Lift to Drag Study Cessna 210J

By Sterling K. Hull

Summary

- Used a High Y+ Reynolds-Averaged Navier Stokes K-Omega Turbulence Segregated Flow Model
- Utilized a trim volume mesh with 9 prism layers to reduce memory usage
- The L/D ratio of the Cessna 210J from the study was 17. This value is far above what is expected due to modeling simplifications and the High Y+ model to stay within cell count limits.
- 14.4 million cell size is within the 10 to 15 million cell limit requirement
- Accuracy limited by mesh size requirements. Further memory allocation would allow for a higher fidelity study that will return more accurate data

Source [1]: Cessna Flyer Association

Cessna 210J

- Cessna 210 is a single-engine, six-seat plane first flown in 1957
- Cessna 210s went through many iterations and improvements throughout the production cycle from 1956 to.
- Cessna resumed propeller plane production in 1996

Source [1]: Cessna Flyer Association

CFD Workflow Outline

- Started by ensuring agreement with management on study objectives
- Imported the provided Cessna 210J model
- Split and grouped surfaces
- · Created the fluid domain and defined boundary conditions and regions
- Selected physics models
- Created surface mesh and the volume mesh
- Defined convergence criteria
- Prepared post-processing scenes
- Ran analysis and documented results

Specifications

- 100 knots equivalent airspeed (168.8 ft/s)
- 5 degree angle of attack (AoA)
- Flying at sea level
- Required cell count between 10 to 15 million cells

Objectives

- Determine lift to drag ratio of the Cessna 210J
- Identify areas with energy loss to develop suggestions to decrease drag
- Determine pitching moment of the Cessna

Geometry and Boundaries

Geometry Simplifications:

- Removed aircraft propeller which would results in more drag by increasing speed of air
- Removed inlets for engine cooling which resulted in a much lower drag value
- Removed landing gear, hinges, and antennas

Boundaries:

- Boundary outlet set to a pressure outlet at 0 psig
- Outer surface of cylinder and sphere set to velocity inlet
- Velocity vector was split into X and Z components to account for the angle of attack
- Central plane set to symmetry plane

Surface Mesh

- Local refinement in areas of high gradients like the leading edge
- Fuselage goes from fine to coarse to fine to reduce cell counts in less important areas
- Refinement on wing and horizontal tail results in 100 cells across the chord
- Lifting surface trailing edges have 4 cells across their thickness
- Leading edges have similar refinement as trailing edges

Volume Mesh

- Trim mesh used to reduce computational cost
- Maximum cell size set to wingspan length of 11 meters to reduce cell count in the boundary far away from the Cessna
- Added mesh refinement at wing tips to capture vortices and separation zone behind the fuselage (refinement shown in the bottom figure)
- Created multiple iterations to stay within cell count limit while maintaining appropriate refinement

Prism Layers

- Initially started with 24 prism layers and a low Y+ to get best drag force estimate
- This resulted in 25+ million cells
- Switched to 9 prism layers and High Y+ to fit within cell count requirements
- Results in drag values not being accurate because separation is not accurately captured by simulation
- Prism layer total size set to the turbulent boundary layer thickness of each region

Physics Models

- Used a Reynolds-Averaged Navier Stokes K-Omega Turbulence Model
- Selected an incompressible Segregated Flow model to decrease solving time
- Segregated flow is appropriate for Mach numbers < 0.3
- Modeled the system as steady and three dimensional
- These are standard industry models for external aerodynamics simulations
- Set initial conditions to the boundary conditions

Convergence

- Convergence criteria of 3% asymptotic convergence of engineering parameters of interest for 100 iterations
- Engineering parameters of interest were X direction force, Z direction force and pitching moment
- Residuals dropped by multiple orders of magnitude
- First solution was incorrect due to a boundary condition error, and next revision converged after 390 more iterations
- Final solution converged after 891 iterations

Parameter Convergence

 On the second revision of the boundary conditions, the solution converged after 390 iterations

Surface Pressure

- The figure shows low-pressure zones on the top and front of the wings near the fuselage
- High pressure zones on bottom surface of wings, generating a large lifting force
- Expected static pressure distribution for 5 degree AoA
- The uniform pressure distribution on top of the wing tips shows the winglets are successfully reducing induced drag

Wall Shear Stress

- Areas of largest wall shear stress correspond with the low-pressure areas from the static distribution plot
- Shows that fluid is accelerating over the top surface in the front of wing
- The area between the horizontal tail and the fuselage has recirculation due rapid area change
- This recirculation can be easily visualized with the wall shear stress velocity vectors
- Further mesh refinement would allow for better visualization of boundary layer separation

Total Pressure

- Scene shows total pressure values that are 90% the dynamic pressure value (1623 Pa) or less
- Areas with low pressure behind illustrate there is energy loss due to separation, which increases drag
- Further mesh size allowance would allow for further refinement in areas with separation

Vortices

- Separation behind fuselage is also illustrated in the vorticity magnitude plot
- Additional volume mesh refinement at wing tips to better capture vortices
- With a larger mesh size allowance, further refinement at wing tips and between fuselage and the vertical tail would be added
- The streamline plot shows the vortex created at the wing tips
- The vortex is smaller than expected, illustrating that further wing tip refinement is necessary

Areas of High Drag

- A more gradual reduction in curvature for the back of the fuselage would result in less boundary layer separation, which is visualized in the two left figures
- Similarly, a more gradual increase in curvature for the front of the fuselage would remove the recirculation zone shown in the third figure
 - Adding fairings would reduce induced drag further. More analysis should be done to find viability of fairings

Parameter Values

- An L/D value of 17 is a high estimate of the lift to drag ratio for a Cessna at a 5 degree AoA
- The estimate is very high because the drag force is low due to geometry simplifications, mainly due to not modeling the air used to cool the engine
- Pitching moment is with reference to the origin of the study [0, 0,0], which is in front of and below the Cessna
- Future iterations will place the reference point to the centroid of the Cessna
- Force and moment values doubled to account for use of a symmetry plane

Parameter	Value	Units			
L/D	17	Not Applicable			
Pitching Moment	-48220	Lbf-feet			
Lift Force	2850	Lbf			
Drag Force	166	Lbf			

Next Steps

- Use correction factors to account for the geometry simplifications which will increase the drag force and return a more accurate L/D ratio
- Accuracy of solution limited by mesh size limit because 9 prism cells do not adequately capture all details of separation, which is integral for drag and developing drag reduction recommendations
- Requesting increased memory allocation to allow for a maximum mesh size of 30 million cells
- This would allow for a Low Y+ CFD study with at least 24 prism layers which will return a more accurate lift to drag ratio and increase overall simulation fidelity
- Will also allow for further volume mesh refinement in areas of high gradient such as the separation zone behind the fuselage and at the wing tips

Additional Slides

Citations

www	"Cessna 210 Ce w.cessnaflyer.c ov. 2023.		ciation, 0.html. Accessed

Static Pressure Distribution not Blended

- This shows there is acceptable refinement across the plane surface
- Would add further refinement at front of the fuselage in later iterations with larger cell count

