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A large qubit capacity and an individual read-
out capability are two crucial requirements for
large-scale quantum computing and simulation1.
As one of the leading physical platforms for quan-
tum information processing, the ion trap has
achieved quantum simulation of tens of ions with
site-resolved readout in 1D Paul trap2–4, and that
of hundreds of ions with global observables in 2D
Penning trap5,6. However, integrating these two
features into a single system is still very challeng-
ing. Here we report the stable trapping of 512 ions
in a 2D Wigner crystal and the sideband cool-
ing of their transverse motion. We demonstrate
the quantum simulation of long-range quantum
Ising models with tunable coupling strengths and
patterns, with or without frustration, using 300
ions. Enabled by the site resolution in the single-
shot measurement, we observe rich spatial cor-
relation patterns in the quasi-adiabatically pre-
pared ground states, which allows us to verify
quantum simulation results by comparing with
the calculated collective phonon modes and with
classical simulated annealing. We further probe
the quench dynamics of the Ising model in a
transverse field to demonstrate quantum sam-
pling tasks. Our work paves the way for simu-
lating classically intractable quantum dynamics
and for running NISQ algorithms7,8 using 2D ion
trap quantum simulators.

Quantum computation and quantum simulation have
entered an era of hundreds of qubits6,9,10, with compli-
cated computational tasks beyond the reach of current
classical computers being demonstrated11–14. To fur-
ther extend the application of the noisy intermediate-
scale quantum (NISQ) devices on practical and classically
intractable problems, the quantum simulation of many-
body dynamics7 and the NISQ algorithms8 like quantum
annealing15 and variational quantum algorithms16 have
attracted wide research interest. Apart from a large qubit
number, a critical requirement for these applications is
the ability to read out individual qubit states in a sin-
gle shot1, thus allowing, e.g., the measurement of qubits’
spatial correlation under quantum dynamics, or the eval-
uation of many-body objective functions in an optimiza-
tion problem.

As one of the leading quantum computing platforms,
the ion trap has demonstrated quantum simulation of
up to 61 qubits in a 1D Paul trap with individual
detection2–4. To further scale up the qubit number, one
plausible way is to trap the ions in a 2D crystal. To date,
2D crystals of up to 150 ions under Doppler cooling17,18,
of about 50 ions using two-tone laser cooling19, and of
about 100 ions under EIT cooling20 have been reported,
and the global quantum manipulation and individual de-
tection have also been demonstrated with up to 10 ions
in 2D21. Incidentally, 2D micro-trap arrays have also
been achieved in the small scale with large inter-site dis-
tances and weak coupling strength22–24, and 2D junc-
tions for the quantum charge-coupled device (QCCD)
architecture25,26 have also been realized as a plausible
way to scale up the system27–29. On the other hand,
2D ion crystals are native in Penning trap with quantum
simulation of about 200 ions already being achieved5,6.
However, due to the fast rotation of the ion crystal in a
Penning trap, the individual detection of qubit states re-
mains an experimental challenge. Although spatial and
temporal resolved imaging techniques have been used to
count the ion number5,6, observables for quantum simu-
lation in Penning trap are still limited to be global.

Here, we report the stable trapping of a 2D ion crys-
tal of 512 171Yb+ ions with its relevant transverse modes
(perpendicular to the ion plane) EIT and sideband cooled
to below one phonon per mode. We have exact control
of the ion numbers in the crystal and can set it to any
desired value. We further use the spin-dependent AC
Stark shift of 411 nm laser to generate long-range Ising
coupling, and demonstrate the quantum simulation of the
long-range quantum Ising model using 300 ions with tun-
able coupling patterns. Note that comparable qubit num-
bers have also been achieved for neutral atoms9 and for
superconducting circuits10 with individual-qubit resolu-
tion. In these systems, qubits mainly possess short-range
nearest-neighbor interactions, while trapped ions natu-
rally host long-range spin interactions with tunable cou-
pling range and patterns. Due to this unprecedented con-
trol of coupling patterns, rich exotic spatial correlations
can be expected. In particular, by tuning the laser close
to individual phonon sidebands and quasi-adiabatically
preparing the ground states via slow ramping of parame-
ters, we observe various spin-spin spatial correlation pat-
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FIG. 1. Experimental setup and 2D ion crystals. a, An illustration of our monolithic 3D ion trap at cryogenic
temperature. The 2D ion crystal locates on the xz plane and its size is not to scale. b, Relevant energy levels of the 171Yb+

ion. The qubit is encoded in the S1/2 hyperfine levels |0⟩ ≡ |F = 0,mF = 0⟩ and |1⟩ ≡ |F = 1,mF = 0⟩, and can be rotated by
a resonant global microwave. Counter-propagating off-resonant 411 nm laser beams are used to generate spin-dependent forces
on the ions, which further lead to the effective Ising coupling when the phonon states are adiabatically eliminated. Two pairs
of frequency components are placed on the two sides of the S-D transition with detuning ±(∆ ± µ/2) to create a beat note
of µ while compensating their time-independent AC Stark shift. c, The image of a 2D ion crystal with N = 512 ions. d, The
spectrum of the red motional sideband of the transverse phonon modes and e, that of the blue motional sideband under Doppler
cooling (blue) and sideband cooling (red). Here we only show the highest five modes including the center-of-mass (COM) mode,
while the complete spectra can be found in Supplementary Information. f, The experimental sequence to quasi-adiabatically
prepare the ground state of an Ising model Hamiltonian. We initialize all spins in |0⟩ after laser cooling and optical pumping,
and then rotate them to |+⟩ by a global microwave SK1 composite π/2 pulse. Then we turn on the Ising model Hamiltonian H0

via the global 411 nm laser and the transverse field HB via the global microwave simultaneously, and we quench the strength
of the transverse field from B0 ≫ J0 following an exponential path, where J0 = 1

N

∑
i̸=j Jij is the Kac normalized coupling

strength.

terns in which the collective oscillation modes of the ions
are imprinted. We further demonstrate quantum sim-
ulations that are challenging for classical computers by
simultaneously coupling to multiple phonon modes to ob-
tain frustrated Ising coupling, or by probing the quench
dynamics of a transverse-field Ising model and sampling
from the final quantum states.

STABLE TRAPPING OF 2D ION CRYSTALS

We use a monolithic 3D ion trap at the temperature of
T = 6.1K to hold the large 2D ion crystal. As discussed
in detail in Sec. II of Supplementary Information, the
cryogenic temperature is crucial for suppressing the col-
lision influence with the background gas molecules and
for the stability of the 2D crystal. By adjusting the volt-
ages on the 4× 7 DC electrodes, we shape the crystal of
N = 512 ions into roughly an ellipse with 11 rows, while
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minimizing the micromotion perpendicular to the plane,
as shown in Fig. 1. The average distance between ions is
about a ≈ 4µm. Global 370 nm laser beams for Doppler
cooling, EIT cooling, optical pumping and state detec-
tion are shined along the yz plane so as to be immune
to the micromotion of the ions in the x direction. Owing
to the coupling of the x and z directions in the in-plane
motion, such cooling beams are sufficient to cool down
the x oscillation modes as well.

We further use a narrow-band global 411 nm laser in
the y direction to provide sideband cooling for the trans-
verse modes. For N = 512 ions under the transverse
trap frequency ωy = 2π × 2.164MHz, the spectrum of
the transverse modes spans about 2π × 1.25MHz below
the center-of-mass (COM) mode. We perform sideband
cooling to the highest 2π × 150 kHz range by cooling 10
frequencies, which covers all the phonon modes relevant
to the following quantum simulation experiments. The
red and blue motional sideband spectra for the highest 5
modes are shown in Fig. 1d and e under Doppler cool-
ing (blue) and sideband cooling (red). To estimate the
phonon number from these spectra, we maintain a low
excitation rate for each phonon mode30, which results in
the sensitivity to the state-preparation-and-measurement
(SPAM) errors and the statistical fluctuation. Neverthe-
less, the current results allow us to bound the average
phonon number to be below one phonon per mode, which
is sufficient for our later quantum simulation of the spin
model31,32. More details about the setup, the daily oper-
ations and the estimation of the average phonon number
can be found in Supplementary Information.

QUANTUM SIMULATION OF LONG-RANGE
ISING MODEL

We further perform quantum simulation on a crystal
of N = 300 ions, which supports higher Ising coupling
strength through narrower 411 nm global beams. As
shown in Fig. 1b, the Ising model Hamiltonian is achieved
by the spin-dependent force from counter-propagating
off-resonant 411 nm laser beams33 with the phonon states
adiabatically eliminated. Here because the laser beams
only couple |0⟩ ≡ |S1/2, F = 0,mF = 0⟩ to the D5/2

levels but not |1⟩ ≡ |S1/2, F = 1,mF = 0⟩, the Ising
Hamiltonian takes the form of

H0 =
∑

ij

Jij(I + σi
z)(I + σj

z)

≡
∑

i̸=j

Jijσ
i
zσ

j
z +

∑

i

hiσ
i
z, (1)

where we have dropped an irrelevant constant. Apart
from when coupling to the COM mode, the longitudinal
field hi ≡ 2

∑
j Jij is typically small (see Supplementary

Information for details), and can further be compensated
by a time-independent AC Stark shift of the 411 nm laser.
A transverse field HB = B

∑
i σ

i
x can be realized by

a global microwave resonant to the qubit frequency. As
shown in Fig. 1f, we initialize all the qubits in |+⟩ ≡
(|0⟩ + |1⟩)/

√
2 (prepared by the SK1 composite pulse

to suppress the microwave inhomogeneity) and slowly
ramp down the transverse field following an exponen-
tial path B(t) = B0e

−t/τ . By choosing B0 > 50J0
where J0 ≡ 1

N

∑
i ̸=j Jij is the Kac normalized coupling

strength, we start from the highest eigenstate of the
Hamiltonian H(t) = H0 + HB(t). We further choose
a total evolution time T > 5τ , and expect the final state
to be close to the highest excited state of H0, namely the
ground state of −H0.
Ideally when hi = 0, the system possesses Z2 symme-

try and we expect the final state to be invariant under
the flip of all the spins. This shall give us large spin-spin
correlation Cij ≡ ⟨σi

zσ
j
z⟩ − ⟨σi

z⟩⟨σj
z⟩ = ⟨σi

zσ
j
z⟩ in the pre-

pared ground state. Even with the small uncompensated
hi’s, the pattern in the spatial correlation still survives,
as can be seen in Fig. 2. Specifically, if we couple domi-
nantly to the COM mode with a positive detuning, it is
well-known that −H0 is an all-to-all coupled ferromag-
netic Ising model whose ground state shows long-range
correlation Cij = 1. This behavior can be observed in
Fig. 2a where we obtain positive correlations over almost
all the ion pairs. The deviation from the ideal value of
one can come from the nonadiabatic excitation or deco-
herence during the slow quench, and the state detection
error for individual qubits (we use electron shelving to
suppress the detection error to be below 1%34–36), as is
evident from Fig. 2b for the typical single-shot measure-
ment outcomes. Besides, a reduced correlation can arise
from a weak uncompensated longitudinal field, which will
prefer one ferromagnetic ground state to the other, and
thus increases the ⟨σi

z⟩⟨σj
z⟩ term. Similarly, in Fig. 2c

and d we couple dominantly to the fourth highest phonon
mode with a positive detuning, and observe a staggered
spatial pattern.
Actually, when coupled to a single mode k, the ground

state can be solved analytically and is governed by the
structure of the phonon mode. This can be understood
by factoring the Hamiltonian in Eq. (1) after the sup-
pressing of the longitudinal field as

H0 =
1

16δk

(∑

i

ηkbikΩiσ
i
z

)2

, (2)

where δk is the detuning to the mode k, ηk the Lamb-
Dicke parameter, Ωi the 411 nm-laser-induced AC Stark
shift on the ion i, and bik the normalized mode vector.
Therefore when δk > 0, the highest eigenstate of H0,
or the ground state of −H0, can be simply expressed
as σi

z = ±sign(bik), thus imprinting the phonon mode
structure into the observed spatial correlation.
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FIG. 2. Spatial correlation patterns in quasi-adiabatically prepared ground states for N = 300 qubits. a, The
covariance matrix between all the ion pairs Cij ≡ ⟨σi

zσ
j
z⟩ − ⟨σi

z⟩⟨σj
z⟩ (with the diagonal terms set to zero) when the beat note

µ of the 411 nm laser is detuned by δ = µ− ω1 = 2π × 4 kHz above the COM mode ω1 = ωy = 2π × 2.140MHz. The ions are
labelled in ascending order of their z coordinates. All the correlations are averaged over 100 samples. b, Typical single-shot
measurement outcome. The blue and the red dots represent |0⟩ and |1⟩, respectively. Another typical pattern with most
ions in |0⟩ is not shown. Each ion can be resolved individually, and the overlap in the plot is due to the finite size of the
markers. Small deviation from the ferromagnetic ground state comes from the nonadiabatic excitation and decoherence during
the quench, as well as the detection error of the camera. c, d, Similar plots when the beat note µ of the 411 nm laser is detuned
by δ = µ − ω4 = 2π × 1 kHz above the fourth highest phonon mode ω4 = ωy − 2π × 24.0 kHz. e, Similar covariance matrix
when the beat note is detuned by δ = µ− ω19 = 2π × 1 kHz above the 19th highest phonon mode ω19 = ωy − 2π × 139.2 kHz,
with the ions labelled in ascending order of their z coordinates. Since the correlations are oscillating both along the x and the
z axes, when flattened into one axis, it is difficult to see the contiguous domains. f, The same covariance matrix as e, but
with the ions rearranged in descending order of the mode coefficient bi,19 as shown in h. g, Typical single-shot measurement
result corresponding to e. h, Theoretically computed phonon mode structure bi,19 for the 19th mode assuming harmonic trap
potentials in three spatial directions.

Combining this classically solvable ground state and
the spatial resolution, we can verify the quantum sim-
ulation result by comparing with the calculated phonon
mode. Beyond the relatively simple mode patterns in
Fig. 2a-d, we can also couple to a phonon mode with spa-
tial structures both along the major and the minor axes
of the ion crystal in Fig. 2e-h. The typical single-shot
measurement result (Fig. 2g) agrees well with the the-
oretically calculated mode vector (Fig. 2h). We further
show the average spin-spin correlation from 100 repeti-
tions in Fig. 2e. Because of the 2D spatial pattern, the
correlation appears to be noisy in Fig. 2e as we flatten
the 2D structure into 1D in the rows and columns of the
matrix. However, if we simply rearrange the indices of
the ions into the descending order of bik, we obtain the
matrix in Fig. 2f. Here we have two groups of ions with
positive and negative bik’s, which explains the positive
correlation within each group, and the negative correla-
tion between them. Again, this verifies the agreement be-
tween the theoretical and the experimental results. Note
that here when computing the phonon mode structure,
we simply assume a harmonic trap and use the measured
ion positions as the starting point to search the theoret-
ical equilibrium configuration. This can be improved by
fitting the anharmonicity over the large crystal using the
measured transverse mode frequencies.

In all the above cases we couple dominantly to a single
phonon mode with positive detuning, so that the Ising
coupling shows no frustration and the ground state can
be easily understood from the phonon mode structure.
We further engineer frustrated Ising models in Fig. 3 by
coupling to more phonon modes simultaneously, or by
setting a negative detuning. In Fig. 3a and b we show
the spin-spin correlation when coupling to the mode 4
and the mode 7 individually. Then we couple to the
two modes simultaneously via the two pairs of frequency
components in the 411 nm laser in Fig. 1b. From Fig. 3c
to e, we fix the detuning δ4 to the mode 4 and increase
the detuning δ7 to the mode 7, such that their relative
contribution to the Ising Hamiltonian changes. For small
δ7 > 0 (Fig. 3c), the mode 7 dominates and the correla-
tion pattern is similar to Fig. 3b; for large δ7 (Fig. 3e),
the mode 4 dominates and the correlation pattern re-
sembles Fig. 3a; while in the middle with roughly equal
contribution from both modes, we see competition from
the two patterns and the correlation becomes their mix-
ture. From Fig. 3f to i, we decrease both δ4 and δ7 from
positive to negative. In Fig. 3g with δ4 = 2π × 1.5 kHz
and δ7 = 2π × 0.5 kHz, the situation is similar to Fig. 3c
dominated by the mode 7. If we further increase δ4 and
δ7 to Fig. 3f, the generated Ising coupling decreases as
well as the energy gap, making it more difficult to prepare
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FIG. 3. Quantum simulation of frustrated Ising model. a, b, The covariance matrices for the same N = 300 crystal as
Fig. 2 when the beat note of the 411 nm laser is 2π × 1 kHz above the 4th highest phonon mode and 2π × 1 kHz above the 7th
highest phonon mode, respectively. c-e, Two beat note frequencies of the 411 nm laser are applied to couple both phonon modes
simultaneously. From left to right, we fix the detuning to the 4th mode as δ4 = 2π× 0.75 kHz, and increase the detuning to the
7th mode as δ7 = 2π× [0.50, 0.75, 1.00] kHz. On the two ends, the ground states are dominated by the two modes, respectively,
while in the middle there is frustration due to the competition between the two configurations. f -i, Again we couple both
phonon modes simultaneously. From left to right, we decrease the detunings to the two phonon sidebands simultaneously as
(δ4, δ7)/2π = (2.5, 1.5), (1.5, 0.5), (0.5,−0.5), (−0.5,−1.5) kHz. When δ4, δ7 > 0 (g), the ground state is dominated by the mode
7 under the chosen parameters, similar to c. When detunings further increase (f), the Ising coupling decreases, and so do the
measured correlations due to the stronger nonadiabatic excitation. When δ4 > 0 and δ7 < 0 (h), the ground state is dominated
by the mode 4, but also feels the frustrated Ising coupling from the mode 7 under negative detuning. Finally, when δ4, δ7 < 0
(i), both contributions to the Ising coupling coefficients are strongly frustrated and it is difficult to theoretically predict the
result. All the correlations are averaged over 100 samples.

the ground state adiabatically and thus the correlation
also shrinks. On the other hand, if we decrease the de-
tuning to δ4 = 2π × 0.5 kHz and δ7 = −2π × 0.5 kHz
(Fig. 3h), the ground state becomes dominated by the
mode 4 with positive detuning, but is also influenced by
the weak frustrated Ising coupling from the negatively de-
tuned mode 7. Finally, when both δ4 and δ7 are negative
(Fig. 3i), the Ising model becomes highly frustrated and
the correlation in the slowly ramped state also becomes
much weaker, with no simple analytical explanation for
the observed pattern. In Supplementary Information we
further compare these results with numerical results by
the classical simulated annealing algorithm to show that
our quantum algorithm gives the correct pattern for the
ground state in the “simple” case, while its output is diffi-
cult to predict in the “hard” case with strong frustration.

Another task that is enabled by our large qubit capac-
ity and individual single-shot readout, and is challenging
for direct simulation by classical computers, is to sam-
ple from the quantum states after many-body Hamilto-
nian evolution, which belongs to the quantum sampling
problem37,38. Specifically, we consider the quench dy-
namics of a 2D transverse-field Ising model with long-
range interaction by turning on the Ising coupling Jij

and the transverse field B0 simultaneously. By choosing
the initialization and readout bases along the σz direc-
tion, our model is similar to that in Ref.2 with the σx

and σz bases exchanged. Actually, from the dynamics of
single-spin and two-spin observables in Fig. 4a-c, simi-
lar signals for a dynamical phase transition can be ob-
served: At small B0, the spins remain pinned near their
initially polarized direction, and we get nonzero single-
spin C1 ≡∑i⟨σi

z⟩/N and two-spin C2 ≡∑ij⟨σi
zσ

j
z⟩/N2

expectations after long evolution time; At large B0, spins
precess around the transverse field and the Z2 symmetry
of the Ising Hamiltonian is recovered, which gives time-
averaged C1 → 0 and C2 → 1/2 as the spins rotate collec-
tively between ±12. In the experiment, we get deviation
from the above theoretical values for large B0, which can
be explained by a small uncompensated longitudinal field
which breaks the Z2 symmetry, and by the nonuniformity
of the transverse field over the large ion crystal causing
different precession speed for different spins.

While the above single-spin and two-spin dynamics can
be understood semi-quantitatively and provide a way to
calibrate our quantum simulator, in general it is much
more difficult to directly simulate the many-body quan-
tum dynamics by a classical computer and to sample from
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FIG. 4. Quench dynamics and quantum sampling. a,
Average single-spin dynamics C1(t) ≡ ∑

i⟨σi
z(t)⟩/N under

various values of the transverse field. Error bar shows statisti-
cal fluctuation from 100 shots. Here we fix the Ising coupling
by tuning the laser beatnote 2π×4 kHz above the COM mode
and obtain a Kac normalized J0 = 2π×0.31 kHz. Inset shows
the cumulative time-averaged value C̄1(t) ≡

∫ t

0
C1(τ)dτ/t,

which is more robust against slow parameter drift. Error bars
represent one standard error from three groups of data taken
at different time. b, Similar plot for average two-spin dynam-
ics C2 ≡ ∑

ij⟨σi
zσ

j
z⟩/N2. c, C̄2(T ) vs. transverse field B0

for a fixed evolution time T = 7.5ms. A dip can be observed
near B0/J0 = 1.5, indicating a dynamical phase transition. d,
Histogram of the sampled 300-qubit data in 10 coarse-grained
“bubbles”. The data are sampled from three different quan-
tum states as the time evolution of T = 6ms under three
different transverse-fields B0/J0 = 0.71, 1.43, 2.14. We first
collect about 5000 samples at B0/J0 = 1.43 as the reference
to design the bubbles for coarse graining and to estimate the
probability distribution in these bubbles. Then we collect
1000 samples from B0/J0 = 0.71, 1.43, 2.14, respectively, and
compare their distributions with the reference. The samples
from B0/J0 = 1.43 agree with the reference at a p-value of
0.8, while the samples from B0/J0 = 0.71 and 2.14 are re-
jected at a p-value below 10−49.

the probability distribution of the multi-qubit measure-
ment outcome. On the other hand, it is straightforward
to obtain such samples from a quantum simulator. In
Fig. 4d we generate such samples for three different val-
ues of the transverse field B0, and we perform a coarse-
grained analysis39 (see Supplementary Information for
more details) to show that their underlying probability
distributions are distinct, thus are nontrivial and are not
dominated by experimental decoherence.

DISCUSSION AND OUTLOOK

In this work, we achieve the stable trapping of a 2D
crystal of above 500 ions, and demonstrate the quantum
simulation of 300 ions with individual state detection.
Currently this smaller ion number is chosen according to
our available 411 nm laser power to cover the whole ion
crystal for strong Ising coupling, and is not a fundamental
limit. To further scale up the system to thousands of
ions, we may also perform sympathetic cooling on a few
ions with optimized locations40 to maintain its stability,
while using the dual-type qubit scheme to avoid crosstalk
errors on the ions carrying quantum information as we
have demonstrated recently in small systems36.
We create frustrated Ising model Hamiltonian by cou-

pling to up to two phonon modes. By adding more fre-
quency components into the 411 nm laser41,42 or by ap-
plying a spatial gradient of the AC Stark shift43, it will
be possible to engineer more complicated coupling co-
efficients, and thus to simulate rich quantum dynamics
that are intractable for classical computers7 and to ex-
ecute NISQ algorithms8 like quantum annealing15 and
variational quantum optimization16. Furthermore, in the
future by integrating the 2D laser addressing into the
system44,45, our 2D ion crystal may also support high-
fidelity two-qubit entangling gates mediated by the trans-
verse phonon modes46,47, thus makes a promising way to
extend the scale of ion trap quantum computers.
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I. EXPERIMENTAL SETUP

A. Monolithic 3D ion trap

We use a monolithic 3D Paul trap [1, 2] (see Fig. 1a of main text) with an RF frequency of ωrf = 2π×35.280MHz to
hold 2D crystals of 171Yb+ ions. The trap is fabricated on a 0.508× 23× 23mm3 alumina chip by laser cutting. Gaps
between electrodes are of 50µm width and about 10µm fabrication accuracy, and the segments of the DC electrodes
have a width of 600µm. The distance between the trap center and the RF electrode is 150µm. The monolithic
fabrication can largely eliminate the assembly error compared with our previous blade traps, and can have stronger
and more symmetric confinement compared with our previous surface traps. The voltage on the 4 × 7 = 28 DC
segments can be controlled independently, together with an overall DC bias on the RF electrodes. These provide us
with sufficient degrees of freedom to control the shape of the 2D crystal and to eliminate its micromotion perpendicular
to the plane. To suppress the collision rate of the ion crystal with the background gas molecules and thus to improve
its stability, we place the trap at a cryogenic temperature of 6.1K. More details about the stability of ion crystals can
be found in Sec. II.

B. Laser configuration

Imaging

411 nm

935 nm & 

976 nm & 

3432 nm

EIT-𝜋

𝐵

370 nm cooling/pumping

& 399 nm ionization

EIT-σ

411 nm

y: transverse

z: axial

⊙
x: radial

1030 nm pulsed 

laser ablation

Fig. S1. Laser configuration.

∗ lmduan@tsinghua.edu.cn

ar
X

iv
:2

31
1.

17
16

3v
2 

 [
qu

an
t-

ph
] 

 1
1 

A
pr

 2
02

4



2

All the laser beams propagate in the micromotion-free directions in the y-z plane, as shown in Fig. S1. This makes
their effect insensitive to the inevitable micromotion of the 2D crystal along the x direction.

To load ions into the trap, first we generate neutral atomic beams aiming at the trap center by laser ablation on
a target of isotope-enriched 171Yb metal using 1030 nm pulsed laser. The 399 nm ionization laser is perpendicular to
the atomic beam, which eliminates the Doppler shift and thus enables better isotope selectivity. The 935 nm, 976 nm
and 3432 nm laser beams are combined together and enter the trap at a small angle with respect to the z-axis to
cover the whole ion crystal. They are used to repump the population on 2D3/2,

2D5/2 and 2F7/2, respectively, back

to 2S1/2. The 370 nm laser has its main component for Doppler cooling, and a largely red-detuned component as
the protection beam. This cooling beam can directly cool down the phonon modes in the micromotion-free y and
z directions. Since the in-plane motion of the ions in the x and z directions are coupled together, we will also be
able to cool down most of the x modes. An exception is the center-of-mass (COM) mode in the x direction, which is
not coupled to the motion in the y direction in the ideal case. Nevertheless, in the experiment we observe that this
mode can still be cooled, which may come from the anharmonicity of the trap or a small angle of the cooling laser
away from the y-z plane. Furthermore, by turning on the 14.7GHz and 2.1GHz electro-optic modulators (EOMs),
the 370 nm beam can also be switched for optical pumping and qubit state detection. Two additional 370 nm laser
beams, perpendicular to each other with π and σ+ polarizations, respectively, are used for EIT cooling [3]. They have
a blue detuning of about 86MHz from the transition between |2S1/2, F = 1,mF = 0⟩ (|2S1/2, F = 1,mF = −1⟩) and
|2P1/2, F = 0,mF = 0⟩.

A pair of counter-propagating 411 nm laser beams are applied perpendicular to the 2D crystal, with a linewidth
of about 1 kHz. Either of the two beams can be used for sideband cooling and electron shelving to the D5/2 levels.
Together, they can generate a spin-dependent force which can further lead to the Ising coupling as we describe
in Sec. III. The waist diameters of the two counter-propagating beams are about 50 × 330µm2 and 42 × 380µm2

respectively, which can cover the whole 2D ion crystal. Both beams are polarized in the z direction. Together with a
magnetic field of 4.6G at an angle of 45◦ to the y and z directions, this geometry can maximize the transition matrix
element between the |2S1/2, F = 0,mF = 0⟩ and |2D5/2, F = 2,mF = 0⟩ states.

C. Imaging system

The imaging system is aligned perpendicular to the ion crystal with an NA of 0.33. We use a CMOS camera to
collect the site-resolved fluorescence from individual ions. Each image has a size of 552 × 88 pixels, and the typical
distance between adjacent ions is about 7.7 pixels, or about 4.1µm given our magnification of 0.535µm/pixel. To
obtain the image for the 512-ion crystal in Fig. 1c of the main text, we use an exposure time of 150ms. Later to
perform the single-shot state detection, we first shelve the |2S1/2, F = 0,mF = 0⟩ state to the D5/2 and F7/2 levels by
the global 411 nm and 3432 nm laser [4, 5], and then detect the fluorescence of the ions under the global 370 nm laser
with an exposure time of 1.5ms. The state detection infidelity is about 1% for the dark state due to the imperfect
shelving under inhomogeneous laser beams, and about 0.1% for the bright state.

D. Trap parameters

We encode the qubit state in the |0⟩ ≡ |2S1/2, F = 0,mF = 0⟩ and |1⟩ ≡ |2S1/2, F = 1,mF = 0⟩ levels of the 171Yb+

ions. The single-ion coherence time is measured to be T2 ≈ 0.5 s. The motional coherence time for the transverse
mode is directly measured to be about 1.5ms, and can be extended to 10ms with a 50Hz line-trigger and a spin echo.

To hold the 2D crystal of N = 512 ions, we use a trap frequency of (ωx, ωy, ωz) = 2π × (0.60, 2.164, 0.144)MHz,
and when holding the crystal of N = 300 ions, we slightly increase the in-plane trapping and decrease the transverse
trapping to (ωx, ωy, ωz) = 2π×(0.69, 2.140, 0.167)MHz. The 2D ion crystal can be held for days under global Doppler
cooling, and its dark lifetime with the cooling laser turned off is on the timescale of seconds. The label for each ion in
the N = 300 ion crystal in the main text is shown in Fig. S2, which is in ascending order of their z coordinates. Note
that the above transverse mode frequency ωy can be measured from the sideband of the 411 nm laser, while the in-
plane trap frequencies ωx and ωz are obtained from parametric resonance using a single ion. Since these in-plane trap
frequencies are subjected to spatial inhomogeneity over the large 2D crystal, we further adjust their values slightly to
match the shape of the theoretically computed equilibrium configuration of the 2D crystal with the measured image
as much as possible. The phonon mode frequencies computed in this way typically agree with the measured values
with a deviation below 1-2 kHz in the high-frequency range, say, within 150 kHz below the COM mode. On the other
hand, the low-frequency modes are more sensitive to the local properties of the trap and we observe larger deviation
between the theoretical and the experimental results.
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Fig. S2. The experimental image of the 2D crystal of N = 300 ions and their labels according to the z coordinates.

E. Estimating phonon number

We follow the method of Ref. [6] to estimate the average phonon number in each mode, with small modification
because here we are using 411 nm laser to couple the electric quadrupole transition between | ↓⟩ ≡ |2S1/2, F = 0,mF =

0⟩ and | ↑⟩ ≡ |2D5/2, F = 2,mF = 0⟩, rather than the Raman transition of 355 nm laser between |0⟩ ≡ |2S1/2, F =

0,mF = 0⟩ and |1⟩ ≡ |2S1/2, F = 1,mF = 0⟩. Specifically, we initialize all the ions in | ↓⟩⊗N , apply a weak global
411 nm laser beam with a short duration around the red and the blue motional sidebands, and measure the final
spin states by the fluorescence under a global 370 nm laser. As shown in Fig. 1d and e in the main text, under weak
driving, different phonon sidebands can be well distinguished, so the effects of the off-resonant terms can be neglected.

For completeness, below we summarize the derivations in the Supplementary Information of Ref. [6]. Consider a
driving laser resonant to the red motional sideband of the k-th mode. We get the Hamiltonian

Hr =
∑

i

ηkbikΩi(akσ
+
i + a†kσ

−
i ), (1)

where ηk is the Lamb-Dicke parameter of mode k, Ωi the carrier Rabi frequency of the driving laser on ion i, bik the

mode vector, ak (a†k) the annihilation (creation) operator of mode k, and σ+
i ≡ | ↑⟩i⟨↓ | (σ−

i ≡ | ↓⟩i⟨↑ |) the upper
(lower) operator of ion i.

Suppose initially there are n phonons in the k-th mode. When applying this Hamiltonian for a short time T , the
evolution of the system can be approximated as

|Ψr(T )⟩ ≈ | ↓⟩⊗N |n⟩ − i
√
nT
∑

i

ηkbikΩi| ↓⟩⊗(i−1)| ↑⟩| ↓⟩⊗(N−i)|n− 1⟩, (2)

where we have neglected the weaker multi-spin excitations. Averaging over the phonon number distribution {pn}, we
get the probability for a single-spin excitation as

Pr(T ) ≈
∑

n

pn
∑

i

(√
nTηkbikΩi

)2
= n̄

∑

i

(TηkbikΩi)
2
. (3)

Similarly, when the same driving laser is applied on the blue sideband, we have

Hb =
∑

i

ηkbikΩi(a
†
kσ

+
i + akσ

−
i ), (4)

and

Pb(T ) ≈
∑

n

pn
∑

i

(√
n+ 1TηkbikΩi

)2
= (n̄+ 1)

∑

i

(TηkbikΩi)
2
. (5)

Therefore we can obtain n̄ from Pr(T ) and Pb(T ) as n̄ = Pr(T )/[Pb(T ) − Pr(T )]. In particular, for a low average
phonon number n̄ ≪ 1, we have n̄ ≈ Pr(T )/Pb(T ). In the above derivation, we assume resonant driving to the red
and the blue sidebands, but the same ratio can be obtained if we consider the same detuning to the two sidebands
as long as the excitation is still dominated by a single phonon mode. This will allow us to average over a few
data points around each peak to suppress the statistical fluctuation. Also note that the above derivations require
(n̄ + 1)

∑
i (TηkbikΩi)

2 ≪ 1. For example, for the Doppler cooling results in Fig. 1d and e in the main text with
a high phonon number, we typically obtain higher blue sidebands than the red sidebands due to the non-negligible
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multi-spin excitations. Finally, as shown in Supplementary Information of Ref. [6] through numerical examples, the
validity of this approximation can be extended to about ηkΩ̄T ≲ π/2 to estimate the order of magnitude, so as to
allow stronger red sideband signal and to increase the signal-to-noise ratio.

For experimental convenience, we estimate the ratio between Pr(T ) and Pb(T ) from the overall photon counts under
the 370 nm laser rather than distinguishing individual spin states. Suppose the average photon number from ion i in
the bright state | ↓⟩ is Ni, and almost zero when shelved to the | ↑⟩ state. Also, suppose there are N0 dark counts for
the CMOS camera. Then we can estimate the average photon counts under red sideband and blue sideband driving
as

Nr = N0 +
∑

i

[
1− n̄ (TηkbikΩi)

2
]
Ni, (6)

and

Nb = N0 +
∑

i

[
1− (n̄+ 1) (TηkbikΩi)

2
]
Ni. (7)

In the experiment, we first measure the maximal photon counts Nmax = N0+
∑

i Ni when all the ions are initialized
in | ↓⟩. Then we have

Nmax −Nr = n̄
∑

i

(TηkbikΩi)
2
Ni, (8)

and

Nmax −Nb = (n̄+ 1)
∑

i

(TηkbikΩi)
2
Ni, (9)

which allow us to estimate the average phonon number n̄ in a similar way as using Pr(T ) and Pb(T ). Note that using
this method, most of the population will be in the bright state and the weak spin excitation only leads to small decay
in the photon counts. Therefore, the result can be sensitive to the slow drift in the laser intensity and the statistical
fluctuation of the photon number following a Poisson distribution. Therefore, we choose to measure Nmax before each
data point individually to compensate the drift of the photon scattering rate, and we repeat the measurement for
1000 times to suppress the statistical fluctuation.

Following this method, we estimate the average phonon number for the five modes shown in Fig. 1d and e of the
main text to be n̄k = (0.4 ± 0.3, 0.0 ± 0.3, 0.8 ± 1.2, 0.9 ± 1.1, 0.1 ± 0.5) from the COM mode to the lower modes,
where we average over 3 data points around each phonon mode (see Fig. S3a) to suppress the statistical error and
the small drift in the mode frequencies. Note that here we have negative points in the red sideband after subtracting
the background due to such random fluctuation. Also note that the shape of these spectra after sideband cooling
suggests that there is still non-negligible statistical fluctuation, which will prevent us from obtaining a red sideband
below the error bar. Therefore, the actual phonon number in these modes can be lower than the measured values.
In Fig. S3b and c we further show the spectra for all the N = 512 transverse modes and a zoom-in for the highest
2π×150 kHz range for which we perform the sideband cooling. In Fig. S3b, since much more data points are scanned,
we use a stronger excitation ηkΩ̄T ≈ 3 to allow smaller number of repetitions, and just qualitatively demonstrate the
suppression of the phonon number after EIT cooling and sideband cooling. In Fig. S3c we use the same excitation
rate ηkΩ̄T ≈ π/2 as in a, and repeat each data point after sideband cooling for 300 times. We then sum over this
150 kHz range as an estimation of the average phonon number of all these modes to further suppress the statistical
error. Then by similarly comparing the red and the blue motional sidebands, we obtain an average phonon number
of n̄ = 0.8± 0.6 for the phonon modes relevant for our quantum simulation experiment.

II. CRYSTAL CONFIGURATION STABILITY

As discussed in Ref. [7], for a 2D crystal at room temperature, the melting and configuration changes due to collision
with background gas molecules are important limiting factors for scaling up the crystal size. Here we show that, for
a cryogenic ion trap, such collisions are much less detrimental and the stability of the ion crystal can be significantly
improved.

At our temperature T = 6.1K, the residual background gas will mainly consist of hydrogen molecules [8] with a
suppressed pressure. To estimate the effect of collision with background gas molecules, we assume head-on elastic
collisions as the worst case which transfers the most energy to the collided ion. Suppose the molecule with mass
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a

b

c

Fig. S3. a, The same plot as Fig. 1d and e of the main text, with the three data points around each mode shaded for estimating
the phonon number. b, Spectra for the red and blue motional sidebands of all the transverse modes for N = 512 ions. c, The
highest 2π× 150 kHz below the COM mode subjected to sideband cooling. The blue (red) points are the spectra after Doppler
cooling (EIT and sideband cooling).

m has a velocity v following a Maxwell-Boltzmann distribution at the temperature T before the collision. After a
head-on elastic collision, the collided ion with mass M acquires a velocity 2v/(1 + M/m). For 171Yb+ ions, this
velocity is typically an order of magnitude larger than the Doppler temperature, so we can neglect the motion of
the ions before the collision. For simplicity, here we consider a 2D ion crystal in a harmonic trap (ωx, ωy, ωz) =
2π × (0.60, 2.164, 0.144)MHz without micromotion, and postpone the effect of the micromotion later.

We start from an arbitrarily selected equilibrium configuration of N = 512 ions which is computed by their time
evolution under a damping force. After the collision, we assign the velocity to a randomly selected ion, and we
numerically simulate the dynamics of all the ions under the harmonic trapping potential, their Coulomb repulsion
and a weak damping force from the global Doppler cooling laser. We choose a typical cooling rate γ ≈ 8 × 103 s−1

for a cooling laser with a saturation parameter s = 1 and detuning ∆ = −Γ/2 at equal angle to the three principal
axes [9]. As we show in Fig. S4a, after an evolution time of t = 500µs which is longer than the relaxation time under
the cooling laser, with high probability the ions will remain in their original equilibrium positions. This means that
no melting, configuration change or even ion hopping has occurred. Only 2% (10 out of 500) randomly generated
samples give a maximal position deviation maxi ∥r⃗i − r⃗′i∥ greater than 0.5µm, which corresponds to a change in the
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ion configuration. In other words, the collision of the ion crystal with background gas molecules will hardly change the
crystal configuration as long as the Doppler cooling is turned on to dissipate the energy away before it accumulates
from multiple collisions. Besides, the cryogenic trap also largely reduces the pressure of the background gas and thus
lowering the probability for such collisions to occur.

In comparison, if we set the temperature of the hydrogen molecule to T = 300K, as shown in Fig. S4b, the final
positions of the ions typically deviate significantly from their initial positions (433 out of 500 above 1µm). We can
further show that this deviation comes from both the configuration change of the ions and the global hopping of the
ions within the same configuration. As shown in Fig. S4c, we can apply the Hungarian algorithm to find the best
mapping between the initial and the final ion indices to minimize their position deviation. Even after this mapping,
typically we can find significant change between the initial and final positions (424 out of 500 above 1µm), which
suggests that the ions have entered a new equilibrium configuration after collision with room-temperature hydrogen
molecules.

a b c

Fig. S4. a, Histogram for the maximal position deviation maxi ∥r⃗i − r⃗′i∥ after a random head-on elastic collision with a
background hydrogen molecule at T = 6.1K and t = 500µs Doppler cooling. b, Histogram for the maximal position deviation
maxi ∥r⃗i − r⃗′i∥ after a random head-on elastic collision with a background hydrogen molecule at T = 300K and t = 500µs
Doppler cooling. c, Histogram for the maximal position deviation maxi ∥r⃗πi − r⃗′i∥ at T = 300K after the optimal mapping of
ion indices, where {πi} is an optimal permutation to minimize the position deviation. Each plot is generated from 500 random
samples.

As for the effect of micromotion, we show in Ref. [10] that even under micromotion, a 2D ion crystal can still
have all its normal mode frequencies to be real, which corresponds to a local minimum in the potential of ions in
a harmonic trap. In particular, for the 2D crystals we are considering here, the micromotion amplitudes are still
much smaller than the inter-ion spacings, so that the deviation in the ions’ equilibrium configuration is also small
from that in a harmonic trap. Now given the real mode frequencies, any small perturbation from the equilibrium
configuration will be stable and the ideal RF potential will not lead to heating, at least to the lowest order. Even if
there may exist higher order heating effects, they can be suppressed by an arbitrarily weak cooling term such as a
global Doppler cooling beam. Actually, it is known that RF heating is not significant for ions in the crystal phase, and
that it only becomes severe when the ions already acquire sufficient energy to melt into a cloud phase and when their
motion becomes chaotic [10]. Therefore, the above analysis that the ion crystal is stable after individual collisions
also suggests that RF heating can be neglected in this process.

In the experiment, the stability of our ion crystal is consistent with the above theoretical analysis. The crystal of
hundreds of ions hardly melts under global Doppler cooling laser, and we attribute the occasional melting events (once
a few days) to the unlocking of the laser frequency. Also we measure a typical crystal configuration lifetime of a few
minutes. In comparison, the collision rate between an ion and the background hydrogen molecules at a temperature
of 6K and a pressure of 10−13 Torr is about γelastic ≈ 0.01 s−1 [11, 12], which corresponds to a timescale below seconds
for N = 512 ions. Note that for a cryogenic trap the pressure is often too low to be measured reliably, and here we are
simply using the results in Ref. [8] as an order-of-magnitude estimation. The actual pressure can be higher, which will
then lead to a higher collision rate and thus further support our theoretical analysis that individual collision events
will not affect the crystal stability.

Given the long lifetime of the crystal configuration, we do not require the extremely stable “main configuration”
as discussed in Ref. [7]. Instead, after a configuration change is detected, we simply disturb the trap potential
to purposely melt the crystal and then slowly recover the trap parameters back. This fixed procedure can result
in different crystal configurations, and we can repeat it for multiple times to get the statistics for the probability
distribution of these configurations. Then we select the configuration with the highest probability, say, 20% as shown
in Fig. S5, as the targeted one used in the experiment. In this way, we obtain a typical time of about 10 s to recover
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the targeted configuration, which is much shorter than the typical configuration lifetime of a few minutes.

a b

Fig. S5. a, Typical pie chart for the statistics of different crystal configurations following a fixed path from the melted state.
Different crystal configurations are identified from their image on the CMOS camera. The probabilities are estimated from
55 repetitions. b, After the drift of trap parameters over months and their recalibration, the statistics of different crystal
configurations changes, but still we can have sufficient probability to get the desired configuration. In the two plots the same
label 0-8 indicates the same crystal configuration.

III. HAMILTONIAN GENERATED BY 411 NM LASER

A. Spin-dependent force

As shown in Fig. 1b of the main text, we use two pairs of counter-propagating 411 nm laser to generate the
spin-dependent force and further to obtain the spin-spin interaction. For simplicity, we first consider one pair of
counter-propagating 411 nm beams at the detuning of ∆±µ/2. With a large detuning |∆±µ/2| ≫ Ω compared with
the Rabi frequency of each laser beam, it is well-known that the beat note of these two beams creates an AC Stark
shift varying in time and space, which further leads to a spin-dependent force [13, 14]

H =
∑

i

Ω2
i

2∆
{1 + cos [∆k · yi(t)− µt]} |0⟩i⟨0|, (10)

where ∆k is the wave vector difference between the two beams along the y direction, and the index i labels all the
ions driven by the laser beams. Here the laser only couples |0⟩ ≡ |2S1/2, F = 0,mF = 0⟩ to the D5/2 levels, so that
the AC Stark shift only appears for |0⟩ but not |1⟩. The Rabi frequency Ωi characterizes the possible spatial variation
of the laser intensity.

The second term in the above Hamiltonian gives us the desired spin-dependent force, but the first term can lead
to a large longitudinal field which prevents us from observing strong spin-spin correlation in the quantum simulation
experiment. Therefore, we further introduce two frequency components at the detuning of −(∆ ± µ/2), so that
the overall time-independent AC Stark shifts of the four components cancel with each other. Note that for the
second term in the Hamiltonian to add up constructively, we want a relative phase shift of π between the two pairs
(φb1 − φr1)− (φb2 − φr2) = π where b1, b2, r1 and r2 are the four frequency components in Fig. 1b of the main text.

Finally we obtain the Hamiltonian from the four symmetric frequency components

H =
∑

i

Ω2
i

∆
cos [∆k · yi(t)− µt] |0⟩i⟨0|. (11)

When µ is close to the phonon sideband, we can neglect the far off-resonant terms and get

HSDF =
∑

ik

Ω2
i

2∆

[
iηkbika

†
ke

−i(µ−ωk)t + h.c.
]
|0⟩i⟨0|, (12)

where ηk is the Lamb-Dicke parameter and bik the mode vector. We have neglected higher order expansions of ηk.
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B. Ising model Hamiltonian

The above spin-dependent force differs with the commonly used form [15] in that it only appears for |0⟩ but not for
|1⟩. Therefore, following similar derivation to eliminate the phonon modes adiabatically, we get

H =
∑

ij

Ωi
effΩ

j
eff

4

∑

k

η2kbikbjk
µ− ωk

(|0⟩i⟨0|)(|0⟩j⟨0|)

=
∑

ij

Ωi
effΩ

j
eff

4

∑

k

η2kbikbjk
µ− ωk

I + σi
z

2

I + σj
z

2

≡
∑

ij

Jij(I + σi
z)(I + σj

z), (13)

where Ωi
eff ≡ Ω2

i /∆ is the AC Stark shift on the ion i which we deonte as Ωi in the main text, and the coupling
coefficients Jij are given by

Jij =
Ωi

effΩ
j
eff

16

∑

k

η2kbikbjk
µ− ωk

. (14)

In particular, when coupling dominantly to a single mode k, we have

H(k) =
∑

ij

Ωi
effΩ

j
eff

16

η2kbikbjk(I + σi
z)(I + σj

z)

µ− ωk

=
1

16(µ− ωk)

[∑

i

ηkbikΩ
i
eff(I + σi

z)

]2
. (15)

Finally, we can bring the spin-spin interaction Hamiltonian in Eq. (13) into the standard form of a quantum Ising
model

HIsing =
∑

i ̸=j

Jijσ
i
zσ

j
z +

∑

i

hiσ
i
z, (16)

where the longitudinal field is given by hi ≡ 2
∑

j Jij . Assuming a nearly constant Ωi
eff , we have hi ∝

∑
j bjk, which

is equal to zero for all the modes apart from the COM mode. As for the COM mode, we can compensate this nearly
constant longitudinal field by a small shift in the detuning of the two pairs of the 411 nm laser beams, so that a small
asymmetry in their time-independent AC Stark shift can be generated. Similarly, in Eq. (15) we can remove the
identity matrix I to obtain the Hamiltonian in Eq. (2) of the main text.

C. Error analysis

For the ideal Hamiltonian in Eq. (2) of the main text and the ideal adiabatic evolution, the final state should be an
equal superposition of two spin configurations following the pattern of the coupled phonon mode k {σi

z = sign(bik)}
and {σi

z = −sign(bik)}. In particular, when coupled dominantly to the COM mode, the ideal final state should be a
GHZ state for N = 300 qubits. However, in practice various error sources can degrade the fidelity for this macroscopic
entangled state. Therefore we do not expect to observe this multipartite entanglement in the current experiment,
and leave it as future research directions. Instead, here we mainly focus on the spin-spin correlation which does not
require the phase coherence between the two ground states. Below we analyze the dominant error sources in the
experiment and explain why we are able to measure a correlation pattern consistent with the phonon modes despite
all these errors.

Small uncompensated single-qubit σz terms can cause an energy bias between the two spin configurations, resulting
in an unequal probability to get each of them in the measurement. As we describe above, this effect is the most severe
when coupled dominantly to the COM mode, because for the other modes the longitudinal field will largely vanish
due to the pattern of the phonon modes. In the experiment, we use this probability distribution, or equivalently the
average magnetization of the final state, to calibrate the required AC Stark shift to compensate its effect. This allows
us to suppress the residual longitudinal field to be smaller than the Kac normalized Ising coupling. However, note
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that even 1Hz fluctuation in the longitudinal field can accumulate into considerable phase fluctuation for N = 300
qubits and an evolution time of about 5ms. Therefore the phase coherence for the two spin configurations in the
GHZ state will completely be lost at the current precision. On the other hand, when coupled to other phonon modes,
we expect the effect of a global detuning to be less severe, but any asymmetric energy fluctuation between the two
ground state spin configurations can still lead to their dephasing.

When simulating a spin model Hamiltonian, the ion trap system is not sensitive to a small phonon number, say,
an average thermal phonon number below one, as long as the Lamb-Dicke approximation is still valid [15]. However,
this effective spin-spin coupled model originates from the spin-phonon interaction by adiabatically eliminating the
phonon state, so small residual spin-phonon entanglement can still lead to error in the final state. As a toy model,
we consider two spins coupled off-resonantly to the COM phonon mode by a spin-dependent force with detuning δ.
Under rotating-wave approximation, we have the Hamiltonian

H = −δa†a+
1√
2
ηΩ(σ1

z + σ2
z)(a+ a†), (17)

where the factor of 1/
√
2 comes from the phonon mode vector. After adiabatically eliminating the phonon mode,

we get the standard Ising coupling Heff = (η2Ω2/δ)σ1
zσ

2
z . Now if we start from |++⟩ and adiabatically turn up the

spin-spin coupling while adiabatically turn down a transverse field B(σ1
x + σ2

x), we should end up in an EPR state

(|00⟩+ |11⟩)/
√
2.

Now if we consider the spin-phonon coupled Hamiltonian directly and perform the same adiabatic evolution (for sim-

plicity we assume an initial vacuum state for the phonon mode), we expect to end up in the state (|00⟩|α =
√
2ηΩ/δ⟩+

|11⟩|α = −
√
2ηΩ/δ⟩)/

√
2. We can trace out the phonon state to obtain the reduced density matrix for the spins, which

is effectively a dephasing channel with the off-diagonal term decaying as ⟨−α|α⟩ = exp(−2|α|2). We can generalize

this analysis to N spins (note that we have a mode coefficient proportional to 1/
√
N) and get a dephasing term of

exp(−2Nη2Ω2/δ2), or individual dephasing of exp(−2η2Ω2/δ2) for each spin. Again, this error tends to destroy the
phase coherence for the ideal GHZ state, but does not directly affect the spin-spin correlation that we measure in the
experiment.
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Fig. S6. Single-spin coherence time measured by a Ramsey experiment (a) without or (b) with spin echo when the 411 nm
laser is turned on.

As shown in Fig. 1b of the main text, we use two pairs of symmetric frequency components to cancel their time-
independent AC Stark shift on the |0⟩ state, thus suppressing the qubit dephasing due to the laser intensity fluctuation.
In practice this cancellation is not perfect and we measure a spin coherence time of about 2.9ms (9.5ms) without
(with) spin echo as shown in Fig. S6 with the 411 nm laser turned on. In this calibration we use a laser power
comparable to that used for generating the Ising model Hamiltonian, but set the detuning farther away from the
phonon modes to avoid phonon excitation. Therefore the measured coherence time shall represent the situation in
the quantum simulation experiment. (Note that the low-frequency noise corresponds to an uncompensated σz term
described above, so we expect the coherence time under spin echo to be relevant for the following discussion.) To the
lowest order, we can regard this dephasing as time-varying random single-qubit σz gates on individual ions. Since
such terms do not commute with the transverse field during the adiabatic evolution, they will lead to bit flip errors
in our final measurement, and thus reduce the spin-spin correlation. Similarly, small state detection error due to
imperfect shelving pulses can flip the measured qubit state and lead to the reduction of the correlation.
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Finally, there can be non-adiabatic excitation during the slow ramping process. In principle, we can test the
adiabaticity by reversing the evolution path and check if the final state returns to the initial one. However, due to the
error sources discussed above, we decide that even if the adiabatic condition is satisfied perfectly, the fidelity between
the initial and the reversed states will still be vanishingly low. On the other hand, for such non-adiabatic excitations
we mainly expect random uncorrelated bit flips in the spin configuration, rather than the structured ones such as the
ground state following the pattern of the phonon modes. Therefore we expect that the main effect will again be a
decrease in the spin-spin correlation without affecting the measured pattern.

D. Quench parameters

To prepare the ground state of the quantum Ising model, we apply an initial transverse field B0 > 50J0 where
J0 ≡ 1

N

∑
i ̸=j Jij is the Kac normalized coupling strength, and we follow an exponential path B(t) = B0e

−t/τ with a
total evolution time T > 5τ . Specifically, for the data in Fig. 2a of the main text, we set B0 = 2π×23 kHz, τ = 630µs
and T = 3.4ms. For the data in Fig. 2c (3a) of the main text, we set B0 = 2π × 8.9 kHz, τ = 1.0ms and T = 5.1ms.
For the data in Fig. 2e and f of the main text, we set B0 = 2π × 4.4 kHz, τ = 1.0ms and T = 5.1ms. For the data
in Fig. 3b of the main text, we set B0 = 2π × 8.9 kHz, τ = 0.9ms and T = 5.5ms. For the other data in Fig. 3c-i of
the main text, we set B0 = 2π × 8.9 kHz, τ = 1.2ms and T = 6.1ms. The results are not sensitive to small changes
in these parameters.

IV. COMPARISON WITH CLASSICAL SIMULATED ANNEALING ALGORITHM

In Fig. 3 of the main text, we measure the spin-spin correlation in the quasi-adiabatically prepared ground states
for various Ising models with/without frustration. Here we compare these results with a commonly used classical
algorithm, simulated annealing, to verify that our quantum algorithm has achieved reasonable results for most of the
cases, and to argue that our output for the most frustrated case is challenging for classical computers.

To obtain the theoretical Ising model Hamiltonian, we first solve the equilibrium configurations of N = 300 ions
in a trap with trap frequencies (ωx, ωy, ωz) = 2π × (0.69, 2.140, 0.167)MHz. We sort the ions by their z coordinates
to match the ion indices used in the experiment. Then we solve all the transverse phonon modes. Note that in
general the mode frequencies we get are different from those measured in the experiment due to the anharmonic
correction to the trap potential. However, since in the experiment we are dominantly coupling to just one or two
phonon modes, we can expect that the computed Jij coefficients or at least its spatial patterns can still agree well
with the experimental values, as long as we set the detuning to these modes to be the same as the experiments. Then
we can use Eq. (14) to compute the theoretical Jij coefficients. Specifically, we use a Rabi rate Ωeff = 2π × 10 kHz
and a Lamb-Dicke parameter of η ≈ 0.11 for the COM mode and counter-propagating 411 nm laser beams. Note
that for the classical calculation, the overall scaling of the Jij coefficients are not important as it can be absorbed
into the inverse temperature for simulated annealing. When two frequency components are applied, we add up their
corresponding Jij coefficients together.

Then we solve the ground state for the classical Ising model H = −∑ij JijZiZj (the highest excited state for

H =
∑

ij JijZiZj) by the simulated annealing algorithm. Here we set the longitudinal field to zero following the
arguments in Sec. III B. To get the best match to the experimental results, we choose the parameters of the simulated
annealing algorithm as nsweep = 100 sweeps (each sweep corresponds to N = 300 attempts to flip a random spin), an

initial inverse temperature of β0 = 0.01 kHz−1 and a final inverse temperature of β1 = 1kHz−1, and we adjust the
inverse temperature linearly from β0 to β1 within these nsweep sweeps. We start from a random spin configuration,
and update it through the single-spin-flip metropolis algorithm following the above sequence of inverse temperatures.
We store the final spin configuration, and repeat this process for M = 100 times to compute the spin-spin correlation
between any pairs. Note that theoretically we already know that this ideal model is symmetric under the global flip of

all the spins, so that we can set ⟨Zi⟩ = 0 for all the spins and simplify ⟨ZiZj⟩−⟨Zi⟩⟨Zj⟩ = ⟨ZiZj⟩ ≈ 1
M

∑M
k=1 Z

(k)
i Z

(k)
j .

We present the theoretical results in Fig. S7. Apart from the most frustrated case in Fig. S7i, the rest patterns
can be explained by the theoretical ground states well. Note that the classical simulated annealing algorithm and
our quantum algorithm are solving the ground states almost independently, with only a few shared parameters like
the ion number, the measured trap frequencies and the chosen detuning to the selected phonon modes. Therefore,
their agreement suggests that our quantum simulator has successfully achieved the desired Hamiltonian, and has been
successful in extracting the desired patterns of the ground states.

Finally, note that in Fig. S7i we get almost no signal for the spin-spin correlation, and in particular the pattern
does not match that in Fig. 3i of the main text. On the one hand, this suggests that for this frustrated Ising model
it is more difficult to get the ground state by the classical algorithm and that larger number of sweeps and lower final
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temperature will be needed. On the other hand, even if we find the true ground state for this classical Ising model,
we do not expect the quantum algorithm to give the same result due to the vanishing energy gap and thus the strong
non-adiabatic excitation during the ramping. Therefore, in general we will need to directly compute the 300-qubit
quantum dynamics to explain the measured spin-spin correlations, which will be challenging for the available classical
computers.

a b c d e

f g h i

Fig. S7. Theoretical results using simulated annealing corresponding to the experimental parameters in Fig. 3 of the main text.

V. QUANTUM SAMPLING AND COARSE GRAINING

In general, it is difficult to simulate the quantum many-body dynamics such as the long-range transverse-field
Ising model in Fig. 4 of the main text by a classical computer, and to sample from the probability distribution when
measuring the long-time-evolved final state in, e.g., the computational basis. However, due to the experimental noises,
the time-evolved state may gradually decohere and the corresponding probability distribution may approach some
trivial distributions like a uniform distribution. To prove that the final distribution is not dominated by experimental
decoherence, in Fig. 4d of the main text, we compare the samples from three different values of the transverse field
and show that with high probability they come from distinct distributions.

We can use a Pearson’s χ2 test to check if the given samples follow an expected distribution. However, in our
experiment, the data locates on a 2N = 2300-dim space, which is much larger than the sample size of, say, M = 103.
Therefore, for general distributions, one expects the data points to scatter randomly over the large space with almost no
coincidence, and then it is difficult even to distinguish them from a uniform distribution. Besides, due to the classical
difficulty to compute the quantum dynamics and the insufficient experimental sample size, it is also impractical to
estimate the probability distribution which we want to compare with. To solve these problems, one possibility is to
divide the exponentially large space into a small number of subsets, such that there is considerable probability to get
samples in each subset [16]. Specifically, we can get a coarse-grained probability distribution for each of the original
distribution at different values of the transverse field. Now if we can show that these coarse-grained distributions are
distinct from each other, we can also conclude that the original distributions must be distinguishable.

As shown in Fig. S8, we use the following procedure to design the subsets, or “bubbles”, for coarse graining from
a large sample which we call the “reference”. We choose a target sample size m and require each bubble to contain
at least m data points in the reference. We start from a random data point in the reference, and design a subset
to be a bubble centered at this point with the smallest possible radius to include no less than m data points in it
(with the distance measured by Hamming distance between spin configurations). Then we remove all the data points
in the selected bubble from the reference set, and we pick another random data point to construct the next bubble.
We repeat this process until the reference set becomes empty, and the last constructed bubble will cover the whole
2N -dim space. Note that when constructing the bubbles, we record their order. Any given data point will be assigned
to the first bubble within this sequence that can cover it. For example, the two data points at the intersection of B1

and B2 in Fig. S8 will be assigned to B1.
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𝐵1

𝐵2

𝐵3

𝐵4

Fig. S8. Schematic for the construction of coarse-graining bubbles given a reference sample set. Triangles are the data points in
the sample, and the green ones are selected as the centers of bubbles. B1 to B4 indicate the order in constructing the bubbles,
and the blue solid curves indicate the boundary between bubbles. Here we require all the bubbles except for the last one to
contain at least m = 5 data points for illustration. In real experiments we use m = 500. The last bubble covers the whole
space.

A potential loophole in this construction is that, the centers and radii of the bubbles are determined by the
reference and are thus biased. Therefore, they may not correctly represent the underlying probability distribution. As
an extreme case, if we choose m = 1 in the construction, our bubbles will just be all the data points in the reference
set with a radius of zero, together with a last bubble to cover the remaining space. Now if we generate a new sample
with a similar size, with high probability we will get no counts in these small bubbles at all, with all the data points
locating in the last bubble. This will lead to an apparent rejection of samples following the same distribution as the
reference, and is not what we want. Fortunately, this problem can be relieved if we use large m and thus smaller
number of bubbles and smaller degrees of freedom in their parameters. On the other hand, we do not want m to be
too large because in the other extreme case when we have a single bubble covering the whole space, we will not be
able to distinguish any probability distributions.

In the experiment, we use a large reference set of 4912 data points at the transverse-field of B0 = 1.43J0 to construct
the bubbles, and we set m = 500 to give us in total 10 bubbles. The expected probability distribution within these
bubbles can thus be estimated by the data counts in each bubble as shown in Fig. 4d of the main text. Then we take
another independent sample of 1000 data points, also at B0 = 1.43J0, to test if the bias in the bubbles is sufficiently
low. As we show in the main text, the χ2 test gives a p-value of 0.8 and supports the null hypothesis that the sample
is from the expected distribution. In comparison, when we take 1000 data points from different transverse fields like
B0 = 0.71J0 or B0 = 2.14J0, the histogram looks very different and we get a p-value below 10−49, which strongly
rejects the null hypothesis. Therefore, we prove that with high probability our quantum sampling from evolved states
under different values of the transverse field gives distinct probability distributions that are not dominated by the
experimental decoherence.

Although in general the many-body quantum dynamics is intractable for classical computers, in some special cases
efficient solutions may exist. A relevant situation for the long-range transverse-field Ising model we are considering is
when the interaction range becomes infinity, namely an all-to-all coupled Hamiltonian

H =
J0

N − 1

∑

i ̸=j

σi
zσ

j
z +B0

∑

i

σi
x =

J0
N − 1

(∑

i

σi
z

)2

+B0

∑

i

σi
x ≡ 4J0

N − 1
J2
z + 2B0Jx, (18)

where Jx and Jz are angular momentum operators for a particle with total angular momentum j = N/2, and we
have dropped an irrelevant constant in the Hamiltonian. Note that our initial polarized state along the σz direction
corresponds to |j = N/2,m = N/2⟩, hence ideally the system will stay in this (N + 1)-dim Hilbert space during the
time evolution, which can be simulated efficiently.

In Fig. S9 we compare this theoretical distribution with the experimentally measured results and find them to
be distinct from each other. This is understandable since the actual Ising model we generate in the experiment
has contribution from other phonon modes as well, and any such deviation or nonuniformity in our Hamiltonian,
or any experimental noise, can break the symmetry in the all-to-all coupled model and lead to an evolution in an
exponentially higher dimensional space. Therefore, we conclude that to the best of our knowledge, there is no efficient
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all-to-all

Fig. S9. Comparison between the coarse-grained experimental probability distribution (which does not follow exact all-to-all
coupling) and that from 1000 random samples generated by the theoretical all-to-all coupled model with the same parameters
J0 = 2π × 0.31 kHz, B0/J0 = 1.43 and an evolution time T = 6ms. The p-value is below 10−99.

classical algorithm to generate samples that are indistinguishable with our experimental results.
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