
ME322 Lab 4 Report - Permanent Magnet DC Motor
Model

Author: Sterling Hull - Cal Poly Mechanical Engineering

Date Created: 11/1/2023

Date Modified: 11/14/2023

Background:

This report contains information on how to model a permanent magnet DC motor. This includes

comparing a motor curve to the motor model, modeling the motor at no-load conditions, loaded

conditions, and stall conditions. The model included finding the angular velocity, current, mechanical

power, electrical power, efficiency, and temperature of the windings and housing for the three

conditions.

Required Files:

LAB4_LOADING_MODEL_322.slx - This file contains the Simulink block diagram that was used to

model the motor at loaded conditions.

LAB4_NOLOAD_MODEL_322.slx - This file contains the Simulink block diagram that was used to

model the motor at no load conditions.

LAB4_STALL_MODEL_322.slx - This file contains the Simulink block diagram that was used to

model the motor at stall conditions.

References:

• The prelab4a code from Professor Charlie Revfem was used for the first two plots.

• ME 322 Lab manual was referenced for formatting and all lab information.

Table of Contents

Problem Statement
Hand Calculations
Analysis
Tabular Data
Block Diagrams
Plots
 Plot 1 - Motor Curve
 Plot 2 - Motor and System Curve
 Plot 3 - No Load System Response
 Plot 4 - Loaded System Response
 Plot 5 -Stall System Response
Discussion Questions
 Question #1
 Question #2
 Question #3
 Question #4
 Question #5
 Question #6
 Question #7
 Question #8
 Question #9

Problem Statement

This lab involved modeling a permanent magnet DC motor using block diagrams and state space

formulation to solve for the electrical, rotational, and thermal system response to loaded, no load,

and stall conditions. The electrical and rotational diagrams are shown in Figure 1.

Figure 1. Electrical and rotational diagrams of permanent magnet DC motor (From ME 322 Lab

Manual).

The image shown in Figure 2. shows the diagram for the thermal system that acts as a simple

conduction model.

Figure 2. Thermal model of system (From ME 322 Lab Manual).

The solving approach involved using a linear graph and normal tree to develop elemental and

constraint equations for the elements of the system which were then used to make state equations

to create matrices to get system response values.

Hand Calculations

This section contains all the hand calculations that were performed to model the motor. The hand

calculations shown in Figure 3. involve developing a normal tree and linear graph for the electrical

and rotational system and state variables.

Figure 3. Hand calculations for developing linear graph and normal tree.

The hand calculations shown in Figure 4. show the elemental and constraint equations from the

normal tree as well as the state equations when there is some load Tl.

Figure 4. Elemental, constraint, and state equations for motor with load Tl.

The hand calculations shown in Figure 5. are the new linear graph and normal tree and the

elemental, constraint, and state equations when the motor is stalled, meaning the angular velocity is

zero.

Figure 5. Linear graph, normal tree, and equations when motor is stalled.

The hand calculations shown in Figure 6. show the linear graph, normal tree, elemental equations,

and constraint equations for the thermal model of the system.

Figure 6. Calculations for thermal model of the system.

The state equations for the thermal model are shown in Figure 7. as well as the equation for the

generated heat source from motor values.

Figure 7. Hand calculations the thermal model state equations.

Figure 8. shows the equations for the outputs of interest for the three motor cases so the values can

be plotted and compared.

Figure 8. Output equations for the motor model.

Analysis

This section contains variables that were used in the Simulink block diagram. The matrices that were

developed through hand calculations and the state space system object was created.

clear all;

% No-load speed

omega_noload = 11800*2*pi/60; % [rad/s]

% DC bus voltage

V_dc = 18; % [V]

% Winding resistance

R = 0.68; % [Ω]

% Winding inductance

L = 0.078e-3; % [H]

% Rotor inertia

J = 9.82e-7; % [kg*m^2]

% Visous damping coefficient

b = 3.14e-7; % [N*m*s/rad]

% Thermal resistance (housing to ambient)

R_ha = 13.6; % [W/K]

% Thermal resistance (winding to housing)

R_wh = 4.57; % [W/K]

% Thermal time-constant (winding)

tau_w = 22; % [s]

% Thermal time-constant (housing)

tau_h = 646; % [s]

% Max admissible winding temperature

T_all = 125; % [°C]

% Ambient temperature

T_amb = 25; % [°C]

Km = omega_noload/V_dc;

Kv = max(roots([Km -1 Km*b*R]));

Kt = Kv;

i_stall = V_dc/R;

T_stall = Kt * i_stall;

dNdM = omega_noload/T_stall;

i_noload = (V_dc-Kv*omega_noload)/R;

T_max = T_stall/2;

omega_max = omega_noload/2;

P_max = T_max*omega_max;

eta_max = P_max/(V_dc*T_max/Kt);

omega_eff=(-sqrt(b*R*Kt/Km+b^2*R^2)+Kt/Km+b*R)/(Kt/Km^2+b*R/Km)*V_dc;

T_eff = T_stall-omega_eff/dNdM;

P_eff = omega_eff*T_eff;

eta_eff = P_eff/(V_dc*(i_noload+T_eff/Kt));

inom = sqrt((T_all-T_amb)/(R*(R_wh+R_ha)));

T_nom = inom*Kt;

P_nom=T_nom*(omega_noload-T_nom*dNdM);

C_w = tau_w/R_wh;

C_h = tau_h/R_ha;

x0 = [0

 0]; %Initial Conditions

A = [-b/J Kv/J

 -Kv/L -R/L]; % A matrix for the state space input

B = [0 -1/J

 1/L 0];

AT = [-1/(C_w*R_wh) 1/(C_w*R_wh)

 1/(C_h*R_wh) (-1/(C_h*R_wh)-1/(C_h*R_ha))]; %A matrix for thermal

model

BT = [1/C_w 0

 0 1/(C_h*R_ha)]; % B matrix for thermal model

CT = [1 0

 0 1]; % Part of output matrix for thermal model

DT = [0 0

 0 0]; %Part of output matrix for thermal model

Tabular Data

This section includes the table and the code to obtain the table that compares manufacturer data to

data found in the prelab (which I used code from Professor Charlie Revfem).

% Define parameters and values

ParameterNames = {'Nominal Voltage'; 'No-Load Speed'; 'Armature

Resistance';'Armature Inductance';'Rotor Inertia';'Viscous Damping

Coefficient';'Thermal Resistance (winding to housing)';'Thermal Resistance

(housing to ambient)';'Thermal Time Constant (winding)';'Thermal Time Constant

(Housing)';'Maximum Acceptable Winding Temperature';'Ambient

Temperature';'Torque Constant';'Back-emf constant';'Motor Constant';'Stall

Current';'Stall Torque';'Speed-Torque Gradient';'No-Load Current';'Maximum

Power';'Maximum Efficiency';'Rated Current';'Rated Torque';'Rated

Power';'Thermal Capacitance (Winding)';'Thermal Capacitance (Housing)'}; % Add

all parameter names

PreLabValues = {'18V';'11800rpm';'0.68Ohm';'0.078mH';'9.82gcm^2';'3.14E-

4mNmsec';'4.57K/W';'13.6K/W';'22sec';'646sec';'125C';'25C';'0.0146Nm/A';'0.0146V

sec/rad';'68.6rpm/V';'26.5Amps';'0.385Nm';'3208rad/Nmsec';'0.027Amps';'119W';'50

%';'2.84Amps';'0.041Nm';'45.7W';'4.81J/K';'47.5J/K'};

ManufacturerValues =

{'18V';'11800rpm';'0.68Ohm';'0.078mH';'9.82gcm^2';'NaN';'4.57K/W';'13.6K/W';'22s

ec';'646sec';'125C';'NaN';'1.46mNm/A';'NaN';'654rpm/V';'26.5Amps';'385mNm';'30.5

rpm/mNm';'54.6 Amps';'NaN';'NaN';'2.26Amps';'32.2mNm';'NaN';'NaN';'NaN'};

% Create a table

data = table(ParameterNames,PreLabValues,ManufacturerValues);

% Display the table

disp(data);

Table 1. Table containing values from manufacturer and the prelab.

Block Diagrams

This section shows the block diagrams for the three different motor cases. The function block

contains the equations and matrices for the electro-mechanical system and the state space block

contains equations for the thermal system. The diagram for the no load case is shown in Figure 9.

Figure 9. Block diagram to get the system response of the electro-mechanical and thermal

components for the no load case.

The diagram for the loading case is shown in Figure 10.

Figure 10. Block diagram to get the system response of the electro-mechanical and thermal

components for the loading case.

The diagram for the stall case is shown in Figure 11.

Figure 11. Block diagram to get the system response of the electro-mechanical and thermal

components for the stall case.

Plots

This section will plot the outputs from the prelab and the Simulink block diagram outputs.

Plot 1 - Motor Curve

This section shows the motor curve for the permanent magnet DC motor that was found using the

prelab values.

T_Plot = [0:.001:.4];

Omega_Plot = omega_noload-T_Plot*dNdM;

Power_Plot = T_Plot.*Omega_Plot;

Efficient_Plot = 100*(Kt/V_dc)*((omega_noload*T_Plot-

(dNdM)*T_Plot.^2)./((T_Plot*(1-b*dNdM))+b*omega_noload));

%Efficient_Plot = (omega_noload*T_Plot-

(dNdM)*T_Plot.^2)./((V_dc/Kt)*(T_Plot*(1-(1000*b)*dNdM))+(1000*b)*omega_noload);

% Create the figure

figure(8);

%addaxis(T_Plot, Omega_Plot,[0,1500]);

plot(T_Plot, Omega_Plot,'k');

%plot(T_Plot, Omega_Plot);

%yticks(0:500:1500)

ylim([0 1500])

ylabel('Speed (rad/s)','FontSize',8)

hold on;

addaxis(T_Plot, Power_Plot,[0,150]);

hold on;

addaxis(T_Plot, Efficient_Plot,[0,100],'LineWidth',2);

%addaxislabel(1,'Speed (rad/s)','FontSize',1);

addaxislabel(2,'Power (W)');

addaxislabel(3,'Efficiency (%)');

xlabel('Load Torque (N-m)');

title('Motor Curve Plot');

legend({'Speed','Power','Efficiency'},'Location','northeast');

Figure 12. Plot showing the motor curve for the permanent magnet DC motor.

Plot 2 - Motor and System Curve

This sections shows the steady state speed-torque curve and system load curve as well as the

operating point.

figure (2);

plot(T_Plot, Omega_Plot);

ylabel('Angular Velocity (rad/s)');

title('Motor Curve Plot');

xlabel('Load Torque (N-m)');

ylim([0 1500])

hold on

Omegal_Loaded = sqrt(T_Plot/C_d);

plot(T_Plot, Omegal_Loaded)

hold on;

intersectionx = .033;

intersectiony = 1128;

plot(intersectionx,intersectiony,'*','LineWidth', 2)

legend({'Steady State Speed','System Curve','Operating

Point'},'Location','northeast');

text(.04,1130,'Operating Point (.033,1128)'); %Creates text on graph and

specifies location

Figure 13. Plot showing the intersection between the speed curve and the system curve, which is

the operating point of the motor.

Plot 3 - No Load System Response

This section shows the code and the outputs from Simulink and the state space method for the

system with no load.

Tl = 0; %Sets load to 0

x0 = [0

 0]; %Sets initial conditions

A = [-b/J Kv/J

 -Kv/L -R/L]; %Creates A matrix for electromechanical system input

B = [0 -1/J

 1/L 0];

AT = [-1/(C_w*R_wh) 1/(C_w*R_wh)

 1/(C_h*R_wh) (-1/(C_h*R_wh)-1/(C_h*R_ha))]; %A matrix for thermal

model

BT = [1/C_w 0

 0 1/(C_h*R_ha)]; % B matrix for thermal model

CT = [1 0

 0 1]; % Part of output matrix for thermal model

DT = [0 0

 0 0]; %Part of output matrix for thermal model

out = sim("LAB4_NOLOAD_MODEL_322", 5000); %This line is equivalent to pressing

"run" in Simulink

Elec_Mech_Data = squeeze(out.elec_mech); %Reduces 3D matrix to 2D

figure(1);

t = tiledlayout(4,2); %Creates a 4 row and 2 column layout for plots

title(t,'No Load Results'); %Creates a title for the tiled layout

nexttile(1) %Places plot in tile 1

plot(out.tout, Elec_Mech_Data(1,:))

xlim([0 .025])

ylim([0 1500])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Ang. Velocity, [rad/s]'},'FontSize',8) %Sets y axis label

xticks([0:.005:.025])

grid on %Turns on grid for plot

nexttile(3)

plot(out.tout, Elec_Mech_Data(2,:))

ylim([0 30])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Current, [A]'},'FontSize',8) %Sets y axis label

xticks([0:.005:.025])

xlim([0 .025])

grid on

nexttile(5)

plot(out.tout, Elec_Mech_Data(3,:))

hold on

plot(out.tout, Elec_Mech_Data(4,:))

xlim([0 .025])

ylim([0 450])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Power, [W]'},'FontSize',8) %Sets y axis label

legend({'Input Power','Output Power'},'Location','northeast','FontSize',6);

xticks([0:.005:.025])

grid on

nexttile(7)

plot(out.tout, Elec_Mech_Data(5,:))

xlim([0 .025])

ylim([-1 1])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Efficiency'},'FontSize',8) %Sets y axis label

xticks([0:.005:.025])

grid on

nexttile(2, [2 1]) %Places plot in tile 2 and makes it a 2 row 1 column sized

plot

plot(out.tout, out.thermal(:,1))

xlim([0 5000])

ylim([25 25.16])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Winding Temperature, [C]'},'FontSize',8) %Sets y axis label

yticks([25:.02:25.16])

grid on

nexttile(6, [2 1])

plot(out.tout, out.thermal(:,2))

xlim([0 5000])

ylim([25 25.014])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Housing Temperature, [C]'},'FontSize',8) %Sets y axis label

grid on

yticks([25:.002:25.014])

Figure 14. Plot showing the system response values for the no load condition.

Plot 4 - Loaded System Response

This section shows the code and the outputs from Simulink and the state space method for the

system with a load.

C_d = 2.6E-8; %Drag Coefficent for fan

x0 = [0

 0];

A = [-b/J Kv/J

 -Kv/L -R/L];

B = [0 -1/J

 1/L 0];

AT = [-1/(C_w*R_wh) 1/(C_w*R_wh)

 1/(C_h*R_wh) (-1/(C_h*R_wh)-1/(C_h*R_ha))];

BT = [1/C_w 0

 0 1/(C_h*R_ha)];

CT = [1 0

 0 1];

DT = [0 0

 0 0];

out = sim("LAB4_LOADING_MODEL_322", 5000); %This line is equivalent to pressing

"run" in Simulink

Elec_Mech_Data_Load = squeeze(out.elec_mech_load);

Thermal_Load = out.thermal;

figure(1);

t = tiledlayout(4,2); %Creates a 3 row and 1 column for plots

title(t,'Loaded Results'); %Creates a title for the tiled layout

nexttile(1)

plot(out.tout, Elec_Mech_Data_Load(1,:))

xlim([0 .025])

ylim([0 1200])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Ang. Velocity, [rad/s]'},'FontSize',8) %Sets y axis label

xticks([0:.005:.025])

grid on

nexttile(3)

plot(out.tout, Elec_Mech_Data_Load(2,:))

xlim([0 .025])

ylim([0 30])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Current, [A]'},'FontSize',8) %Sets y axis label

xticks([0:.005:.025])

grid on

nexttile(5)

plot(out.tout, Elec_Mech_Data_Load(3,:))

hold on

plot(out.tout, Elec_Mech_Data_Load(4,:))

xlim([0 .025])

ylim([0 450])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Power, [W]'},'FontSize',8) %Sets y axis label

legend({'Input Power','Output Power'},'Location','northeast','FontSize',6);

xticks([0:.005:.025])

grid on

nexttile(7)

plot(out.tout, Elec_Mech_Data_Load(5,:))

xlim([0 .025])

ylim([0 1])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Efficiency'},'FontSize',8) %Sets y axis label

xticks([0:.005:.025])

xticks([0:.2:1])

grid on

nexttile(2, [2 1])

plot(out.tout,out.thermal(:,1))

xlim([0 5000])

ylim([20 100])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Winding Temperature, [C]'},'FontSize',8) %Sets y axis label

grid on

nexttile(6, [2 1])

plot(out.tout,out.thermal(:,2))

xlim([0 5000])

ylim([20 80])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Housing Temperature, [C]'},'FontSize',8) %Sets y axis label

grid on

Figure 15. Plot showing the system response values for the loaded condition.

Plot 5 -Stall System Response

This section shows the code and the outputs from Simulink and the state space method for the

system at stall conditions.

A = [-R/L];

B = [1/L];

x0 = [0];

out = sim("LAB4_STALL_MODEL_322", 5000); %This line is equivalent to pressing

"run" in Simulink

Stall_Data = squeeze(out.stall);

figure(1);

t = tiledlayout(4,2); %Creates a 3 row and 1 column for plots

title(t,'Stall Torque Results'); %Creates a title for the tiled layout

nexttile(1)

plot(out.tout, Stall_Data(1,:))

xlim([0 .025])

ylim([0 1500])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Ang. Velocity, [rad/s]'},'FontSize',8) %Sets y axis label

xticks([0:.005:.025])

ylim([-1 1])

grid on

nexttile(3)

plot(out.tout, Stall_Data(2,:))

ylim([0 30])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Current, [A]'},'FontSize',8) %Sets y axis label

xticks([0:.2E-3:1E-3])

xlim([0 1E-3])

grid on

nexttile(5)

plot(out.tout, Stall_Data(3,:))

hold on

plot(out.tout, Stall_Data(4,:))

ylim([0 485])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Power, [W]'},'FontSize',8) %Sets y axis label

legend({'Input Power','Output Power'},'Location','northeast','FontSize',6);

xticks([0:.2E-3:1E-3])

yticks([0:100:400])

xlim([0 1E-3])

grid on

nexttile(7)

plot(out.tout, Stall_Data(5,:))

xlim([0 .025])

ylim([-1 1])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Efficiency'},'FontSize',8) %Sets y axis label

xticks([0:.005:.025])

grid on

nexttile(2, [2 1])

plot(out.tout, out.thermal(:,1))

xlim([0 5000])

ylim([0 9000])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Winding Temperature, [C]'},'FontSize',8) %Sets y axis label

yticks([0:1000:9000])

grid on

nexttile(6, [2 1])

plot(out.tout, out.thermal(:,2))

xlim([0 5000])

ylim([0 7000])

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label

ylabel({'Housing Temperature, [C]'},'FontSize',8) %Sets y axis label

grid on

yticks([0:1000:7000])

Figure 16. Plot showing the transmissibility ratio and phase data plotted versus frequency.

Discussion Questions

Question #1

Examine your second plot showing the motor speed-torque curve overlaid with the system load

curve.

• What does the intersection represent? • Does your simulation output match the conditions shown

on this steady-state plot?

The intersection represents the operating point of the motor under the specified conditions. The

simulation output matches the conditions of the steady state plot in that angular velocity is increasing

with increasing torque.

Question #2

The majority of DC motors are not designed to operate at or near stall conditions due to the buildup

of heat in the motor windings. Specifically, what is the main cause of failure for a motor in a stall

condition? Hint: almost all motors fail at temperatures between 125 [◦C] and 180 [◦C].

The main cause of motor failure in stall conditions is due to the degradation of the insulation,

bearing, magnets/magnetic field, and also degradation to any lubricants because they were not

meant to operate at the high temperatures of stall.

Question #3

DC motors are most efficient near their no-load speed. Provide a compelling and intuitive

explanation why this is the case. In your explanation, quantitatively compare the two sources of heat

generation in the motor: resistive losses in the windings and frictional losses in the bearings; these

two losses can be compared by considering their relative magnitudes in worst-case circumstances -

either stall or no-load.

Motors are most efficient near their no load speed because there is no mechanical load that the

motor needs to overcome, which results in less current being drawn so there is less heat generation,

and the frictional losses in the bearings are much less than the resistive losses in the windings at

high torque. When comparing the No Load and the Stall Torque graphs, this is shown because the

temperatures in the motors are very different with the no load temperatures being very close to

ambient temperatures while the stall temperatures keep increasing until the motor fails.

Question #4

How can the safe operating current of a motor be increased without modifying the internal

components of the motor itself? That is, what could you add to the motor or change about the

motor’s environment to allow a larger operating current without exceeding the motors temperature

rating?

The safe operating current of a motor can be increased by increasing the heat transfer out of the

coils. This can be done by placing the motor in a cold environment to increase the temperature

difference, or through introducing a fan that aims at the motor to increase the convection heat

transfer coefficient. Both would result in less heat building up in the motor over time.

Question #5

Calculate the steady-state temperature rise predicted by the thermal model during a stall condition.

You should find the computed value to be unrealistically high. What unmodeled behavior might limit

the temperature rise in a real motor? Reconsider your response to Question 2 above while

answering this question.

The steady state temperature rise for the windings would be 8700 degrees Celsius. The unmodeled

behavior that limits the temperature would be that components would fail, the heat transfer would not

be only conduction (there would be radiation), and the heat distribution would not be one

dimensional.

Question #6

Even though DC motors should remain at or below their nominal current ratings during steady

operation, they can greatly exceed these ratings for short durations. Explain why this is the case. In

your response you may want to talk about the “duty cycle” of the motor operation or the “I^2 t”

principle.

They can exceed these ratings for a short duration because there is not enough time for significant

heat to build up in the windings which would cause failure if operating above nominal ratings for too

long. The duty cycle of a motor has short periods where they exceed nominal current ratings, but

then has longer periods of much lower current draw, which allows for the motor to cool down.

Question #7

The square-law load on the motor requires some special consideration to simulate properly in both

forward and backward directions. That is, your simulation may fail if your motor velocity ends up

negative unless you take certain precautions. What issues may arrive when running the motor with

negative velocity? How can you account for this in your block diagram to allow negative velocities

without issue?

If the motor velocity ends up negative, it will result in the fan reaching an infinite velocity because the

torque will always be in the same direction as the angular velocity, which mean speed will always be

increasing. This can be accounted for by multiplying the angular velocity by the absolute angular

velocity, which retains the sign, instead of squaring the term.

Question #8

To properly model the stall conditions for the DC motor you were asked to produce a second system

model with reduced order. Explain, in your own words, why this approach better represents stall

conditions as compared to applying a constant load torque equal to the stall torque. You may want to

try running your general model with the load torque input equal to the stall torque to help answer this

question effectively. In your explanation describe both: the effects corrected by usage of the reduced

order model, and, why the reduced order model provides this correction.

Applying a constant load torque equal to the stall torque is a bad approach because it fails to capture

the dynamic behavior of the system where the voltage increases up to its maximum value. The

reduced order models corrects the issue of not capturing the dynamic effects of the system by

starting all values (current, torque, etc) at zero, like a motor would when first being started.

Question #9

DC motors are reversible due to the lossless transduction within the motor. That is, a motor can also

act as a generator. Explain, in your own words, how the model developed to represent our motor

may be used to represent a generator.

• How does our perspective on the model change and what sort of inputs and outputs would be of

interest looking at our motor as a generator? You may want to consider the four “quadrants”

representing different operating regimes for motors - which quadrants represent “motoring” and

which represent “generating”?

• How can you determine the quadrant for a motor based on the state variables used in this

simulation (im and Ωm).

The model could represent a generator by having angular velocity and torque be an input and the

current and voltage being an output, so the mechanical power would be generating electrical power.

The quadrants that represent "motoring" is when electrical power is being used to create mechanical

power, and the generating quadrants is when electrical power is being made. The four quadrants are

because positive power can create positive power, negative power can create negative power, and

negative power can create positive power for both electrical and mechanical.

The quadrant for a motor can be determined based on which state variables are positive or negative

and what the input and output are to the system.

