

“That video of the drones really struck me as we were 
researching,” said Anika Binnendijk, a political scientist 
at RAND and an author of the report. 

“Some of this technology seems to be the stuff of 
science fiction. But it was intriguing to see 

what has actually been achieved thus far in a 
laboratory setting, and then to think in a structured 
way about how it might be used outside of the lab.” 
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If today's 
achievements in 
brain-computer 
interface technology 
already seem 
unbelievable, 

It stands to reason that 
BCI breakthroughs in 
the not-too-distant 
future could be truly 
momentous. 

Share on Twitter 
then it stands to reason that BCI breakthroughs in 
the not-toodistant future could be truly momentous. 
And that means we need to start thinking about 
them now. 

How Do BCIs Work? 

BCI technology allows a human brain and an external 
device to talk to one another—to exchange signals. It 
gives humans the ability to directly control machines, 
without the physical constraints of the body. 

Binnendijk and her colleagues analyzed existing and 
potential BCI tools that vary in terms of accuracy and 
invasiveness, two qualities that are closely related. The 
greater the proximity of an electrode to the brain, the 
stronger the signal—like a cerebral cell phone tower. 

Non-invasive tools often use sensors applied on or 
near the head to track and record brain activity, just 
like the swim cap the ASU student used. These tools 
can be placed and removed easily, but their signals 
may be muffled and imprecise. 

Invasive BCI would require surgery. Electronic devices 
would need to be implanted beneath the skull, directly 
into the brain, to target specific sets of neurons. BCI 
implants currently under development are tiny and can 
engage up to a million neurons at once. For example, a 
research team at the University of California, Berkeley, 
has created implantable sensors that are roughly the 
size of a grain of sand. They call these sensors “neural 
dust.” 
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A "neural dust" implantable sensor developed by researchers at UC Berkeley. 
Image from UC Berkeley / CC BY 3.0 

Invasive methods would likely result in a much clearer 
and more accurate signal between the brain and the 
device. But as with any surgery, the procedures 
required to implant them would come with health 
risks. 

A World of Possibilities 
By creating the ability for humans to communicate 
directly with machines, BCI has the potential to 
influence all facets of life. But Timothy Marler, a senior 
research engineer at RAND and coauthor of the report, 
says that it makes sense to start by studying an 
emerging technology like BCI through a military lens. 
Why? Because war is one of the most fraught and 
complicated scenarios imaginable. 

“If I can use it in a war, I could probably use it during a 
natural disaster like a tsunami or an earthquake. And 
frankly, I could use it more to save lives,” said Marler. 
“Those are good things. 

But we aren’t necessarily advocating the use of these 
technologies. We're testing the viability of their use.” 

Most BCI technologies are still in the early stages of 
development and are actively being researched and 
funded by the Defense Advanced Research Projects 
Agency (DARPA), the Army Research Lab, the Air Force 
Research Laboratory, and other organizations. With 
the power of BCI tools, the U.S. military could 
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potentially enhance the physical and cognitive power 
of its personnel. 

BCI could also provide major medical benefits in the 
military and civilian worlds. For instance, amputees 
could directly control sophisticated prosthetic limbs. 
And implanted electrodes could improve memory for 
people dealing with Alzheimer's disease, stroke, or 
head injuries. Binnendijk, recalling a young neighbor 
who currently controls her mobility by using a joystick, 
is hopeful that the technology might one day 
revolutionize the girl's ability to navigate the world. 

Based on their analysis of current BCI development and 
the types of tasks that future tactical military units 
might face, the RAND team created a toolbox that 
catalogs how BCI might be useful in the coming years. 
Some BCI functions may be available within a relatively 
short time (within a couple of decades or so). But 
others, especially those that transfer more 
complicated data, could take much longer to mature. 
The team then tested this toolbox by bringing together 
neuroscientists and 

individuals with operational warfighting experience to 
play a national security game. 

 

A Systematic Approach 

RAND researchers developed a path for determining 

where BCI technology stands now and where it could 

potentially go. They applied a comprehensive method 

that could be applied to other emerging technologies. 
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Step 1: Analysis 

Conduct a literature review and interviews 

with experts. 

Break the technology down into practical 

tools. 

Step 3: Tabletop Game 

Facilitate a structured discussion of how 

and where to use 

Step 4: Recommendations 

Encourage developers to create products that respond to 

users’ real needs. 

 

Researching Tomorrow's Technology 
Today 
As with any emerging technology, BCI carries many 
risks and unknowns. Before BCI matures, it's important 
for developers to plan ahead and consider the ethical 
and policy issues surrounding complicated and 
potentially frightening scenarios. 

For instance, advanced BCI technology could be used 
to reduce pain or even regulate emotions. What 
happens when military personnel are sent into battle 
with a reduced sense of fear? And when they return 
home, what psychological side effects might veterans 
experience without their “superhuman” traits? Now 

Step 2: Toolbox 

those tools. 
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may be the perfect time to think through these 
scenarios and ensure that there are guardrails in place 
ahead of time. 
“There can be a 
knee-jerk reaction 
to emerging 
technology—that 
it will take jobs away 
or it will be 

As BCI developers 
prepare, they should 
carefully weigh the 
opportunities against 
the risks. 

Share on Twitter 
militarized,” said 

Marler. “But BCI is not that different than the 
automobile; it can be dangerous, but it can be very 
helpful. 

“I wish we had these policy discussions about artificial 
intelligence and robotics 20 years ago because, in 
many ways, folks are now being reactive. People fear 
what they don't understand. We all need to 
understand BCI, so we can ensure that we're not 
reckless with it.” 

As BCI developers prepare, they should carefully weigh 
the opportunities against the risks. 
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ris 

The report highlights recommendations for the U.S. 
government, including planning to address a lack of 
trust in BCI technologies among the service members 
who may be expected to use them, and guidance to 
ensure ethical applications. The researchers also stress 
the importance of creating tools that respond to actual 
needs, rather than falling in love with “an exquisite 
technology,” as Binnendijk put it, and developing 
something just because it's possible. These and other 

ities 
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Better understanding of 
human experience 

Interpersonal relationships may 

be profoundly altered. 

People may be psychologically 

harmed if “superhuman” 

capabilities are revoked—for 

example, at the end of military 

service. 

Long-term mental effects are 
unknown. 

Ethical impacts and 
inequity 

In war, combat speed could 

outpace human 
decisionmaking speed. Rapidly 

sharing information between 

people and machines raises 

ethical issues of accountability in 

war. 

Unequal access to BCI 
technology could widen existing 
social, political, and economic 
inequities. 

Physical harm 
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considerations could help reduce risks as BCI 
capabilities mature. 

The thought-powered drones that first intrigued 
Binnendijk when she began this study may eventually 
be the ancestors of hands-free swarms of drones, 
robots, or even vehicles. 

Binnendijk says it's important to analyze emerging 
technologies from a policy perspective to understand 
how they might be useful in the future. 

“We have an opportunity to get ahead of the game. This 
is something we should be thinking about now, before 
BCI technologies become a reality in the everyday 
world.” 
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Abstract

Brain-Computer Interface (BCI) is an advanced and multidisciplinary active research domain
based on neuroscience, signal processing, biomedical sensors, hardware, etc. Since the last
decades, several groundbreaking research has been conducted in this domain. Still, no compre‐
hensive review that covers the BCI domain completely has been conducted yet. Hence, a compre‐
hensive overview of the BCI domain is presented in this study. This study covers several applica‐
tions of BCI and upholds the significance of this domain. Then, each element of BCI systems, in‐
cluding techniques, datasets, feature extraction methods, evaluation measurement matrices, exist‐
ing BCI algorithms, and classifiers, are explained concisely. In addition, a brief overview of the
technologies or hardware, mostly sensors used in BCI, is appended. Finally, the paper investigates
several unsolved challenges of the BCI and explains them with possible solutions.

Keywords: brain-computer interface, signal processing, biomedical sensors, systematic review

1. Introduction

The quest for direct communication between a person and a computer has always been an attrac‐
tive topic for scientists and researchers. The Brain-Computer Interface (BCI) system has directly
connected the human brain and the outside environment. The BCI is a real-time brain-machine in‐
terface that interacts with external parameters. The BCI system employs the user’s brain activity
signals as a medium for communication between the person and the computer, translated into the
required output. It enables users to operate external devices that are not controlled by peripheral
nerves or muscles via brain activity.

BCI has always been a fascinating domain for researchers. Recently, it has become a charming
area of scientific inquiry and has become a possible means of proving a direct connection be‐
tween the brain and technology. Many research and development projects have implemented this
concept, and it has also become one of the fastest expanding fields of scientific inquiry. Many sci‐
entists tried and applied various communication methods between humans and computers in dif‐
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ferent BCI forms. However, it has progressed from a simple concept in the early days of digital
technology to extremely complex signal recognition, recording, and analysis techniques today. In
1929, Hans Berger [1] became the first person to record an Electroencephalogram (EEG) [2],
which shows the electrical activity of the brain that is measured through the scalp of a human
brain. The author tried it on a boy with a brain tumor; since then, EEG signals have been used clin‐
ically to identify brain disorders. Vidal [3] made the first effort to communicate between a human
and a computer using EEG in 1973, coining the phrase “Brain-Computer Interface”. The author
listed all of the components required to construct a functional BCI. He made an experiment room
that was separated from the control and computer rooms. In the experiment room, three screens
were required; the subject’s EEG was to be sent to an amplifier the size of an entire desk in the
control area, including two more screens and a printer.

The concept of combining brains and technology has constantly stimulated people’s interest, and
it has become a reality because of recent advancements in neurology and engineering, which have
opened the pathway to repairing and possibly enhancing human physical and mental capacities.
The sector flourishing the most based on BCI is considered the medical application sector.
Cochlear implants [4] for the deaf and deep brain stimulation for Parkinson’s illness are examples
of medical uses becoming more prevalent. In addition to these medical applications, security, lie
detection, alertness monitoring, telepresence, gaming, education, art, and human enhancement are
just a few uses for brain–computer interfaces (BCIs), also known as brain–machine interfaces or
BMIs [5]. Every application based on BCI follows different approaches and methods. Each method
has its own set of benefits and drawbacks. The degree to which a performance can be enhanced
while minute-to-minute and day-to-day volatility are reduced is crucial for the future of BCI tech‐
nology. Such advancements rely on the capacity to systematically evaluate and contrast different
BCI techniques, allowing for the most promising approaches to be discovered. In addition, this
versatility around BCI technologies in different sectors and their applications can seem so com‐
plex yet so structured. Most of the BCI applications follow a standard structure and system. This
basic structure of BCI consists of signal acquisition, pre-processing, feature extraction, classifica‐
tion, and control of the devices. The signal acquisition paves the way to connecting a brain and a
computer and to gathering knowledge from signals. The three parts of pre-processing, feature ex‐
traction, and classification are responsible for making the associated signal more usable. Lastly,
control of the devices points out the primary motivation: to use the signals in an application, pros‐
thetic, etc.

The outstanding compatibility of various methods and procedures in BCI systems demands exten‐
sive research. A few research studies on specific features of BCI have also been conducted. Given
all of the excellent BCI research, a comprehensive survey is now necessary. Therefore, an exten‐
sive survey analysis was attempted and focused on nine review papers featured in this study. Most
surveys, however, do not address contemporary trends and application as well as the purpose
and limits of BCI methods. Now, an overview and comparisons of the known reviews of the litera‐
ture on BCI are shown in Table 1.
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Table 1

A summary of recent surveys/reviews on various BCI technologies, signals, algorithms, classifiers, etc.

Ref. Purposes Challenges

[6]
Advantages, disadvantages, decoding algorithms,
and classification methods of EEG-based BCI
paradigm are evaluated.

Training time and fatigue, signal processing, and
novel decoders, shared control to supervisory
control in closed-loop.

[7]
A comprehensive review on the structure of the
brain and on the phases, signal extraction
methods, and classifiers of BCI

Human-generated thoughts are non-stationary,
and generated signals are nonlinear.

[8]
A systematic review on the challenges in BCI and
current studies on BCI games using EEG devices

Biased within the process of search and
classification.

[9]
A well-structured review on sensors used on BCI
applications that can detect patterns of the brain

The sensors are placed in the human brain when
neurosurgery is needed, which is a precarious
process.

[10]
A brief review on standard invasive and
noninvasive techniques of BCI, and on existing
features and classifiers

To build brain signal capture systems with low-
density electrodes and higher resolution.

[11]
This paper briefly describes the application of BCI
and neurofeedback related to haptic technologies

This study only covers a small domain of BCI
(haptic technology)

[12]

This survey mainly focuses on identifying
emotion with EEG-based BCI, with a brief
discussion on feature extraction, selection, and

classifiers

There are no real-life event datasets, and the
literature could not sense the mixed feelings
simultaneously.

[13]
This paper refers to applying only noninvasive
techniques on BCI and profound learning-related
BCI studies

This study exclusively covers noninvasive brain
signals.

[14]
This review focused on popular techniques such
as deep learning models and advances in signal
sensing technologies

Popular feature extraction processes, methods,
and classifiers are not mentioned or reviewed.

Abiri, R. et al. [6] evaluated the current review on EEG-based various experimental paradigms
used by BCI systems. For each experimental paradigm, the researchers experimented with differ‐
ent EEG decoding algorithms and classification methods. The researchers overviewed the para‐
digms such as Motor imagery paradigms, Body kinematics, Visual P300, Evoked potential, and
Error related potential and the hybrid paradigms analyzed with the classification methods and
their applications. Researchers have already faced some severe issues while exploring BCI para‐
digms, including training time and fatigue, signal processing, and novel decoders; shared control
to supervisory control in closed-loop; etc. Tiwari, N. et al. [7] provided a complete assessment of
the evolution of BCI and a fundamental introduction to brain functioning. An extensive compre‐
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hensive revision of the anatomy of the human brain, BCI, and its phases; the methods for extract‐
ing signals; and the algorithms for putting the extracted information to use was offered. The au‐
thors explained the steps of BCI, which consisted of signal acquisition, feature extraction, and sig‐
nal classification. As the human brain is complex, human-generated thoughts are non-stationary,
and generated signals are nonlinear. Thus, the challenging aspect is to develop a system to find
deeper insights from the human brain; then, BCI application will perform better with these deeper
insights. Vasiljevic, G.A.M. et al. [8] presented a Systematic Literature Review (SLR) conclusion of
BCI games employing consumer-grade gadgets. The authors analyzed the collected data to pro‐
vide a comprehensive picture of the existing reality and obstacles for HCI of BCI-based games uti‐
lizing consumer-grade equipment. According to the observations, numerous games with more
straightforward commands were designed for research objectives, and there was a growing
amount of more user-friendly BCI games, particularly for recreation. However, this study is limited
to the process of search and classification. Martini, M.L. et al. [9] investigated existing BCI sensory
modalities to convey perspectives as technology improves. The sensor element of a BCI circuit de‐
termines the quality of brain pattern recognition, and numerous sensor modalities are presently
used for system applications, which are generally either electrode-based or functional neuroimag‐
ing-based. Sensors differed significantly in their inherent spatial and temporal capabilities along
with practical considerations such as invasiveness, mobility, and maintenance. Bablani, A. et al.
[10] examined brain reactions utilizing invasive and noninvasive acquisition techniques, which in‐
cluded electrocorticography (ECoG), electroencephalography (EEG), magnetoencephalography
(MEG), and magnetic resonance imaging (MRI). For operating any application, such responses
must be interpreted utilizing machine learning and pattern recognition technologies. A short
analysis of the existing feature extraction techniques and classification algorithms applicable to
brain data has been presented in this study.

Fleury, M. et al. [11] described various haptic interface paradigms, including SMR, P300, and
SSSEP, and approaches for designing relevant haptic systems. The researchers found significant
trends in utilizing haptics in BCIs and NF and evaluated various solutions. Haptic interfaces could
improve productivity and could improve the relevance of feedback delivered, especially in motor
restoration using the SMR paradigm. Torres, E.P. et al. [12] conducted an overview of relevant re‐
search literature from 2015 to 2020. It provides trends and a comparison of methods used in new
implementations from a BCI perspective. An explanation of datasets, emotion elicitation methods,
feature extraction and selection, classification algorithms, and performance evaluation is pre‐
sented. Zhang, X. et al. [13] discussed the classification of noninvasive brain signals and the funda‐
mentals of deep learning algorithms. This study significantly gives an overview of brain signals
and deep learning approaches to enable users to understand BCI research. The prominent deep
learning techniques and cutting-edge models for brain signals are presented in this paper, to‐
gether with specific ideas for selecting the best deep learning models. Gu, X. et al. [14] investigated
the most current research on EEG signal detection technologies and computational intelligence
methodologies in BCI systems that filled in the loopholes in the five-year systematic review (2015–
2019). The authors demonstrated sophisticated signal detecting and augmentation technologies
for collecting and cleaning EEG signals. The researchers also exhibited computational intelligence
techniques, such as interpretable fuzzy models, transfer learning, deep learning, and combinations
for monitoring, maintaining, or tracking human cognitive states and the results of operations in
typical applications.
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The study necessitated a compendium of scholarly studies covering 1970 to 2021 since we ana‐
lyze BCI in detail in this literature review. We specialized in the empirical literature on BCI from
2000 to 2021. For historical purposes, such as the invention of BCI systems and their techniques,
we selected some publications before 2000. Kitchenham [15,16] established the Systematic
Literature Review (SLR) method, which is applied in the research and comprises three phases: or‐
ganizing, executing, and documenting the review. The SLR methodologies attempted to address all
possible questions that could arise as the current research progresses. The recent study’s pur‐
pose is to examine the findings of numerous key research areas. The PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were used to put together
the essential materials for this study, which consists of four parts: identification, scanning, eligibil‐
ity testing, and inclusion. We gathered 577 papers from a variety of sources and weeded out du‐
plicates and similar articles. Finally, we carefully chose 361 articles and sources for monitoring
and review. The PRISMA process is presented in Figure 1.

Figure 1

The PRISMA process that is followed in this article.

However, this research looks at the present challenges and difficulties in this BCI field.
Furthermore, this study generates ideas and suggestions for future research subjects. The follow‐
ing are the research’s total contributions:

The paper explicitly illustrates Brain-Computer Interface’s (BCI) present, past, and future
trends and technologies.
The paper presents a taxonomy of BCI and elaborates on the few traditional BCI systems with
workflow and architectural concepts.
The paper investigates some BCI tools and datasets. The datasets are also classified on
different BCI research domains.
In addition, the paper demonstrates the application of BCI, explores a few unsolved challenges,
and analyzes the opportunities.
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After reading this section, one should understand BCI and how to get started with it. Our motiva‐
tion to work with BCI started from a desire to learn more about this domain. Furthermore, the
BCI has a bright future ahead of it, as it has a lot to offer in the medical field and in everyday life.
BCI can change one’s incapability and can make life and work easy, as detailed in the following
section. The applications, problems, future, and social consequences of BCI have also fueled our
enthusiasm for this research.

The remainder of the paper is constructed as follows. The motivation of this work and diverse ap‐
plications of BCI systems are illustrated in Section 2. Section 3 describes the structure of BCI and
briefly reviews the most popular techniques of BCI. In Section 5, different categories of datasets
available publicly are displayed. In Section 7, the most widely used methods for signal enhance‐
ment and feature extraction of BCI are discussed. The most commonly known classifiers are re‐
viewed in Section 8. A broad discussion on the evaluation metrics for BCI is given in Section 9. The
challenges faced most commonly during the BCI process are reviewed in Section 10. Lastly, this
paper provides a conclusion in Section 11.

2. Applications of BCI

BCIs may be used for various purposes and the application determines the design of a BCI.
According to Nijholt [17], applications based on BCI have two methods of usability. One can com‐
mand whether the other one can be observed or monitored. The majority of command applica‐
tions concentrate on manipulating brain impulses using electrodes to control an external device.
On the other hand, applications that involve observation focus on recognizing a subject’s mental
and emotional state to behave appropriately depending on their surroundings. Some applications
of BCI [18] based on usability are described below:

2.1. Biomedical Applications

The majority of BCI integrations and research have been focused on medical applications, with
many BCIs aiming to replace or restore Central Nervous System (CNS) functioning lost with sick‐
ness or by accident. Other BCIs are more narrowly targeted. In diagnostic applications, on treat‐
ment and motor rehabilitation following CNS disease or trauma, BCIs for biological purposes are
also employed in affective application domains. Biomedical technologies and applications can min‐
imize extended periods of sickness, can provide supervision and protection by empowering per‐
sons with mobility difficulties, and can support their rehabilitation. The necessity to build accurate
technology that can cope with potentially abnormal brain responses that might occur due to dis‐
eases such as brain stroke is a significant challenge in developing such platforms [19]. The follow‐
ing subsections go through each of these applications in further detail.

2.1.1. Substitute to CNS

These substitution means that it can repair or replace CNS functioning lost due to diseases such as
paralysis and spinal cord injury due to stroke or trauma. In addition, due to changed brain func‐
tions, individuals with such illnesses might suffer and developing such technology can be difficult.
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Myoelectrics, known as a motor action potential, which captures electrical impulses in muscles, is
now used in several robotic prosthetics. Bousseta, R. et al. [20] provided an experimental technol‐
ogy for controlling the movement of a robotic prosthetic arm with mental imagery and using cog‐
nitive tasks, which can move in four directions like left, right, up, and down.

2.1.2. Assessment and Diagnosis

The usage of BCIs in a clinical context can also help with assessment and diagnosis. Perales [21]
suggested a BCI for assessing the attention of youngsters with cerebral palsy while playing games.
Another research [22] looked into using BCI to capture EEG characteristics as a tool for diagnos‐
ing schizophrenia. There are also various diagnostic methods such as the detection of brain tu‐
mors [23], the identification of breast cancer [24], parkinson’s disease [25] etc. Diagnoses of sev‐
eral diseases in children including epilepsy, neurodegenerative disorders, motor disabilities, inat‐
tentiveness, or different types of ADHD [26] are possible. Assessment and diagnosis technologies
are essential to patient well-being. Their functioning must be fine-tuned to guarantee that they are
safe, acceptable, and accurate to industry standards.

2.1.3. Therapy or Rehabilitation

BCI is being used in therapeutic applications besides neurological application and prosthetics
nowadays. Among the many applications, post-stroke motor rehabilitation shows promising re‐
sults using BCI. Stroke is a disease that causes long-term disability to the human body and ham‐
pers all kinds of motor or vigorous activity due to an impediment of blood flow. Stroke rehabilita‐
tion application has promised to aid these activities or user imaginations through a robot or other
types of machinery [27,28,29]. Some other applications treat neurological disorders such as
Parkinson’s disease (PD), cluster headaches, tinnitus, etc. Deep Brain Stimulation (DBS) is an es‐
tablished treatment for PD as it delivers electrical impulses to a targeted area of the brain respon‐
sible for the symptoms [30]. Some stimulation BCI devices are used to process calmness during
migraine attacks and cluster headaches. Lastly, a CNS disorder known as tinnitus is also in devel‐
opment to provide treatment by identifying brain patterns that are changed due to the disease
[31]. Lastly, treatment for auditory verbal hallucinations (AVHs), best known as schizophrenia, is a
possibility besides diagnosis [32,33].

2.1.4. Affective Computing

Users’ emotions and state of mind are observed in affective computing BCIs, with the possibility of
altering their surrounding environment to improve or change that emotion. Ehrlich, S. et al. [34]
created a closed-loop system in which music is generated and then replayed to listeners based on
their emotional state. Human emotional states and sensory connections can be studied with a de‐
vice that is related to BCI system. Patients suffering neurological diseases also can benefit from af‐
fective computing to help them convey their feelings to others [35].

2.2. Non-Biomedical Applications
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BCI technologies have shown economic promise in recent years, notably in the field of non-bio‐
medical applications. Most of these applications consist of entertaining applications, games, and
emotional computation. In comparison, researchers focus on robustness and high efficiency in
medical and military applications, and innovations targeted at leisure or lifestyle demand a greater
emphasis on enjoyment and social elements. The most challenging aspect of this entertainment
application is that it must be a user favorite to be commercially successful. As an example, some of
the most popular forms of amusement are as follows:

2.2.1. Gaming

BCIs focused mainly on the gaming sector have grown in importance as a research topic. However,
gaming BCIs are currently a poor substitute for standard game control methods [36]. BCI in gam‐
ing is an area where further research is needed to make games more user-friendly. In some cases,
EEG data make BCI games more utilizable and increase engagement, and the system tracks each
player’s enthusiasm level and activates dynamic difficulty adjustment (DDA) when the players’ ex‐
citement drops [37]. When developing such systems, fine-tuning the algorithms that regulate the
game’s behavior is a big challenge. Some other games are based on BCI, as it is not visually intense
and the graphics are not compatible with the recent generation. With setbacks, there is an engag‐
ing future for an Adaptation of P300 based Brain-Computer Interface for Gaming [38], which is
gaining more popularity as these are very flexible to play.

2.2.2. Industry

EEG-based BCIs can also be used in industrial robotics, increasing worker safety by keeping peo‐
ple away from potentially demanding jobs. These technologies could substitute the time-consum‐
ing button and joystick systems used to teach robots in industrial applications; can detect when a
person is too tired or ill to operate the machinery; and can take the necessary precautions to
avoid injury, such as stopping the machinery [38].

2.2.3. Artistic Application

The four types of artistic applications recognized by BCIs are passive, selective, direct, and collabo‐
rative. Passive artistic BCIs need not require active user input to use the user’s brain activity to de‐
termine which pre-programmed responses to produce. Every user has had some limited control
over the process within selective systems. Still, they will never be in charge of the creative product.
Direct artistic BCIs provide users with far more flexibility, generally allowing them to choose items
from extensive menus, such as brush type and managing brush stroke movements [39]. Lastly, the
collaborative system is controlled by different users [40].

2.2.4. Transport

BCI is used in transportation monitoring which tracks awareness to assess driver weariness and
to enhance airline pilot performances. In the BCI system, mistakes can be costly regarding lives
and monetary obligations on the entities involved when such technologies are utilized in critical
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applications [41,42].

3. Structure of BCI

The BCI system operates with a closed-loop system. Every action taken by the user is met with
some feedback. For example, an imagined hand movement might result in a command that causes
a robotic arm to move. This simple movement of this arm needs a lot of processes inside it. It
starts from the brain, which is one of our body’s most extensive and most complicated organs. It is
made up of billions of nerves that link billions of synapses to communicate. The processes from
taking signals from the human brain to transforming into a workable command are shown in 
Figure 2 and described below:

Signal acquisition: In the case of BCI, it is a process of taking samples of signals that measure
the brain activity and turning them into commands that can control a virtual or real-world
application. The various techniques of BCI for signal acquisition are described later.
Pre-processing: After the signal acquisition, the pre-processing of signals is needed. In most
cases, the collected signals from the brain are noisy and impaired with artifacts. This step helps
to clean this noise and artifacts with different methods and filtering. That is why it is named
signal enhancement.
Feature extraction: The next stage is feature extraction, which involves analyzing the signal and
extracting data. As the brain activity signal is complicated, it is hard to extract useful
information just by analyzing it. It is thus necessary to employ processing algorithms that
enable the extraction of features of a brain, such as a person’s purpose.
Classification: The next step is to apply classification techniques to the signal, free of artifacts.
The classification aids in determining the type of mental task the person is performing or the
person’s command.
Control of devices: The classification step sends a command to the feedback device or
application. It may be a computer, for example, where the signal is used to move a cursor, or a
robotic arm, where the signal is utilized to move the arm.
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Figure 2

Basic architecture of a BCI system.

The basic architecture of the BCI system was explained in the preceding section. It prompts us to
investigate the classification of BCI system. Based upon various techniques, BCI system is classi‐
fied. The BCI techniques are discussed in following parts.

From the above Figure 3, we can classify BCI from different aspects such as dependability, inva‐
siveness, and autonomy.

Dependability: BCI can be classified as dependent or independent. Dependent BCIs necessitate
certain types of motor control from the operator or healthy subjects, such as gaze control. On
the other hand, independent BCIs do not enable the individual to exert any form of motor
control; this type of BCI is appropriate for stroke patients or seriously disabled patients.
Invasiveness: BCI is also classified into three types according to invasiveness: invasive, partially
invasive, and non-invasive. Invasive BCIs are by far the most accurate as they are implanted
directly into the cortex, allowing researchers to monitor the activity of every neuron. Invasive
varieties of BCI are inserted directly into the brain throughout neurosurgery. There are two
types of invasive BCIs: single unit BCIs, which detect signals from a single place of brain cells,
and multi-unit BCIs, which detect signals from several areas. Semi-invasive BCIs use
Electrocorticography (ECoG), a kind of signal platform that enables electrodes to be placed on
the attainable edge of the brain to detect electrical impulses originating from the cerebral
cortex. Although this procedure is less intrusive, it still necessitates a surgical opening in the
brain. Noninvasive BCIs use external sensing rather than brain implants.
Electroencephalography (EEG), Magnetoencephalography (MEG), Positron emission
tomography (PET), Functional magnetic resonance imaging (fMRI), and Functional near-
infrared spectroscopy (fNIRS) are all noninvasive techniques used it to analyze the brain.
However, because of the low cost and portability of the gear, EEG is the most commonly used.
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Autonomy: BCI can operate either in a synchronous or asynchronous manner. Time-dependent
or time-independent interactions between the user and system are possible. The system is
known as synchronous BCI if the interaction is carried out within a particular amount of time
in response to a cue supplied by the system. In asynchronous BCI, the subject can create a
mental task at a certain time to engage with the system. Synchronous BCIs are less user-
friendly than asynchronous BCIs; however, designing one is substantially easier than
developing an asynchronous BCI.

Figure 3

The classification/taxonomy of the BCI system.

As the motive of this research work is to focus on advancements of BCI, the most advanced and
mostly used techniques that is based on invasiveness are described in the following part. Based on
invasiveness, BCI is classified into three categories that are more familiar. In the consequent sec‐
tion, we address these three categories and describe them elaborately.

3.1. Invasive

The types of BCI that are invasive are inserted directly into the brain with neurosurgery. Invasive
BCIs seem to be the most accurate even though they are implanted directly into the cortex as it is
allowed to track every neuron’s action. Invasive BCI also has two units rather than parts. The first
unit is single-unit BCIs that detect signals from a single location of brain cells, whereas multi-unit
BCIs detect numerous areas, the second unit [43]. However, the neurosurgery treatment has vari‐
ous flaws, such as the possibility of scar tissue formation. The body responds to the foreign object
by forming a scar around the electrodes, leading the signal to deteriorate. Since neurosurgery is a
dangerous and costly procedure, invasive BCI is mainly used on blind and paralyzed patients.
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3.2. Partially Invasive

Although this approach is not as intrusive, it still involves brain surgery. Electrocorticography
(ECoG) is a sort of partially invasive BCI monitoring system that places electrodes in the cortex
surface of the brain to produce signals with electrical activity. For example, blinking allows your
brain to discharge electrical activity. When investigating signals, though, these involuntary actions
are generally not of interest since they are in the way of what we search for. It is a form of noise.
ECoGs are less considered with noise than non-invasive BCI, making interpretation easier [44].

Electrocorticography (ECoG)

Electrocorticography (ECoG) [45] is an partially invasive method that measures the brain’s electri‐
cal activity. In another sense, the participant’s skull must be evacuated, and the electrodes must be
placed right at the brain’s service. Consequently, this electrode is located on the skull. The particu‐
lar resolution of the recorded signals is considerably better than EEG. The signal-to-noise ratio is
superior compared with the closer proximity to cerebral activity. Furthermore, motion artifacts
such as blinks and eye movement have a significantly lower impact on ECoG signals. However,
ECoG would only be helpful in the accessible brain area and is close to impossible to utilize out‐
side of a surgical setting [46].

3.3. Noninvasive

Noninvasive neuroimaging technologies have also been used as interfaces in human research.
Noninvasive EEG-based BCIs account for the vast bulk of published BCI research. EEG-based non‐
invasive technologies and interfaces have been employed in a considerably more comprehensive
range of applications. Noninvasive apps and technologies are becoming increasingly popular in
recent years since they do not require any brain surgery. In the noninvasive mode, a headpiece or
helmet-like electrode is utilized outside the skull to measure the signal by causing electrical activity
in the brain. There are some well-known and widely used ways for measuring these electrical ac‐
tivity or potentials, such as Electroencephalography (EEG), Magnetoencephalography (MEG),
Functional Magnetic Resonance Imaging (fMRI), Facial Near Infrared Spectroscopy (fNIRS), and
Positron Emission Tomography (PET). An elaborate description of BCI techniques is given below:

3.3.1. Electroencephalography (EEG)

EG monitors electrical activity in the scalp generated by activating a few of the brain’s neurons.
Several electrodes implanted on the scalp directly, mainly on the cortex, are often used to record
these electrical activities quickly. For its excellent temporal resolution, ease of use, safety, and af‐
fordability, EEG is the most used technology for capturing brain activity. Active electrodes and pas‐
sive electrodes are indeed the two types of electrodes that can be utilized. Active electrodes usu‐
ally feature an integrated amplifier, whereas passive electrodes require an external amplifier to
magnify the detected signals. The prime objective of implementing either embedded or external
amplifiers is to lessen the impact of background noise and other signal weaknesses caused by ca‐
ble movement. One of the issues with EEG is that it necessitates the use of gel or saline solutions
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to lower the resistance of skin-electrode contact. Furthermore, the signal quality is poor, and it is
altered by background noise. The International 10–20 system [47] is often used to implant elec‐
trodes over the scalp surface for recording purposes. The electrical activities across various fre‐
quency bands are used to describe EEG in general.

3.3.2. Magnetoencephalography (MEG)

The magnetic fields created by current flow in the brain are measured using MEG
(Magnetoencephalography). Electric fields have significantly more interrupted travel via the skull
than magnetic fields, therefore it has superior spatial resolution than EEG. A functional neu‐
roimaging technique is applied to measure and evaluate the brain’s magnetic field. MEG operates
on the outside of the head and is now a part of the clinical treatment regularly. David Choen
[48,49] was the first to invent it in 1968 by utilizing a conduction copper detector inside a
shielded chamber to reduce background noise. Improved MEG signals have recently been pro‐
duced using more sensitive sensors such as superconducting quantum interference devices
(SQUID) [50]. MEG has become significant, especially for patients with epilepsy and brain tumors.
It may aid in detecting regions of the brain with average function in individuals with epilepsy, tu‐
mors, or other mass lesions. MEG operates with magnetic waves rather than electrical waves so
that it could contribute additional information to EEG. MEG is also capable of capturing signals
with high temporal and spatial resolution. Therefore, to detect cerebral activity that creates tiny
magnetic fields the scanners must be closer to the brain’s surface. As a result, specific sensors are
required for MEG, such as superconducting quantum interference (SQUID) sensors [51].

3.3.3. Functional Magnetic Resonance Imaging (fMRI)

Noninvasive functional magnetic resonance imaging (fMRI) is used to evaluate the fluctuation in
blood oxygen levels throughout brain activities. fMRI has an excellent spatial resolution, which
makes it ideal for identifying active areas of the brain [52]. The time resolution of fMRI is compar‐
atively low, ranging from 1 to 2 s [53]. It also has low resolution when it comes to head move‐
ments, which could result in artifacts. In the 1990s, functional magnetic resonance imaging (fMRI)
was created. It is a noninvasive and safe technology that does not include the use of radiation, is
simple to use, and has great spatial and temporal resolution. Hemoglobin in capillary red blood
cells in the brain transports oxygen to the neurons. As a result of the increased demand for oxy‐
gen, blood flow increases. If haemoglobin is oxygenated, its magnetic properties vary. The MRI
equipment, which is a cylindrical tube with a strong electromagnet, can determine which regions
of the brain are activated because of this difference. That is how fMRI works. There is also a spe‐
cific application or software known as diffusion MRI, which generates images from the data or re‐
sults that use water molecules’ diffusion. Diffusion-weighted and diffusion tensor imaging
(DWI/DTI) facilitates this exploration of the microarchitecture of the brain. Diffusion-weighted
magnetic resonance imaging (DWI or DW-MRI) imaging renders picture variation depending on
variances in the degree of diffusion of water particles inside the brain. Diffusion depicts the sto‐
chastic thermic mobility of particles. Diffusion inside the brain is defined by several agents, includ‐
ing representing particles beneath study, the temperature, and the microenvironmental structure
in which the diffusion occurs [54]. Diffusion tensor imaging (DTI) investigates the three-dimen‐
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sional form of the diffusion, also recognized as diffusion tensor. It is a powerful MRI modality that
produces directional knowledge about the water motion in a voxel. It exhibits noninvasively micro‐
scopic tissue features that surpass the ability of any other imaging methods [55].

3.3.4. Functional Near-Infrared Spectroscopy (fNIRS)

The infrared radiation is projected into the brain using fNIRS equipment [53,56] to monitor im‐
provements in specific wavelengths as the light is reflected. fNIRS often detects changes in re‐
gional blood volume and oxygenation. When a particular area of the brain works, it requires addi‐
tional oxygen, which is given to the neurons via capillary red blood cells—the increased blood
flow in the brain areas that would be most active at a given time. fMRI is a technique that monitors
variations in oxygen levels caused by various activities. As a result, images with a high spatial reso‐
lution (1 cm) but lower temporal resolution (>2–5 s) could be obtained, comparable with stan‐
dard functional magnetic resonance imaging.

3.3.5. Positron Emission Tomography (PET)

PET (positron emission tomography) is a sophisticated imaging tool for examining brain activities
in real-time. It enables noninvasive measurement of cerebral blood flow, metabolism, and receptor
binding in the brain. Due to the relatively high prices and complexity of the accompanying infra‐
structure, including cyclotrons, PET scanners, and radio chemistry laboratories, PET was previ‐
ously only used in research. PET has been widely employed in clinical neurology in recent years
due to technological improvements and the proliferation of PET scanners to better our under‐
standing of disease etiology, to help in diagnosis, and to monitor disease progression and re‐
sponse to therapy [57]. PET medications such as radiolabeled choline, fluciclovine (18F-FACBC),
and compounds targeting prostate-specific membrane antigen are now being researched and ex‐
plored to improve noninvasive prostate cancer localization diagnostic performance [58].

4. Brain Control Signals

The brain-computer interface (BCI) is based on signal amplification that comes directly from the
brain. Several of these signals are simple to extract, while others are more difficult and require ad‐
ditional preprocessing [53]. These control signals can be classified into one of three groups: (1)
evoked signals, (2) spontaneous signals, and (3) hybrid signals. A detailed overview of the three
categories is given below. The control signals classification is shown in Figure 4.
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Figure 4

The basic architecture of BCI control signals.

4.1. Visual Evoked Potentials

Electrical potentials evoked by short visual stimuli are known as VEPs. The visual cortex’s poten‐
tials are monitored, and the waveforms are derived from the EEG. VEPs are generally used to as‐
sess the visual pathways from the eye to the brain’s visual cortex. Middendorf et al. published a
procedure for measuring the position of the user’s gaze using VEPs in 2000 [59]. The user is con‐
fronted with a screen that displays several virtual buttons that flash at varied rates. The frequency
of the photic driving reflex over the user’s visual brain is determined after the user focuses their
gaze on a button. Whenever the frequency of a shown button equals the frequency of the user, the
system concludes that the user wants to pick it. Steady-State Evoked Potentials (SSEP) and P300
are two of the most well-evoked signals. External stimulation is required for evoked signals that
can be unpleasant, awkward, and exhausting for the individual.

4.1.1. Steady-State Evoked Potential (SSEP)

SSEP signals are produced when a patient experiences periodic stimuli such as a flickering picture,
modulated sound, or even vibrations [60,61]. The strength of the EEG signal in the brain must
grow to meet the stimulus frequency. Signals in many brain locations are observed in terms of the
sensory process. SSEP signals of different forms, such as steady-state visual potentials (SSVEPs),
somatosensory SSEP, and auditory SSEP, are found. SSVEP is widely used in a variety of applica‐
tions. These are normal brain reactions to repeating stimuli, which vary depending on the fre‐
quency with which they are presented. Although there are instances of BCI paradigms utilizing so‐
matosensory (SSSEP) or auditory (SSAEP) stimuli, they are generally induced using visual stimuli
(steady-state visually evoked potentials, SSVEP) [62].

4.1.2. P300 Evoked Potentials (P300)
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The peaks in an EEG generated by infrequent visual, auditory, or somatosensory inputs are known
as P300 evoked potentials. Without the need for training to use P300-based BCI systems. A matrix
of symbols, in which selection is dependent on the participant’s gaze, is a prominent use of P300-
based BCI systems. Such a signal is typically produced using an “odd-ball” paradigm. The user is
asked to respond to a random succession of stimuli, which is less frequent than others [63]. The
P300-based EEG waves are triggered when this unusual stimulus is significant to the person. P300
does not reasonably require any subject training, although, it does need repetitive stimulation,
which may tire the subject and may cause inconsistencies.

4.2. Spontaneous Signals

With no external cues, the person produces random signals willingly. These signals are produced
without any external stimuli (somatosensory, aural, or visual). Motor and sensorimotor rhythms,
Slow Cortical Potentials (SCPs), and non-motor cognitive signals are some of the most prominent
spontaneous signals [53].

4.2.1. Motor and Sensorimotor Rhythms

Motor activities are linked to motor and sensorimotor rhythms. Sensorimotor rhythms are rhyth‐
mic oscillations in electrophysiological brain activity in the mu (Rolandic band, 7–13 Hz) and beta
(13–30 Hz) frequencies. Motor imagery is the process of converting a participant’s motor inten‐
tions into control signals employing motor imagery conditions [64]. The left-hand motion, in an
instance, may result in EEG signals in the and rhythms and a decrease in certain motor cortex ar‐
eas (8–12 Hz) and (18–26 Hz). Depending on the motor imagery rhythms, various applications
can be used such as controlling a mouse or playing a game.

4.2.2. Slow Cortical Potentials (SCP)

SCP is indeed an EEG signal with a frequency less than 1 Hz [65]. It is a low-frequency potential
observed in the frontal and central portions of the cortex and depolarization level variations
throughout the cortical dendrites. SCP is a highly gradual change in brain activity, either positive
or negative, that can only last milliseconds to several seconds. Through operant conditioning, the
subject can control the movement of such signals. As a result, extensive training may be required
in addition to that needed for motor rhythms. Many studies no longer choose SCP, and motor and
sensorimotor rhythms have taken their place.

4.2.3. Non-Motor Cognitive Tasks

Cognitive objectives are utilized to drive the BCI in non-motor cognitive tasks. Several tasks, such
as musical imagination, visual counting, mental rotation, and mathematical computation, might be
completed [66]. Penny, W.D. et al. [67] used a pattern classifier with unclear parameters. The indi‐
vidual performed simple subtraction in one of their non-motor cognitive activities.
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4.3. Hybrid Signals

The term “hybrid signals” refers to the utilization of a mixture of brain-generated signals for con‐
trol. As a result, instead of measuring and using only one signal in the BCI system, a mix of signals
is used. The fundamental goal of using two or more types of brain signals as input to a BCI system
is to increase dependability while avoiding the drawbacks of each signal type [68].

Some research is addressed that the types of brain signals are classified into two categories [10].
These are event-related potentials and evoked brain potential. Three varieties are organized for
evoked brain potential: Visual Evoked Potential (VEP), Tactile Evoked Potential (TEP), and Auditory
Evoked Potential (AEP) [69].

5. Dataset

While analyzing the literature on BCI systems, we discovered various often used datasets that re‐
searchers used while implementing these techniques. In terms of the research, EEG is now the
most frequent method for collecting brain data in BCI. As this is a noninvasive method and has
convenient handling for most datasets, an EEG signal is used. However, for a variety of reasons,
EEG does not provide a comprehensive method of data collection. It needs a variety of fixed things
to acquire the data. Firstly, the signal must be acquired and stored by some subject, participants,
or patients. It is unsuitable when only one subject requires the same arrangement as multiple sub‐
jects to obtain data. After the subjects are prepared, the electrodes (a gear mounted on the scalp)
are attached to the individuals to capture and measure data. This data collection method lasted for
several sessions, with a particular recording period determined by the work’s purpose. The saved
data in these sessions and recordings are primarily brain signals measured by a brain’s action on
a sure thing, such as a video or a picture. EEG signals differ from one participant to the next and
from one session to the next. In this section, the datasets as well as the subjects and electrodes,
channels, and sessions are described. The explanation is tabulated in Table 2, Table 3, Table 4, 
Table 5, Table 6, Table 7 and Table 8. In Table 2, some popular motor imagery datasets are illus‐
trated. The most beneficial option for creating BCIs is motor imagery (MI) impulses captured via
EEG, which offers a great degree of mobility. It enables people with motor disabilities to communi‐
cate with the device by envisioning motor movements without any external stimuli generated from
the motor cortex. A few datasets based on error-related potentials (ErrPs) are exhibited in Table 3
. ErrPs is an EEG dataset that utilizes a P300-based BCI speller to boost the performance of BCIs.
Detecting and fixing errors of the neuronal signature of a user’s knowledge linked to a brain pat‐
tern is known as error-related potentials (ErrPs). Affective computing improves human–machine
communication by identifying human emotions. Some mostly used emotion recognition datasets
are shown in Table 4. Various EEG-based BCI devices can detect the user’s emotional states to
make contact effortless, more useable, and practical. The emotions extracted in emotion-recogni‐
tion datasets are valence, arousal, calm, positive, exciting, happy, sad, neutral, and fear. In addition,
it is certainly clear by now that brain signals or memory are a mixed emotion. The part where all
of these mixed emotions are gathered from different body parts is known as a miscellaneous part
of the brain. Therefore, miscellaneous datasets include memory signals, brain images, brain sig‐
nals, etc. Some miscellaneous datasets are represented in Table 5. In EEG-based BCI, the signals
can detect eye movement such as eye blinks, eye states, etc. The BCI datasets of eye blinks or
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movements include voluntary and involuntary eye states, blinks, and activities are illustrated in 
Table 6. Subsequently, the electrical response in the brain to a specific motor or cognitive event
such as a stimulus is known as an event-related potential (ERP). An unwanted sound, a sparking
light, or a blinking eye can be an example of a stimulus. BCI utilizing ERPs attempts to track atten‐
tion, weariness, and the brain’s reaction to this event-related stimulus. Table 7 is encapsulated
with popular ERP datasets around. Moreover, the visual information-processing mechanism in the
brain is reflected in Visually Evoked Potentials (VEPs). Flashing objects in the form of shifting col‐
ors or a reversing grid are frequent visual stimulators. The CRT/LCD monitor or flash
tube/infrared diode (LED) is utilized for stimulus display in VEP-based BCIs. Frequently used VEP-
based datasets with these utilized objects are represented in Table 8.

Table 2

A table of different types of motor imagery datasets of BCI.

Dataset Name
Subject (S)/Electrodes
(E)/Channels (C)

Used in

Left or Right Hand MI [70] S: 52 [71,72,73,74,75]

Motor Movement or Imagery Dataset S: 109 E: 64 [76,77,78,79]

Grasp and Lift EEG [80] S: 12 [81,82,83,84,85]

SCP data of Motor-Imagery [86] S: 13 Recordings: 60 h [87,88,89,90,91,92]

BCI Competition III [93] S: 3 C: 60 [94,95,96]

BCI Competition IV-1 S: 7 C: 64 [97,98,99,100,101]

BCI Competition IV-2a S: 9 E: 22 [102,103,104,105,106]

BCI Competition IV-2b S: 9 E: 3 [107,108,109,110,111,112]

High-Gamma Dataset [113] S: 14 E: 128 [114,115,116,117,118,119,120]

Left/Right Hand 1D/2D movements S: one E: 19 [86,121,122,123]

Imagination of Right-hand Thumb
Movement [124]

S: one E: 8 [83,125,126,127,128]

Mental-Imagery Dataset S: 13 [129,130,131,132,133,134,135]

LP Evidentiary Exhibits Page 000085 10/05/2022

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433803/table/sensors-21-05746-t006/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433803/table/sensors-21-05746-t007/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433803/table/sensors-21-05746-t008/


9/30/22, 8:39 AM Brain-Computer Interface: Advancement and Challenges - PMC

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433803/ 19/72

Table 3

A table of different types of Error-Related Potentials (ErrP) dataset of BCI.

Dataset Name
Subject (S)/Electrodes
(E)/Channels (C)

Used in

BCI–NER Challenge [136] S: 26 C: 56 [137]

ErrP in a target selection task S: E: 64 [138,139,140,141,142,143,144]

ErrPs during continuous feedback
[145]

S: 10 E: 28 [146,147,148]

Table 4

A table of different types emotion recognition dataset of BCI.

Dataset Name Subject (S)/Electrodes (E)/Channels (C) Used in

DEAP [149] S: 32 C: 32 [150,151,152,153,154,155,156,157]

Enterface’06 [158] S: 5 C: 54 NA

HeadIT S: 31 [159]

NeuroMarketing [160] S: 25 E: 14 [161,162]

SEED [163] S: 15 C: 62 [12,164,165,166,167,168,169]

SEED-IV S: 15 C: 62 [170,171,172,173,174,175]

SEED-VIG [176] E: 18 [137,177,178,179]

HCI-Tagging S: 30 [180,181,182,183,184,185,186]

Regulation of Arousal [187] S: 18 [52,130,188,189,190]

EEG Alpha Waves [191] S: 20 [192]
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Table 5

A table of different types of miscellaneous datasets.

Dataset Name
Subject (S)/Electrodes (E)/Channels
(C)

Used in

MNIST Brain Digits S: Single Recordings: 2 s [193,194]

Imagenet Brain S: Single Recordings: 3 s [195,196,197,198,199,200]

Working Memory [201] S: 15 E: 64 [202,203,204,205]

Deep Sleep Slow Oscillation [201] R: 10s [206]

Genetic Predisposition to
Alcoholism

S: 120 E: 64 [124,207,208,209,210,211,212]

Confusion during MOOC [213] S:10 [214,215]

Table 6

A table of different types of eye-blink or movement datasets in BCI.

Dataset Name
Subject (S)/Electrodes (E)/Channels
(C)

Used in

Voluntary-Involuntary Eye-Blinks
[216]

S: 20 E: 14 [217]

EEG-eye state [124] Recordings: 117 s [218,219,220,221]

EEG-IO [222] S: 20 Blinks: 25 [222,223]

Eye blinks and movements [222] S: 12 [222,224]

Eye State Prediction [225] S: Single Recordings: 117 s [130,218,219,226,227,228]
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Table 7

A table of different types Event-Related Potential (ERP) datasets in BCI. These datasets are collected from [229].

Dataset Name Subject (S)/Electrodes (E)/Channels (C) Used in

Target Versus Non-Target (2012) S: 25 E: 16 NA

Target Versus Non-Target (2013) S: 24 E: 16 [230]

Target Versus Non-Target (2014) S: 71 E: 16 [231]

Target Versus Non-Target (2015) S: 50 E: 32 [232,233,234]

Impedance Data S: 12 [86,94,235,236,237,238]

Face vs. House Discrimination [239] S: 7 [240,241]

Table 8

A table of different types of Visually Evoked Potential (VEP) datasets in BCI. These datasets are collected from
[229].

Dataset Name Subject (S)/Electrodes (E)/Channels (C) Used in

c-VEP BCI S: 9 C: 32 [242,243,244]

c-VEP BCI with dry electrodes S: 9 C: 15 [243,245,246,247,248]

SSVEP S: 30 E: 14 [249,250,251,252,253]

Synchronized Brainwave Dataset Video stimulus [254,255]

However, the dataset covers information recorded from the beginning of BCI. To extract informa‐
tion from datasets, feature extraction methods are necessary, which is reviewed in the following
section.

6. Signal Preprocessing and Signal Enhancement

In most situations, the signal or data measured or extracted from datasets are filled with noise.
With a natural human activity such as eye blinks and heartbeats, the collected data might become
noisy. These noises are eliminated during the pre-processing step to produce clean data that may
subsequently process the feature extraction and classification. This pre-processing unit is also
known as signal enhancement since it cleans the signal in BCI. Some methods are used for signal
enhancement in the BCI system, and these are explained elaborately in the following subsections.

6.1. Independent Component Analysis (ICA)
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The noises and EEG signals are isolated in ICA by treating them as distinct entities. Furthermore,
the data are retained during the removal of noises. This method divides the EEG data into spatially
fixed and temporally independent components. In the case of computing and noise demonstrable,
the ICA shows more efficiency [256].

6.2. Common Average Reference (CAR)

It is most commonly employed as a basic dimensionality reduction technique. This approach de‐
creases noise across all recorded channels, but this does not address channel-specific noise and
may inject noise into an otherwise clean channel. It is a spatial filter that can be thought of as the
subtraction of shared EEG activity, retaining only the idle action of each EEG particular electrode
[256].

6.3. Adaptive Filters

The adaptive filter is a computational device for mathematical processes. It connects the adaptive
filter’s input/output signals iteratively. There are filter coefficients that are self-adjusted utilizing
an adaptive algorithm. It works by altering signal properties depending on the characteristics of
the signals under investigation [257].

6.4. Principal Component Analysis (PCA)

PCA is a technique for detecting patterns in data represented by a rotation of the coordinate axes.
These axes are not aligned with single time points, but they depict a signal pattern with linear
combinations of sets of time points. PCA keeps the axes orthogonal while rotating them to maxi‐
mize variance along the first axis. It reduces feature dimensions and aids in data classification by
completing ranking. In comparison with ICA, PCA compresses separate data better whether noise
is eliminated with it or not [258].

6.5. Surface Laplacian (SL)

SL refers to a method of displaying EEG data with a high spatial resolution. SL can be generated
using any EEG recording reference scheme as their estimates are reference-free. Based on the vol‐
ume conductor’s exterior shape, it is a general estimate of the current density entering or exiting
the scalp through the skull, and it does not require volume conduction details. The advantage of
SL is that it improves the spatial resolution of the EEG signal. However, SL seems not to demand
additional operative neuroanatomy premises as it is sensitive to spline patterns and artifacts
[259].

6.6. Signal De-Noising
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Artefacts frequently corrupt EEG signals taken from brain. These artifacts must be removed from
EEG data to obtain valuable information from it. The technique of eliminating sounds or artefacts
from EEG signals is known as de-noising [260]. Some de-noising methods are given below:

Wavelet de-noising and thresholding: The multi-resolution analysis is used to transfer the EEG
signal to the discrete wavelet domain. The contrasting or adaptive threshold level is used to
reduce particular coefficients associated with the noise signal [261]. Shorter coefficients would
tend to define noise characteristics throughout time and scale in a well-matched wavelet
representation. In contrast, threshold selection is one of the most critical aspects of successful
wavelet de-noising. Thresholding can isolate the signal from the noise in this case; hence,
thresholding approaches come in several shapes and sizes. All coefficients underneath a
predetermined threshold value are set to zero in hard thresholding. Soft thresholding is a
method of reducing the value of the remaining coefficients by a factor of two [262].
Empirical mode decomposition (EMD): It is a signal analysis algorithm for multivariate signals.
It breaks the signal down into a series of frequency and amplitude-regulated zero-mean
signals, widely known as intrinsic mode functions (IMFs). Wavelet decomposition, which
decomposes a signal into multiple numbers of Intrinsic Mode Functions (IMFs), is compared by
EMD. It decomposes these IMFs using a shifting method. An IMF is a function with a single
maximum between zero crossings and a mean value of zero. It produces a residue after
degrading IMFs. These IMFs are sufficient to characterize a signal [263].

Most of our datasets mentioned in the previous section are a part of various BCI paradigms and
follow these signal enhancement techniques as well. The motor imagery datasets represent para‐
digms such as sensorimotor activity or rhythms. In addition, error-related potentials datasets and
datasets such as event-related potentials or visually evoke potentials signify their own BCI para‐
digm. Some other paradigms, such as overt attention, eye movement, miscellaneous, and emotion
recognition, identify their datasets. Indeed, these paradigms become bigger in number as the mea‐
surement of different brain movements and emotions are attempted. More than 100 BCI designs
are required to use signal enhancement techniques to extract features from the signal. In compari‐
son, Reference [264] shows that 32% of BCI designs use surface Laplacian (SL) to extract fea‐
tures, principal component analysis (PCA) or independent component analysis (ICA) was used in
22%, and common spatial patterns (CSP) and common average referencing (CAR) techniques are
used in 14% and 11%, respectively.

7. Feature Extraction

Now, it is necessary to understand what the features represent, their qualities, and how to use
them for a BCI system to select the best appropriate classifier. A classification system’s accuracy or
efficiency is primarily determined by the feature(s) of the samples to be categorized [265]; there‐
fore, feature extraction has been crucial stage in BCI. The majority of noninvasive BCI devices use
neuroimaging techniques such as MEG and MRI. However, EEG is the most widely utilized method,
owing to its high temporal resolution and inexpensive cost [266]. The EEG signal feature extrac‐
tion method is one of the essential components of a BCI system because of its involvement in suc‐
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cessfully executing the classification stage at discriminating mental states. Nevertheless, the fea‐
ture extraction methods based on both EEG and ECoG are discussed elaborately in the subse‐
quent section.

7.1. EEG-Based Feature Extraction

Typically, BCI focuses on identifying acquired events using various neuroimage techniques, the
most common of which is electroencephalography (EEG). Since its involvement in successfully exe‐
cuting the classification stage at discriminating mental states, the EEG signal feature extraction
method is one of the essential components of a BCI system. According to [267] on EEG, three
types of feature extraction are discussed in detail in the following sections. These features are the
time domain, the frequency domain, and the time–frequency domain. The following subsection ad‐
dress the feature domains elaborately.

7.1.1. Time Domain

The time–frequency domain integrates analyses in the time and frequency domains. It depicts the
signal energy distribution in the Time–Frequency plane (t-f plane) [268]. When it comes to deci‐
phering rhythmic information in EEG data, a time–frequency analysis comes in handy. EEG’s time-
domain properties are straightforward to fix, but they have the disadvantage of containing non-
stationary signals that alter over time. Features are usually derived using signal amplitude values
in time-domain approaches that can be distorted by interference as noise during EEG recording.

Event related potentials: Event-related potentials (ERPs) are very low voltages generated in
brain regions in reaction to specific events or stimuli. They are time-locked EEG alterations that
provide a safe and noninvasive way to research psychophysiological aspects of mental
activities. A wide range of sensory, cognitive, or motor stimuli can trigger event-related
potentials [269,270]. ERPs are useful to measure the time to process a stimulus and a response
to be produced. The temporal resolution of event-related potentials is remarkable, but it has a
low spatial resolution. ERPs were used by Changoluisa, V. et al. [271] to build an adaptive
strategy for identifying and detecting changeable ERPs. Continuous monitoring of the curve in
ERP components takes account of their temporal and spatial information. Some limitations of
ERPs are that it shows poor spatial resolution, whether it is suitable with temporal resolution
[272]. Furthermore, a significant drawback of ERP is the difficulty in determining where the
electrical activity originates in the brain.
Statistical features: Several statistical characteristics were employed by several scholars
[273,274,275] in their research:
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where  is the pre-processed EEG signal with N number of samples;  refers to the
meaning of the samples. Statistical features are useful at low computational cost.
Hjorth features: Bo Hjorth introduced the Hjorth parameters in 1970 [276]; the three
statistical parameters employed in time-domain signal processing are activity, mobility, and
complexity. Dagdevir, E. et al. [277] proposed a motor imagery-based BCI system where the
features were extracted from the dataset using the Hjorth algorithm. The Hjorth features have
advantages in real-time analyses as it has a low computation cost. However, it has a statistical
bias over signal parameter calculation.
Phase lag index (PLI): The functional connectivity is determined by calculating the PLI for two
pairs of channels. Since it depicts the actual interaction between sources, this index may help
estimate phase synchronization in EEG time series. PLI measures the asymmetry of the
distribution of phase differences between two signals. The advantage of PLI is that it is less
affected by phase delays. It quantifies the nonzero phase lag between the time series of two
sources, making it less vulnerable to signals. The effectiveness of functional connectivity
features evaluated by phase lag index (PLI), weighted phase lag index (wPLI), and phase-
locking value (PLV) on MI classification was studied by Feng, L.Z. et al. [278].

7.1.2. Frequency Domain

When analyzing any signal in terms of frequency instead of just time, the frequency domain prop‐
erties are considered. Any signal’s frequency domain representation displays how much of it falls
inside a specific frequency range. The frequency domain properties are commonly acquired using
power spectral density (PSD). The discussion about these properties is presented below in the fol‐
lowing section.

1. Fast fourier transform (FFT): The Fourier transform is a mathematical transformation that
converts any time-domain signal into its frequency domain. Discrete Fourier Transform (DFT)
[279], Short Time Fourier Transform (STFT) [280,281], and Fast Fourier Transform are the
most common Fourier transform utilized for EEG-based emotion identification (FFT) [282].
Djamal, E.C. et al. [283] developed a wireless device that is used to record a player’s brain
activity and extracts each action using Fast Fourier Transform. FFT is faster than any other
method available, allowing it to be employed in real-time applications. It is a valuable
instrument for signal processing at a fixed location. A limitation of FFT is that it can convert the
limited range of waveform data and the requirement to add a window weighting function to the
waveform to compensate for spectral leakage.

2. Common spatial patterns (CSP): It is a spatial filtering technique usually employed in EEG and
ECoG-based BCIs to extract classification-relevant data [284]. It optimizes the ratio of their
variances whenever two classes of data are utilized to increase the separability of the two
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classes. In the case of dimensionality reduction, if a different dimension reduction phase
precedes CSP, it appears to be better and has more essential generalization features. The basic
structure of the CSP can be described by the Figure 5.

Figure 5

The basic structure of CSP [286].

In Figure 5, CSP provides spatial filters that minimize the variance of an individual class while
concurrently maximizing the variance of other classes. These filters are mainly used to choose
the frequency from the multichannel EEG signal. After frequency filtering, spatial filtering is
performed using spatial filters that are employed to extract spatial information from the signal.
Spatial information is significantly necessary to differentiate intent patterns in multichannel
EEG recordings for BCI. The performance of this spatial filtering depends on the operational
frequency band of EEG. Therefore, CSP is categorized as a frequency domain feature. However,
CSP acts as signal enhancement while it requires no preceding excerpt or information of sub-
specific bands.

3. Higher-order Spectral (HOS): Second-order signal measurements include the auto-correlation
function and the power spectrum. Second-order measures operate satisfactorily if the signal
resembles a Gaussian probability distribution function. However, most of the real-world signals
are non-Gaussian. Therefore, Higher-Order Spectral (HOS) [285] is an extended version of the
second-order measure that works well for non-Gaussian signals, when it comes into the
equation. In addition, most of the physiological signals are nonlinear and non-stationary. HOS
are considered favorable to detect these deviations from the signal’s linearity or stationarity. It
is calculated using the Fourier Transform at various frequencies.

(8)(8)

where  is the Fourier transform of the raw EEG signal  and l is a shifting parameter.

HOS = X (K)X (l) (k+ l)X∗

X(K) x(n)
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7.1.3. Time–Frequency Domain

In the time-frequency domain, the signal is evaluated both in the time and frequency domains si‐
multaneously. The wavelet transform is one of many advanced approaches for analyzing the time-
frequency representation. There are some other widely used models for utilizing the time-fre‐
quency domain. These models are addressed with a proper explanation in the subsequent section.

1. Autoregressive model: For EEG analysis, the Autoregressive (AR) model has been frequently
employed. The central premise of the autoregressive (AR) model is that the real EEG can be
approximated using the AR process. With this premise, the approximation AR model’s order
and parameters are set to suit the observed EEG as precisely as possible. AR produces a
smooth spectrum if the model order is too low, while it produces false peaks if it is too high
[287]. AR also reduces leakage and enhances frequency resolution, but choosing the model
order in spectral estimation is difficult. The observational data, denoted as , results from a
linear system with an  transfer function. Then,  encounters an AR model of rank p in
the formula [288].

(9)(9)

The AR parameters are , the observations are  and the excitation white noise is .
Lastly, the most challenging part of AR EEG modeling is choosing the correct model to repre‐
sent and following the changing spectrum correctly.

2. Wavelet Transform (WT): The WT technique encodes the original EEG data using wavelets,
which are known as simple building blocks. It looks at unusual data patterns using variable
windows with expansive windows for low frequencies and narrow windows for high
frequencies. In addition, WT is considered an advanced approach as it offers a simultaneous
localization in the time-frequency domain, which is a significant advantage. These wavelets can
be discrete or continuous and describe the signal’s characteristics in a time-domain frequency.
The Discrete Wavelet Transform (DWT) and the Continuous Wavelet Transform (CWT) are
used frequently in EEG analysis [289]. DWT is now a more widely used signal processing
method than CWT as CWT is very redundant. DWT decomposes any signal into approximation
and detail coefficients corresponding to distinct frequency ranges maintaining the temporal
information in the signal. However, most researchers try all available wavelets before choosing
the optimal one that produces the best results, as selecting a mother wavelet is challenging. In
wavelet-based feature extraction, the Daubechies wavelet of order 4 (db4) is the most
commonly employed [290].

7.2. ECoG-Based Features
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Electrocorticography (ECoG) generates a reliable signal through electrodes placed on the surface
of the human brain, which decodes movement, vision, and speech. Decoding ECoG signal process‐
ing gives immediate patient feedback and controls a computer cursor or perhaps an exoskeleton.
The ECoG signal feature extraction approach is a crucial element of the BCI system since it is in‐
volved in accomplishing the classification phase during decoding. Some of the widely used feature
extraction methods are discussed below.

7.2.1. Linear Filtering

It is typically employed to filter out noise in the form of signals that are not in the frequency range
of the brain’s messages. Low-pass filters and high-pass filters are the two types of linear filters.
This typical linear filtering is used to removed ECOG, EOG, and EMG artifacts from EEG signals.
Low pass filtering is used to remove EMG artifacts, and high pass filtering is used to remove EOG
artifacts [291]. These artifacts are noises produced by either physiological processes such as mus‐
cle, eye, or other biological movement or exogenous (external) sources such as machinery faults.
There are three approaches for dealing with artifacts in EEG signal acquisition. Avoiding artifacts
by keeping an eye on the subject’s movements and the machine’s operation. Contaminated trials
are discarded due to artifact rejection. Pre-processing techniques are used to remove artifacts.
The advantage of linear filtering is that signals are considered a controlled scaling of the signal’s
frequency domain components. High pass filtering is used to raise the relative importance of the
high-frequency components by reducing the features in the frequency domain’s center.

7.2.2. Spatial Filtering

Spatial filtering is a technique for improving decoding by leveraging information about the elec‐
trode positions. The spatial filter aims to lessen the influence of spatial distortion in the raw signal;
various ECoG channels are treated as coordinates for multivariate data sampling through spatial
filters. The filtering transforms that coordinate system to facilitate decoding. Spatial filtering can
use to minimize data dimensionality or to increase the dissimilarity of various observations. The
referencing systems used during ECoG recordings are frequently utilized for preliminary spatial
filtering. Equation (10) determines the spatial filter [292].

(10)(10)

where  is the spatially filtered signal,  is the EEG signal from channel i, and  is the weight of
that channel. With the aid of relevant information acquired from multiple EEG channels, spatial fil‐
tering contributes to recovering the brain’s original signal. Simultaneously, it reduces dimensional‐
ity by lowering EEG channel size to smaller spatially filtered signals.

= ( )∗( )x′ ∑
i

n

xi wi

x′ xi wi

LP Evidentiary Exhibits Page 000096 10/05/2022



9/30/22, 8:39 AM Brain-Computer Interface: Advancement and Challenges - PMC

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433803/ 30/72

Thus far, feature extraction involves extracting new features from existing ones to minimize fea‐
ture measurement costs, to improve classifier efficiency, and to improve classification accuracy.
Now in the following section, the extracted feature classifiers are briefly described.

8. BCI Classifiers

BCI always needs a subject to use its device, and similarly, the subject must produce several types
of data to use a BCI device. In addition, to use a BCI system, the subject must develop various
brain activity patterns that the system can recognize and convert into commands. To achieve this
mentioned conversion, some regression or classification algorithms can be used. The classification
step’s design comprises selecting one or more classification algorithms from a variety of options.
In this section, some commonly known classifiers [293], which are classified in Figure 6, as well as
some new classifiers [294] are described below.

Figure 6

Classification of commonly used classifiers in BCI.

8.1. Linear Classifiers

Linear classifiers are discriminant algorithms that discriminate classes using linear functions. It is
most likely the most widely used algorithm in BCI systems. Two types of linear classifiers are used
during BCI design: linear discriminant analysis (LDA) and support vector machine (SVM).

8.1.1. Linear Discriminant Analysis (LDA)

The objective of Linear Discriminant Analysis is to separate data from diverse classes using a hy‐
perplane. The side of hyperplane determinded through the category of a feature vector in a two-
class problem. LDA requires that the data has a normal distribution and that both classes have the
same covariance matrix. The separation hyper-plane is based on looking for a projection that
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maximizes the margin between the means of two classes while minimizing intraclass variance
[295]. Furthermore, this classifier is straightforward to apply and generally produces excellent re‐
sults and soundly implemented in various BCI system, including MI-based BCI, P300 speller, multi‐
class, and asynchronous BCI. The disadvantage of LDA is its linearity, which might lead to unsatis‐
factory results when faced with various nonlinear EEG data.

8.1.2. Support Vector Machine (SVM)

A Support Vector Machine (SVM) uses a discriminant hyperplane to identify classes. The deter‐
mined hyperplane in SVM is the one that maximizes the margins, i.e., the distance between both
the nearest training samples. The ability to generalize is believed to improve when margins are
maximized [296]. Linear SVM [297] is a type of SVM that allows for classification utilizing linear
decision bounds. This classifier has been used to solve a substantial number of synchronous BCI
tasks with tremendous success. The SVM classifier also works by projecting the input vector X
onto a scalar value f(X), as shown in Equation (11).

(11)(11)

Gaussian SVM or RBF SVM is the term applied to the equivalent SVM. RBF and SVM have also pro‐
duced remarkable outcomes in BCI applications. SVM is used to solve multiclass BCI problems that
use the OVR approach, similar to LDA.

8.2. Neural Networks (NN)

Neural networks (NN) and linear classifiers are the two types of classifiers most usually employed
in BCI systems, considering that a NN is a collection of artificial neurons that allows us to create
nonlinear decision limits [298]. The multilayer perceptron (MLP) is the most extensively used NN
for BCI, as described in this section. Afterward, it briefly discusses other neural network architec‐
tures utilized in BCI systems.

8.2.1. Deep Learning (DL) Models

Deep learning has been widely used in BCI applications nowadays compared with machine learn‐
ing technologies because most BCI applications require a high level of accuracy. Deep learning
models perform better in recognizing changing signals from the brain, which changes swiftly.
Some popular DL models such as CNN, GNN, RNN, and LSTM are described below:

Convolutional Neural Network (CNN): A convolutional neural network (CNN) is an ANN
intended primarily to analyze visual input used in image recognition and processing. The
convolutional layer, pooling layer, and fully connected layer are the three layers that comprise

f (X) = K( ,X)+b∑
l=1

N
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CNN. Using a CNN, the input data may be reduced to instant response formations with a
minimum loss, and the characteristic spatial relationships of EEG patterns can be recorded.
Fatigue detection, sleep stage classification, stress detection, motor imagery data processing,
and emotion recognition are among the EEG-based BCI applications using CNNs. In BCI, the
CNN models are used in the input brain signals to exploit the latent semantic dependencies.
Generative Adversarial Network (GAN): Generative adversarial networks are a recent ML
technique. The GAN used two ANN models for competing to train each other simultaneously.
GANs allow machines to envision and develop new images on their own. EEG-based BCI
techniques recorded the signals first and then moved to the GAN techniques to regenerate the
images [299]. The significant application of GAN-based BCI systems is data augmentation. Data
augmentation increases the amount of training data available and allows for more complicated
DL models. It can also reduce overfitting and can increase classifier accuracy and robustness.
In the context of BCI, generative algorithms, including GAN, are frequently used to rebuild or
generate a set of brain signal recordings to improve the training set.
Recurrent Neural Network (RNN): RNNs’ basic form is a layer with the output linked to the
input. Since it has access to the data from past time-stamps, and the architecture of an RNN
layer allows for the model to store memory [300,301]. Since RNN and CNN have strong
temporal and spatial feature extraction abilities in most DL approaches, it is logical to mix them
for temporal and spatial feature learning. RNN can be considered a more powerful version of
hidden Markov models (HMM), which classifies EEG correctly [302]. LSTM is a kind of RNN
with a unique architecture that allows it to acquire long-term dependencies despite the
difficulties that RNNs confront. It contains a discrete memory cell, a type of node. To manage
the flow of data, LSTM employs an architecture with a series of “gates”. When it comes to
modeling time series of tasks such as writing and voice recognition, RNN and LSTM have been
proven to be effective [303].

8.2.2. Multilayer Perceptron (MLP)

An Multilayer Perceptron (MLP) [304] comprises multiple layers of neurons along with an input
layer, one or more hidden layers, and an output layer. The input of each neuron is linked to the
output of the neurons in the preceding layer. Meanwhile, the output layer neurons evaluate the
classification of the input feature vector. MLP and neural networks can approximate, meaning they
can compare continuous functions if they have sufficient neurons and layers. The challenging fac‐
tor behind MLPs is that they are susceptible to over-training, particularly containing noisy and
non-stationary data. As a result, significant selection and regularization of the architecture are
necessary. Perceptron is a multilayer with no hidden layers comparable with LDA. It has been
used in BCI applications on occasion [293]. Sunny, M.S.H. et al. [305] used Multilayer Perceptron
(MLP) to distinguish distinct frequency bands from EEG signals to extract features more
effectively.

8.2.3. Adaptive Classifiers
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As new EEG data become accessible, adaptive classifiers’ parameters, such as the weights allo‐
cated to each feature in a linear discriminant hyperplane, are gradually re-estimated and updated.
Adaptive classifiers can use supervised and unsupervised adaptation, that is, with or without
knowledge of the input data’s real class labels. The true class labels of the receiving EEG signals
are obtained using supervised adaptation. The classifier is either reassigned on the existing train‐
ing data, enhanced with these updated, labeled incoming data, or updated solely on this new data.
Supervised user testing is essential for supervised BCI adaptation. The label of the receiving EEG
data is vague with unsupervised adaptation. As a result, unsupervised adaptation is based on
class-unspecific adaptation, such as updating the generalized classes EEG data mean or a co-vari‐
ance matrix in the classifier model or estimating the data class labels for additional training [306].

8.3. Nonlinear Bayesian Classifiers

This section discusses the Bayes quadratic and hidden Markov models (HMM), two Bayesian clas‐
sifiers used in BCI. Although Bayesian graphical networks (BGN) have been used for BCI, they are
not covered here since they are not widely used [307].

8.3.1. Bayes Quadratic

The objective of Bayesian classification is to provide the highest probability class to a feature vec‐
tor. The Bayes rule is often used to calculate the a posteriori probability of a feature vector as‐
signed to a single class. The class of this feature vector can be calculated by using the MAP (maxi‐
mum a posteriori) rule with these probabilities. The Bayes quadratic assumption is that the data
have a distinct normal distribution. The result is quadratic decision boundaries that justify the
classifier’s name [308]. Although this classifier is not extensively utilized for BCI, it has been suc‐
cessfully used to classify motor imagery and mental tasks.

8.3.2. Hidden Markov Model

A Bayesian classifier that generates a nonlinear cost function is known as a Hidden Markov Model
(HMM). An HMM is a statistical algorithm that calculates the chances of seeing a given set of fea‐
ture variables [309]. These statistical probabilities from HMM are generally Gaussian Mixture
Models (GMM) in case of BCI [310]. HMM may be used to categorize temporal patterns of BCI
characteristics (Obermaier, B. et al. [302]), even raw EEG data, since the EEG elements required to
control BCI have particular time sequences. Although HMM is not widely used in the BCI world,
this research demonstrated that they could be helpful to classification on BCI systems such as EEG
signals [311].

8.4. Nearest Neighbor Classifiers

In this section, some classifiers with distance vectors are described. Classifiers such as K nearest
neighbors (KNN) and Mahalanobis distance are common among them as they are nonlinear dis‐
criminative classifiers [312].
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8.4.1. K Nearest Neighbors

K nearest neighbor method aims to identify the dominant class amongst an unseen point within
the dataset habituated for training. Nearest neighbors are typically estimated using a metric that
has some intervals during the signal acquisition of BCI. KNN can construct nonlinear decision
boundaries by evaluating any function with enough training data with an inflated k value. The us‐
ability of KNN algorithms is less in the BCI field as their condescending sensitivity hampers the ca‐
pacity, which causes them to fail in multiple BCI research. KNN is efficient in BCI systems with
some feature vectors, but low power can cause failure in BCI research [313].

8.4.2. Mahalanobis Distance

For each prototype of class c, Mahalanobis distance-based classifiers [314] assume a Gaussian
distribution . Subsequently, using the Mahalanobis distance , a feature vector x is allo‐
cated to the class that corresponds to the closest prototype (x).

(12)(12)

This results in a basic yet reliable classifier; it has been shown to work in multiclass and asynchro‐
nous BCI systems. Considering its excellent results, it is still rarely mentioned in BCI literature
[315].

8.5. Hybrid

In several BCI papers, classification is implemented with a single classifier. Furthermore, a current
tendency is to combine many classifiers in various ways [316]. The following are indeed the classi‐
fier combination strategies utilized in BCI systems:

8.5.1. Boosting

Boosting is the process of using multiple classifiers in a cascade, and each focused on the errors
made by the one before it. It can combine numerous weak classifiers to form a powerful one;
thereforem it is unlikely to overtrain. Moreover, it is susceptible to mislabeling, illustrating why it
failed in one BCI trial [293].

8.5.2. Voting

Multiple classifiers are employed for voting, each of which allocates the input feature vector to a
class. The majority class becomes the final class. In BCI systems, voting is the most preferred
process of combining classifiers due to its simplicity and efficiency [293].

N(c,Mc) dc

(x) =dc (x− )μc M−1
c (x− )μc

T
− −−−−−−−−−−−−−−−−−

√
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8.5.3. Stacking

Stacking is the process of utilizing multiple classifiers to categorize the input feature vector. Level-
0 classifiers are what it is named. Each one of these classifiers’ output would then feed into a
“meta-classifier” (or “level-1 classifier”), which makes a final decision [293].

Aforementioned in this section, some other classifiers are utilized in the recent BCI research. Since
2016 transfer learning is used for using MI classification tasks [317]. Some ground-breaking ar‐
chitectures are established in recent years, such as EEG-inception, an end-to-end Neural network
[318], cluster decomposing, and multi-object optimization-based-ensemble learning framework
[319]; RFNet is a fusion network that learns from attention weights and used in embedding-spe‐
cific features for decision making [179].

Now, a better understanding of the performance of commonly known classifiers with some popu‐
lar datasets are given in Table 9.

Table 9

Comparison of classifiers based on popular datasets and features.

Ref. Dataset Feature Classifier Accuracy

[102] BCI competition IV-2b CWT CNN Morlet- 78.93%, Bump-77.25%

[320] BCI competition III CSP SVM

Evolved Filters:

Subject 1—77.96%,


Subject 2—75.11%,

Subject 3—57.76%

[321] BCI competition III WT SVM 85.54%

[321] BCI competition III WT NN 82.43%

[322] BCI competition III WT LDA MisClassification Rate: 0.1286

[323] BCI competition III WT CNN 86.20%

[324] BCI competition IV-2a Single Channel CSP KNN 62.2 ± 0.4%

[324] BCI competition IV-2a Single Channel CSP MLP 63.5 ± 0.4%

[324] BCI competition IV-2a Single Channel CSP SVM 63.3 ± 0.4%

[324] BCI competition IV-2a Single Channel CSP LDA 61.8 ± 0.4%

9. Evaluation Measurement
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To evaluate the performance of BCI systems, researchers employed several evaluation metrics.
The most common is accuracy, commonly known as error rate. Although accuracy is not always an
acceptable criterion due to specific rigorous requirements, various evaluation criteria have been
offered. An overview of BCI research evaluation criteria is provided below.

9.1. Generally Used Evaluation Metrics

In this section, we sorted the most commonly used evaluation metrics for measuring the BCI sys‐
tem performances. The evaluation measures are explained carefully in the following subsections.

9.1.1. The Confusion Matrix

The confusion matrix represents the relationship between the actual class’s user-intentioned out‐
put classes and the actual predicted class. True positives rate (TPR), False negative rate (FNR),
False positives rate (FPR), Positive predictive value (PPV), and negative predictive value (PPV) are
used to describe sensitivity or recall, specificity, (1-specificity), precision, etc. [325].

9.1.2. Classification Accuracy and Error Rate

Classification accuracy is one of the important metrics in BCI systems; this study evaluates perfor‐
mance using classification accuracy as well as sensitivity and specificity. This measure determines
how frequently the BCI makes a right pick or what proportion of all selections are accurate. It is
the most obvious indicator of BCI accomplishment, implying that it increase in a linear fashion
with decision time, so it takes a long time. The following is the mathematical formula for calculat‐
ing accuracy:

(13)(13)

9.1.3. Information Transfer Rate

Shannon [326] proposed the Information Transfer Rate (ITR) as the rate that makes up both of
these metrics. This rate represents the quantity of data that may pass through the system in one
unit of time. In [327], the information transmission rate in bits per minute ( ) and accu‐
racy (ACC) in percentage (%) were used to evaluate performance. They made demographic data
(age and gender) as well as the performance outcomes of 10 participants, and the ITR was com‐
puted using the Formula (14), which is as follows:

(14)(14)

Classification accuracy = × 100
Correctly classified test trials

Total test triols

bits/min

= N + p p+ (1 − p) [ ],Bt log2 log2 log2
1 − p

N − 1
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where N is the number of targets and p is the classification accuracy (ACC). Based on four cursor
movements and the choose command, this resulted in a N of 5. Bits per trial were used to com‐
pute .

According to ITR [328] also has some important parameters that are used to evaluate BCI. A de‐
scription of them is given below:

1. Target detection accuracy: The accuracy of target identification may be enhanced by increasing
the Signal-to-Noise Ratio (SNR) and the separability of several classes. Several techniques, such
as trial averaging, spatial filtering, and eliciting increased task-related EEG signals, are employed
in the preprocessing step to reduce the SNR. Many applications utilize trail averaging across
topics to improve the performance of a single BCI. These mental states may be used to lower
the SNR [53].

2. Number of classes: The number of classes is raised and more sophisticated applications are
built with a high ITR. TDMA, FDMA, and CDMA are among the stimulus coding techniques that
have been adopted for BCI systems [243,329]. P300, for example, uses TDMA to code the
target stimulus. In VEP-based BCI systems, FDMA and CDMA have been used.

3. Target detection time: The detection time is when a user first expresses their purpose and
when the system makes a judgment. One of the goals of BCI systems is to improve the ITR by
reducing target detection time. Adaptive techniques, such as the “dynamic halting” method,
might be used to minimize the target detection time [330].

9.1.4. Cohen’s Kappa Coefficient

Cohen’s Kappa measures the agreement between two observers; it measures the contract be‐
tween the proper output and the command of BCI domain in a BCI-based AAC system. Cohen’s
kappa coefficient resolves many of the accuracy measure’s objections [331]. The general agree‐
ment , which is equivalent to the classification accuracy and the chance agreement ,
with  and  being the column  and row , correspondingly, are used to calculate K.

(15)(15)

where posteriori and priori probability are ,  respectively. The estimated kappa Coefficient
K and standard error  are acquired by

(16)(16)

Bt

= ACCp0 pe

ni nii hit hit

=pe
∑M
i=1 niini:

N 2

n : i ni :

e(K)

κ =
−p0 pe

1 − pe
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When there is no correlation between the expected and actual classes, the kappa coefficient be‐
comes zero. A perfect categorization is indicated by a kappa coefficient of 1. If the Kappa value is
less than zero, the classifier offers an alternative assignment for the output and actual classes
[332].

(17)(17)

9.2. Continuous BCI System Evaluation

Continuous BCI performance was measured using a variety of parameters. Different measures
may be even more appropriate depending on whether the study is conducted online or offline.
The section goes through some of the most commonly used metrics in this field, including the cor‐
relation coefficient, accuracy, and Fitts’s Law [333].

9.2.1. Correlation Coefficient

The correlation coefficient could be a useful statistic for determining whether an intracortical im‐
plant receives task-relevant neurons. There are two essential stipulations: one is scale-invariant,
which implies that the cursor might miss the mark substantially while still generating high values if
the sign of the actual and anticipated movements coincide [334]; the other is that a decoder can
yield a high value if it simply generates a signal that fluctuates with the repetitions [333].

9.2.2. Accuracy

Task characteristics such as target size and dwell time have a significant impact on accuracy. As a
result, it is more of a sign that the task was is good enough for the subject and modality than a
performance measure [333].

9.2.3. Fitts’s Law

Fitts’s law asserts that the time taken for a person to move a mouse cursor to a targeted object of
the target’s distance is divided by its size. The longer it takes, the greater the distance and the nar‐
rower the target [335,336]. Fitts’s law requires using a method to calculate the “index of diffi‐
culty” of a particular change.

9.3. User-Centric BCI System Evaluation

(κ) =σe

( + − [ ( + )]/ )p0 p2
e ∑M

i=1 n:ini: n:i ni: N 3
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

(1 − )pe N
−−

√
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Users are an essential element of the BCI product life cycle. Their interactions and experiences in‐
fluence whether BCI systems are acceptable and viable. The four criteria or User Experience (UX)
factors are used to evaluate user-centric BCI systems. These are usability, affects, ergonomics, and
quality of life, shown below in the following subsection.

9.3.1. Usability

The amount that can be utilized to fulfill specific objectives with effectiveness, efficiency, learnabil‐
ity, and satisfaction in a given context is referred to as usability [337]. In usability measure, we can
include four metrics, such as,

1. Effectiveness or accuracy: It depicts the overall accuracy of the BCI system as experienced from
the end user’s perspective [333].

2. Efficiency or information transfer rate: It refers to the speed and timing at which a task is
accomplished. Therefore, it depicts the overall BCI system’s speed, throughput, and latency
seen through the eyes of the end user’s perspective [333].

3. Learnability: The BCI system can make users feel as if they can use the product effectively and
quickly learn additional features. Both the end-user and the provider are affected by
learnability [338].

4. Satisfaction: It is based on participants’ reactions to actual feelings while using BCI systems,
showing the user’s favorable attitude regarding utilizing the system. To measure satisfaction,
we can use rating scales or qualitative methods [333].

9.3.2. Affect

Regarding BCIs, it might refer to how comfortable the system is, particularly for long periods, and
how pleasant or uncomfortable the stimuli are to them. EEG event-related possibilities, spectral
characteristics, galvanic skin responses, or heart rates could be used to quantitatively monitor
user’s exhaustion, valence, and arousal levels [339].

9.3.3. Ergonomics

Ergonomics studies are the study of how people interact with their environments. The load on the
user’s memory is represented by the cognitive task load, a multidimensional entity. In addition,
physiological markers including eye movement, EEG, ERP, and spectral characteristics could also
be employed to evaluate cognitive stress objectively [340].

9.3.4. Quality of Life

It expresses the user’s overall perception of the system’s utility and acceptance and its influence
on their well-being. The Return on Investment (ROI) is an economic measure of the perceived ben‐
efit derived from it. The overall quality of experience is a measure of how satisfied a user is with
their expertise [333].
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Other assessment methods, such as Mutual Information, Written symbol rate (WSR), and Practical
bit rate (PBR), are utilized to a lesser extent.

10. Limitations and Challenges

The brain-computer interface is advancing towards a more dynamic and accurate solution of the
connection between brain and machine. Still, few factors are resisting achieving the ultimate goal.
Therefore, we analyzed a few core research on BCI in this section and found the limitations exhib‐
ited in Table 10. Then, we demonstrated the significant challenges of the BCI domain.
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Table 10

A summary of some research papers proposing new methods of BCI.
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Model Novelty
Feature
Extraction

Architecture Limitations

P300, ERN,
MRCP, SMR

[200]

Compact
Convolutional neural

network for EEG
based BCI

Band pass
filtering

EEGNet

The proposed approaches only
work effectively when the

feature is accustomed to before.

WOLA [254]
Dynamic filtering of
EEG signals

CSP
Embedded-BCI
(EBCI) system

This model is not updated yet
for eye blinking or muscle

activities.

xDAWN
[255]

Enhance P300 evoked
potentials

Spatial
Filtering

P300 speller BCI
paradigm

There is room for
improvization and

enhancements.

SSVEP, P300
[341]

BCI-based healthcare
control system

P300
detector

Kernel
(FDA+
SSVEP)

Self- paced P300
healthcare system

with SSVEP

SSVEP stimulation paradigm
can be used to enhance

accuracy.

LSTM, pCNN,
RCNN [342]

Online decoding of
motor imagery

movements using DL
models

CSP, log-BP
features

Classify Motor
Imagery

movements

The data used in proposed
models are limited.

MDRM and
TSLDA [343]

Classification
framework for BCI-

based motor imagery

Spatial
filtering

MI-based BCI
classification using

Riemannian
framework

Computational costs are faced
while implementing this

proposed framework.

SVM [344]
Fatigue detection
system

FFT
Train driver
Vigilance detection

NA

Gaussian,
polynomial

kernel [345]

MKELM-based
method for motor

imagery EEG
classification

CSP
MKELM-based
method for BCI

Improvement of accuracy and
extension of the framework is

needed.

Bimodal
NIRS-EEG

approach
[346]

Bimodal BCI using
EEG and NIRS

Low pass
filter and

Savitzky–
Golay (SG)

SSVEP paradigm
Only used in EEG and fNIRS
channels.

The challenges and difficulties of the BCI domain are divided into three categories: challenges
based on usability, technical challenges, and ethical challenges. The rest of the section briefly ex‐
plains these challenges.

10.1. Based on Usability
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This section describes the challenges that users have in accepting BCI technology [350]. They in‐
clude concerns relating to the requisite training for class discrimination.

10.1.1. Training Time

Usually, training a user, either leading the user through the procedure or the total quantity of the
documented manual, takes time. The majority of the time, the user also requests the system to be
simpler to use. The users often despise a complicated system that is difficult to manage. It is a
challenging effort to create such a sophisticated, user-friendly system [351].

10.1.2. Fatigue

The majority of present BCIs generate a lot of fatigue since they need a lot of concentration, focus,
and awareness to a rapid and intermittent input. In addition to the annoyance of weariness of
electrodes, BCI may fail to operate because the user cannot maintain a sufficient degree of focus.
As in BCI, mental activity is continually monitored and the user’s attention point alters the input.
The concentration necessary for stimuli results in a combination of input and output [352,353].
Rather than relaxing, the user must concentrate on a single point as an input and then look at the
outcome. At some point, the interaction has a forced quality to it, rather than the natural quality
that would be there if the user could choose whatever part of the visual output to focus on [6].

10.1.3. Mobility to Users

Across most situations, users are not allowed to move around or to have mobility in BCIs. During
the test application, users must stay motionless and quiet, ideally sitting down. However, in a real-
world setting, a user may need to utilize BCI while walking down the street, for example, to man‐
age a smartphone. Additionally, BCIs cannot ensure user comfort. Usually, the EEG headset is not
lightweight and easy to carry, which hampers the user experience.

10.1.4. Psychophysiological and Neurological Challenges

Emotional and mental mechanisms, cognition-related neurophysiology, and neurological variables,
such as functionality and architecture, play vital roles in BCI performance, resulting in significant
intra- and inter-individual heterogeneity. Immediate brain dynamics are influenced by psychologi‐
cal elements such as attention; memory load; weariness; conflicting cognitive functions; and users’
specific characteristics such as lifestyle, gender, and age. Participants with weaker empathy engage
less emotionally in a P300-BCI paradigm and generate larger P300 wave amplitudes than some‐
one with greater empathy involvement [354].

10.2. Technical Challenges
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Non-linearity, non-stationarity, and noise as well as limited training sets and the accompanying di‐
mensionality curse are difficulties relating to the recorded electrophysiological characteristics of
brain impulses.

10.2.1. Non-Linearity

The brain is a very complex nonlinear system in which chaotic neuronal ensemble activity may be
seen. Nonlinear dynamic techniques can thus better describe EEG data than linear ones.

10.2.2. Non-Stationarity

The non-stationarity of electrophysiological brain signals to recognize human recognition is a sig‐
nificant challenge in developing a BCI system. It results in a constant shift in the signals utilized
with time, either between or within transition time. EEG signal variability can be influenced by the
mental and emotional state backdrop across sessions. In addition, various emotional states such
as sadness, happiness, anxiety, and fear can vary on daily basis that reflects non-stationarity
[355]. Noise is also a significant contribution to the non-stationarity problems that BCI technology
faces. Noises and other external interferences are always present in raw EEG data of emotion
recognition that is most robust [356]. It comprises undesired signals generated by changes in
electrode location as well as noise from the surroundings [357].

10.2.3. Transfer Rate of Signals

In BCIs, the system must continuously adjust to the signals of the user. This modification must be
made quickly and precisely. Current BCIs have an extremely slow information transfer rate, taking
almost two minutes to “digitalize” a single phrase, for example. Furthermore, BCI accuracy does
not always reach a desirable level, particularly in visual stimulus-based BCI. Actions must some‐
times be repeated or undone, producing pain or even dissatisfaction in using interactive systems
using this type of interface [358].

10.2.4. Signal Processing

Recently, a variety of decoding techniques, signal processing algorithms, and classification algo‐
rithms have been studied. Despite this, the information retrieved from EEG waves does not have a
high enough signal-to-noise ratio to operate a device with some extent of liberty, such as a pros‐
thetic limb. Algorithms that are more resilient, accurate, and quick are required to control BCI.

10.2.5. Training Sets

In BCI, the training process is mainly impacted by usability concerns, but training sets are tiny in
most cases. Although the subjects find the training sessions time-consuming and challenging, they
give the user the required expertise to interact with the system and to learn to manage their neu‐
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rophysiological signals. As a result, balancing the technological complexity of decoding the user’s
brain activity with the level of training required for the proper functioning of the interfaces is a
crucial issue in building a BCI [359].

10.2.6. Lack of Data Analysis Method

The classifiers should be evaluated online since every BCI implementation is in an online situation.
Additionally, it should be validated to ensure that it has low complexity and can be calibrated
rapidly in real-time. Domain adaptation and transfer learning could be an acceptable solution for
developing calibration-free BCIs, where even the integration of unique feature sets, such as covari‐
ance matrices with domain adaptation algorithms, can strengthen the invariance performance of
BCIs.

10.2.7. Performance Evaluation Metrics

A variety of performance evaluation measures are used to evaluate BCI systems. However, when
different evaluation metrics are used to assess BCI systems, it is nearly impossible to compare sys‐
tems. As a result, the BCI research community should establish a uniform and systematic ap‐
proach to quantify a particular BCI application or a particular metric. For example, to test the effi‐
ciency of a BCI wheelchair control, the number of control commands, categories of control com‐
mands, total distance, time consumed, the number of collisions, classification accuracy, and the av‐
erage success rate need to be evaluated, among other factors [360].

10.2.8. Low ITR of BCI Systems

The information transfer rate is one of the extensively used processes for the performance evalu‐
ation metrics of BCI systems. The number of classes, target detection accuracy, and target detec‐
tion time are all factors of this rate. By increasing the Signal-to-Noise Ratio (SNR), it can improve
the target detection accuracy [53,328]. Several techniques are typically used for the preprocessing
phase to optimize the SNR. When a high ITR has been attained, more complicated applications can
be created by expanding the number of classes available. CDMA, TDMA, and FDMA [243,361] are
only a few of the stimulus coding schemes that have already been developed for BCI systems.
TDMA was used with P300 to code the required stimuli, while CDMA and FDMA have been used
with BCIs that interact with VEP. Furthermore, the essential aspect of BCIs is reducing the target
recognition period, which helps to increase the ITR. Adaptive techniques, such as “dynamic stop‐
ping”, could be an effective option for accomplishing this.

10.2.9. Specifically Allocated Lab for BCI Technology

Most of the BCI systems are trialed in a supervised lab rather than in the actual surroundings of
the users. When designing a BCI system, it is essential to think about the environment in which the
technology may be used. It is critical to thoroughly investigate the system’s requirements, environ‐
mental factors, circumstances, and target users mostly during the system design phase.
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10.3. Ethical Challenges

There are many thoughts surrounding the ethical issues behind BCI as it considers physical, psy‐
chological, and social factors. In biological factors, BCI always finds a human body to identify sig‐
nals that must be acquainted with electrodes. As humans need to wear these electrodes, it is al‐
ways risky for them and can harm the human body to some worse extent. BCI also requires strict
maintenance of the human body during signal acquisition, so the subject must sit for a long time in
his place. Adding to that, a user or participant must act what the electrodes need, so they cannot
do anything willingly. This fact can have a substantial impact on the human body.

11. Conclusions

The brain-computer interface is a communication method that joins the wired brain and external
applications and devices directly. The BCI domain includes investigating, assisting, augmenting, and
experimenting with brain signal activities. Due to transatlantic documentation, low-cost amplifiers,
greater temporal resolution, and superior signal analysis methods, BCI technologies are available
to researchers in diverse domains. Moreover, It is an interdisciplinary area that allows for biology,
engineering, computer science, and applied mathematics research. However, an architectural and
constructive investigation of the brain–computer interface is exhibited in this article. It is aimed at
novices who would like to learn about the current state of BCI systems and methodologies. The
fundamental principles of BCI techniques are discussed elaborately. It describes the architectural
perspectives of certain unique taxons and gives a taxonomy of BCI systems. The paper also cov‐
ered feature extraction, classification, evaluation procedures, and techniques as the research con‐
tinues. It presents a summary of the present methods for creating various types of BCI systems.
The study looks into the different types of datasets that are available for BCI systems as well. The
article also explains the challenges and limitations of the described BCI systems, along with possi‐
ble solutions. Lastly, BCI technology advancement is accomplished in four stages: primary scien‐
tific development, preclinical experimentation, clinical investigation, and commercialization. At
present, most of the BCI techniques are in the preclinical and clinical phases. The combined efforts
of scientific researchers and the tech industries are needed to avail the benefit of this great do‐
main to ordinary people through commercialization.
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