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Background: 

This report contains information on how to model a permanent magnet DC motor. This includes 

comparing a motor curve to the motor model, modeling the motor at no-load conditions, loaded 

conditions, and stall conditions. The model included finding the angular velocity, current, mechanical 

power, electrical power, efficiency, and temperature of the windings and housing for the three 

conditions.  

 

Required Files: 

LAB4_LOADING_MODEL_322.slx  - This file contains the Simulink block diagram that was used to 

model the motor at loaded conditions.  

LAB4_NOLOAD_MODEL_322.slx  - This file contains the Simulink block diagram that was used to 

model the motor at no load conditions.  

LAB4_STALL_MODEL_322.slx  - This file contains the Simulink block diagram that was used to 

model the motor at stall conditions.  

 

References: 

• The prelab4a code from Professor Charlie Revfem was used for the first two plots. 

• ME 322 Lab manual was referenced for formatting and all lab information. 
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Problem Statement 

This lab involved modeling a permanent magnet DC motor using block diagrams and state space 

formulation to solve for the electrical, rotational, and thermal system response to loaded, no load, 

and stall conditions. The electrical and rotational diagrams are shown in Figure 1. 

 

  

Figure 1. Electrical and rotational diagrams of permanent magnet DC motor (From ME 322 Lab 

Manual). 

 



The image shown in Figure 2. shows the diagram for the thermal system that acts as a simple 

conduction model. 

 

Figure 2. Thermal model of system (From ME 322 Lab Manual). 

The solving approach involved using a linear graph and normal tree to develop elemental and 

constraint equations for the elements of the system which were then used to make state equations 

to create matrices to get system response values.  

Hand Calculations 

This section contains all the hand calculations that were performed to model the motor. The hand 

calculations shown in Figure 3. involve developing a normal tree and linear graph for the electrical 

and rotational system and state variables. 

 

Figure 3. Hand calculations for developing linear graph and normal tree. 



 

The hand calculations shown in Figure 4. show the elemental and constraint equations from the 

normal tree as well as the state equations when there is some load Tl. 

 

Figure 4. Elemental, constraint, and state equations for motor with load Tl. 

The hand calculations shown in Figure 5. are the new linear graph and normal tree and the 

elemental, constraint, and state equations when the motor is stalled, meaning the angular velocity is 

zero. 

 

 

Figure 5. Linear graph, normal tree, and equations when motor is stalled. 



The hand calculations shown in Figure 6. show the linear graph, normal tree, elemental equations, 

and constraint equations for the thermal model of the system. 

 

Figure 6. Calculations for thermal model of the system. 

 

The state equations for the thermal model are shown in Figure 7. as well as the equation for the 

generated heat source from motor values. 



 

Figure 7. Hand calculations the thermal model state equations. 

 

Figure 8. shows the equations for the outputs of interest for the three motor cases so the values can 

be plotted and compared. 

 

Figure 8. Output equations for the motor model. 

 



Analysis 

This section contains variables that were used in the Simulink block diagram. The matrices that were 

developed through hand calculations and the state space system object was created. 

clear all; 

% No-load speed 

omega_noload    = 11800*2*pi/60;    % [rad/s] 

% DC bus voltage 

V_dc            = 18;               % [V] 

% Winding resistance 

R               = 0.68;             % [Ω] 

% Winding inductance 

L               = 0.078e-3;         % [H] 

% Rotor inertia 

J               = 9.82e-7;          % [kg*m^2] 

% Visous damping coefficient 

b               = 3.14e-7;          % [N*m*s/rad] 

% Thermal resistance (housing to ambient) 

R_ha            = 13.6;             % [W/K] 

% Thermal resistance (winding to housing) 

R_wh            = 4.57;             % [W/K] 

% Thermal time-constant (winding) 

tau_w           = 22;               % [s] 

% Thermal time-constant (housing) 

tau_h           = 646;              % [s] 

% Max admissible winding temperature 

T_all           = 125;              % [°C] 

% Ambient temperature 

T_amb           = 25;               % [°C] 

 

Km = omega_noload/V_dc;  

Kv = max(roots([Km -1 Km*b*R])); 

Kt = Kv; 

i_stall = V_dc/R; 

T_stall = Kt * i_stall; 

dNdM = omega_noload/T_stall; 

i_noload = (V_dc-Kv*omega_noload)/R; 

T_max = T_stall/2; 

omega_max = omega_noload/2; 

P_max = T_max*omega_max; 

eta_max = P_max/(V_dc*T_max/Kt); 

omega_eff=(-sqrt(b*R*Kt/Km+b^2*R^2)+Kt/Km+b*R)/(Kt/Km^2+b*R/Km)*V_dc; 

T_eff = T_stall-omega_eff/dNdM; 

P_eff = omega_eff*T_eff; 

eta_eff = P_eff/(V_dc*(i_noload+T_eff/Kt)); 



inom = sqrt((T_all-T_amb)/(R*(R_wh+R_ha))); 

T_nom = inom*Kt; 

P_nom=T_nom*(omega_noload-T_nom*dNdM); 

C_w = tau_w/R_wh; 

C_h = tau_h/R_ha; 

 

x0 = [0 

      0]; %Initial Conditions 

A = [-b/J   Kv/J 

    -Kv/L   -R/L]; % A matrix for the state space input 

 

B = [0      -1/J 

    1/L       0]; 

AT = [-1/(C_w*R_wh)     1/(C_w*R_wh) 

       1/(C_h*R_wh)     (-1/(C_h*R_wh)-1/(C_h*R_ha))]; %A matrix for thermal 

model 

BT = [1/C_w           0 

        0       1/(C_h*R_ha)]; % B matrix for thermal model 

CT = [1     0 

      0     1]; % Part of output matrix for thermal model 

DT = [0     0 

      0     0]; %Part of output matrix for thermal model 

Tabular Data 

This section includes the table and the code to obtain the table that compares manufacturer data to 

data found in the prelab (which I used code from Professor Charlie Revfem). 

% Define parameters and values 

ParameterNames = {'Nominal Voltage'; 'No-Load Speed'; 'Armature 

Resistance';'Armature Inductance';'Rotor Inertia';'Viscous Damping 

Coefficient';'Thermal Resistance (winding to housing)';'Thermal Resistance 

(housing to ambient)';'Thermal Time Constant (winding)';'Thermal Time Constant 

(Housing)';'Maximum Acceptable Winding Temperature';'Ambient 

Temperature';'Torque Constant';'Back-emf constant';'Motor Constant';'Stall 

Current';'Stall Torque';'Speed-Torque Gradient';'No-Load Current';'Maximum 

Power';'Maximum Efficiency';'Rated Current';'Rated Torque';'Rated 

Power';'Thermal Capacitance (Winding)';'Thermal Capacitance (Housing)'};  % Add 

all parameter names 

 

PreLabValues = {'18V';'11800rpm';'0.68Ohm';'0.078mH';'9.82gcm^2';'3.14E-

4mNmsec';'4.57K/W';'13.6K/W';'22sec';'646sec';'125C';'25C';'0.0146Nm/A';'0.0146V

sec/rad';'68.6rpm/V';'26.5Amps';'0.385Nm';'3208rad/Nmsec';'0.027Amps';'119W';'50

%';'2.84Amps';'0.041Nm';'45.7W';'4.81J/K';'47.5J/K'}; 

ManufacturerValues = 

{'18V';'11800rpm';'0.68Ohm';'0.078mH';'9.82gcm^2';'NaN';'4.57K/W';'13.6K/W';'22s



ec';'646sec';'125C';'NaN';'1.46mNm/A';'NaN';'654rpm/V';'26.5Amps';'385mNm';'30.5

rpm/mNm';'54.6 Amps';'NaN';'NaN';'2.26Amps';'32.2mNm';'NaN';'NaN';'NaN'}; 

 

% Create a table 

data = table(ParameterNames,PreLabValues,ManufacturerValues); 

 

% Display the table 

disp(data); 

Table 1. Table containing values from manufacturer and the prelab. 

 

 

 

 

 

 

 

 

 



Block Diagrams 

This section shows the block diagrams for the three different motor cases. The function block 

contains the equations and matrices for the electro-mechanical system and the state space block 

contains equations for the thermal system. The diagram for the no load case is shown in Figure 9. 

 

 

Figure 9. Block diagram to get the system response of the electro-mechanical and thermal 

components for the no load case. 

 

The diagram for the loading case is shown in Figure 10. 

 

Figure 10. Block diagram to get the system response of the electro-mechanical and thermal 

components for the loading case. 

 

 

 

 

 



The diagram for the stall case is shown in Figure 11. 

 

Figure 11. Block diagram to get the system response of the electro-mechanical and thermal 

components for the stall case. 

Plots 

This section will plot the outputs from the prelab and the Simulink block diagram outputs. 

 

Plot 1 - Motor Curve 

This section shows the motor curve for the permanent magnet DC motor that was found using the 

prelab values. 

T_Plot = [0:.001:.4]; 

Omega_Plot = omega_noload-T_Plot*dNdM; 

Power_Plot = T_Plot.*Omega_Plot; 

 

Efficient_Plot = 100*(Kt/V_dc)*((omega_noload*T_Plot-

(dNdM)*T_Plot.^2)./((T_Plot*(1-b*dNdM))+b*omega_noload)); 

%Efficient_Plot = (omega_noload*T_Plot-

(dNdM)*T_Plot.^2)./((V_dc/Kt)*(T_Plot*(1-(1000*b)*dNdM))+(1000*b)*omega_noload); 

 

% Create the figure 

figure(8); 

%addaxis(T_Plot, Omega_Plot,[0,1500]); 

plot(T_Plot, Omega_Plot,'k'); 

%plot(T_Plot, Omega_Plot); 

%yticks(0:500:1500) 

ylim([0 1500]) 

ylabel('Speed (rad/s)','FontSize',8) 

hold on; 

addaxis(T_Plot, Power_Plot,[0,150]); 

hold on; 

addaxis(T_Plot, Efficient_Plot,[0,100],'LineWidth',2); 



%addaxislabel(1,'Speed (rad/s)','FontSize',1); 

addaxislabel(2,'Power (W)'); 

addaxislabel(3,'Efficiency (%)'); 

xlabel('Load Torque (N-m)'); 

title('Motor Curve Plot'); 

legend({'Speed','Power','Efficiency'},'Location','northeast'); 

 

Figure 12. Plot showing the motor curve for the permanent magnet DC motor. 

 

Plot 2 - Motor and System Curve 

This sections shows the steady state speed-torque curve and system load curve as well as the 

operating point. 

figure (2); 

plot(T_Plot, Omega_Plot); 

ylabel('Angular Velocity (rad/s)'); 

title('Motor Curve Plot'); 

xlabel('Load Torque (N-m)'); 

ylim([0 1500]) 

hold on 

Omegal_Loaded = sqrt(T_Plot/C_d); 

plot(T_Plot, Omegal_Loaded) 

hold on; 



intersectionx = .033; 

intersectiony = 1128; 

plot(intersectionx,intersectiony,'*','LineWidth', 2) 

legend({'Steady State Speed','System Curve','Operating 

Point'},'Location','northeast'); 

text(.04,1130,'Operating Point (.033,1128)'); %Creates text on graph and 

specifies location 

 

Figure 13. Plot showing the intersection between the speed curve and the system curve, which is 

the operating point of the motor. 

 

Plot 3 - No Load System Response 

This section shows the code and the outputs from Simulink and the state space method for the 

system with no load.  

Tl = 0; %Sets load to 0 

x0 = [0 

      0]; %Sets initial conditions 

A = [-b/J   Kv/J 

    -Kv/L   -R/L]; %Creates A matrix for electromechanical system input 

 



B = [0      -1/J 

    1/L       0]; 

 

 

AT = [-1/(C_w*R_wh)     1/(C_w*R_wh) 

       1/(C_h*R_wh)     (-1/(C_h*R_wh)-1/(C_h*R_ha))]; %A matrix for thermal 

model 

 

BT = [1/C_w           0 

        0       1/(C_h*R_ha)]; % B matrix for thermal model 

CT = [1     0 

      0     1]; % Part of output matrix for thermal model 

 

DT = [0     0 

      0     0]; %Part of output matrix for thermal model 

 

out = sim("LAB4_NOLOAD_MODEL_322", 5000); %This line is equivalent to pressing 

"run" in Simulink 

Elec_Mech_Data = squeeze(out.elec_mech); %Reduces 3D matrix to 2D 

 

 

figure(1); 

t = tiledlayout(4,2); %Creates a 4 row and 2 column layout for plots 

title(t,'No Load Results'); %Creates a title for the tiled layout 

 

nexttile(1) %Places plot in tile 1 

plot(out.tout, Elec_Mech_Data(1,:)) 

xlim([0 .025]) 

ylim([0 1500]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Ang. Velocity, [rad/s]'},'FontSize',8) %Sets y axis label 

xticks([0:.005:.025]) 

grid on %Turns on grid for plot 

 

nexttile(3) 

plot(out.tout, Elec_Mech_Data(2,:)) 

 

ylim([0 30]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Current, [A]'},'FontSize',8) %Sets y axis label 

xticks([0:.005:.025]) 

xlim([0 .025]) 

grid on 

 

nexttile(5) 

plot(out.tout, Elec_Mech_Data(3,:)) 



hold on 

plot(out.tout, Elec_Mech_Data(4,:)) 

xlim([0 .025]) 

ylim([0 450]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Power, [W]'},'FontSize',8) %Sets y axis label 

legend({'Input Power','Output Power'},'Location','northeast','FontSize',6); 

xticks([0:.005:.025]) 

grid on 

 

nexttile(7) 

plot(out.tout, Elec_Mech_Data(5,:)) 

xlim([0 .025]) 

ylim([-1 1]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Efficiency'},'FontSize',8) %Sets y axis label 

xticks([0:.005:.025]) 

grid on 

 

nexttile(2, [2 1]) %Places plot in tile 2 and makes it a 2 row 1 column sized 

plot 

plot(out.tout, out.thermal(:,1)) 

xlim([0 5000]) 

ylim([25 25.16]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Winding Temperature, [C]'},'FontSize',8) %Sets y axis label 

yticks([25:.02:25.16]) 

grid on 

 

nexttile(6, [2 1]) 

plot(out.tout, out.thermal(:,2)) 

xlim([0 5000]) 

ylim([25 25.014]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Housing Temperature, [C]'},'FontSize',8) %Sets y axis label 

grid on 

yticks([25:.002:25.014]) 



 

Figure 14. Plot showing the system response values for the no load condition. 

 

Plot 4 -  Loaded System Response 

This section shows the code and the outputs from Simulink and the state space method for the 

system with a load.  

C_d = 2.6E-8; %Drag Coefficent for fan 

 

x0 = [0 

      0]; 

 

A = [-b/J   Kv/J 

    -Kv/L   -R/L]; 

 

B = [0      -1/J 

    1/L       0]; 

 



 

 

AT = [-1/(C_w*R_wh)     1/(C_w*R_wh) 

       1/(C_h*R_wh)     (-1/(C_h*R_wh)-1/(C_h*R_ha))]; 

 

BT = [1/C_w           0 

        0       1/(C_h*R_ha)]; 

 

CT = [1     0 

      0     1]; 

 

DT = [0     0 

      0     0]; 

 

out = sim("LAB4_LOADING_MODEL_322", 5000); %This line is equivalent to pressing 

"run" in Simulink 

Elec_Mech_Data_Load = squeeze(out.elec_mech_load); 

Thermal_Load = out.thermal; 

 

 

figure(1); 

t = tiledlayout(4,2); %Creates a 3 row and 1 column for plots 

title(t,'Loaded Results'); %Creates a title for the tiled layout 

 

 

nexttile(1) 

plot(out.tout, Elec_Mech_Data_Load(1,:)) 

xlim([0 .025]) 

ylim([0 1200]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Ang. Velocity, [rad/s]'},'FontSize',8) %Sets y axis label 

xticks([0:.005:.025]) 

grid on 

 

nexttile(3) 

plot(out.tout, Elec_Mech_Data_Load(2,:)) 

xlim([0 .025]) 

ylim([0 30]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Current, [A]'},'FontSize',8) %Sets y axis label 

xticks([0:.005:.025]) 

grid on 

 

nexttile(5) 

plot(out.tout, Elec_Mech_Data_Load(3,:)) 

hold on 



plot(out.tout, Elec_Mech_Data_Load(4,:)) 

xlim([0 .025]) 

ylim([0 450]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Power, [W]'},'FontSize',8) %Sets y axis label 

legend({'Input Power','Output Power'},'Location','northeast','FontSize',6); 

xticks([0:.005:.025]) 

grid on 

 

nexttile(7) 

plot(out.tout, Elec_Mech_Data_Load(5,:)) 

xlim([0 .025]) 

ylim([0 1]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Efficiency'},'FontSize',8) %Sets y axis label 

xticks([0:.005:.025]) 

xticks([0:.2:1]) 

grid on 

 

nexttile(2, [2 1]) 

plot(out.tout,out.thermal(:,1)) 

xlim([0 5000]) 

ylim([20 100]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Winding Temperature, [C]'},'FontSize',8) %Sets y axis label 

 

grid on 

 

nexttile(6, [2 1]) 

plot(out.tout,out.thermal(:,2)) 

xlim([0 5000]) 

ylim([20 80]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Housing Temperature, [C]'},'FontSize',8) %Sets y axis label 

grid on 



 

Figure 15. Plot showing the system response values for the loaded condition. 

 

Plot 5 -Stall System Response 

This section shows the code and the outputs from Simulink and the state space method for the 

system at stall conditions.  

A = [-R/L]; 

B = [1/L]; 

x0 = [0]; 

 

out = sim("LAB4_STALL_MODEL_322", 5000); %This line is equivalent to pressing 

"run" in Simulink 

Stall_Data = squeeze(out.stall); 

 

 

figure(1); 



t = tiledlayout(4,2); %Creates a 3 row and 1 column for plots 

title(t,'Stall Torque Results'); %Creates a title for the tiled layout 

 

 

nexttile(1) 

plot(out.tout, Stall_Data(1,:)) 

xlim([0 .025]) 

ylim([0 1500]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Ang. Velocity, [rad/s]'},'FontSize',8) %Sets y axis label 

xticks([0:.005:.025]) 

ylim([-1 1]) 

grid on 

 

nexttile(3) 

plot(out.tout, Stall_Data(2,:)) 

ylim([0 30]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Current, [A]'},'FontSize',8) %Sets y axis label 

xticks([0:.2E-3:1E-3]) 

xlim([0 1E-3]) 

grid on 

 

nexttile(5) 

plot(out.tout, Stall_Data(3,:)) 

hold on 

plot(out.tout, Stall_Data(4,:)) 

ylim([0 485]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Power, [W]'},'FontSize',8) %Sets y axis label 

legend({'Input Power','Output Power'},'Location','northeast','FontSize',6); 

xticks([0:.2E-3:1E-3]) 

yticks([0:100:400]) 

xlim([0 1E-3]) 

grid on 

 

nexttile(7) 

plot(out.tout, Stall_Data(5,:)) 

xlim([0 .025]) 

ylim([-1 1]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Efficiency'},'FontSize',8) %Sets y axis label 

xticks([0:.005:.025]) 

grid on 

 

nexttile(2, [2 1]) 



plot(out.tout, out.thermal(:,1)) 

xlim([0 5000]) 

ylim([0 9000]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Winding Temperature, [C]'},'FontSize',8) %Sets y axis label 

yticks([0:1000:9000]) 

grid on 

 

nexttile(6, [2 1]) 

plot(out.tout, out.thermal(:,2)) 

xlim([0 5000]) 

ylim([0 7000]) 

xlabel({'Time, t[s]'},'FontSize',8) %Sets x axis label 

ylabel({'Housing Temperature, [C]'},'FontSize',8) %Sets y axis label 

grid on 

yticks([0:1000:7000]) 

 

Figure 16. Plot showing the transmissibility ratio and phase data plotted versus frequency. 

 



Discussion Questions 

 

Question #1 

Examine your second plot showing the motor speed-torque curve overlaid with the system load 

curve.  

• What does the intersection represent? • Does your simulation output match the conditions shown 

on this steady-state plot? 

The intersection represents the operating point of the motor under the specified conditions. The 

simulation output matches the conditions of the steady state plot in that angular velocity is increasing 

with increasing torque. 

 

Question #2 

The majority of DC motors are not designed to operate at or near stall conditions due to the buildup 

of heat in the motor windings. Specifically, what is the main cause of failure for a motor in a stall 

condition? Hint: almost all motors fail at temperatures between 125 [◦C] and 180 [◦C]. 

The main cause of motor failure in stall conditions is due to the degradation of the insulation, 

bearing, magnets/magnetic field, and also degradation to any lubricants because they were not 

meant to operate at the high temperatures of stall.  

 

Question #3 

DC motors are most efficient near their no-load speed. Provide a compelling and intuitive 

explanation why this is the case. In your explanation, quantitatively compare the two sources of heat 

generation in the motor: resistive losses in the windings and frictional losses in the bearings; these 

two losses can be compared by considering their relative magnitudes in worst-case circumstances - 

either stall or no-load.  

Motors are most efficient near their no load speed because there is no mechanical load that the 

motor needs to overcome, which results in less current being drawn so there is less heat generation, 

and the frictional losses in the bearings are much less than the resistive losses in the windings at 

high torque. When comparing the No Load and the Stall Torque graphs, this is shown because the 

temperatures in the motors are very different with the no load temperatures being very close to 

ambient temperatures while the stall temperatures keep increasing until the motor fails. 

 

 

 

 



 

Question #4 

How can the safe operating current of a motor be increased without modifying the internal 

components of the motor itself? That is, what could you add to the motor or change about the 

motor’s environment to allow a larger operating current without exceeding the motors temperature 

rating?  

The safe operating current of a motor can be increased by increasing the heat transfer out of the 

coils. This can be done by placing the motor in a cold environment to increase the temperature 

difference, or through introducing a fan that aims at the motor to increase the convection heat 

transfer coefficient. Both would result in less heat building up in the motor over time. 

 

Question #5 

Calculate the steady-state temperature rise predicted by the thermal model during a stall condition. 

You should find the computed value to be unrealistically high. What unmodeled behavior might limit 

the temperature rise in a real motor? Reconsider your response to Question 2 above while 

answering this question.  

The steady state temperature rise for the windings would be 8700 degrees Celsius. The unmodeled 

behavior that limits the temperature would be that components would fail, the heat transfer would not 

be only conduction (there would be radiation), and the heat distribution would not be one 

dimensional. 

 

Question #6 

Even though DC motors should remain at or below their nominal current ratings during steady 

operation, they can greatly exceed these ratings for short durations. Explain why this is the case. In 

your response you may want to talk about the “duty cycle” of the motor operation or the “I^2 t” 

principle.  

They can exceed these ratings for a short duration because there is not enough time for significant 

heat to build up in the windings which would cause failure if operating above nominal ratings for too 

long. The duty cycle of a motor has short periods where they exceed nominal current ratings, but 

then has longer periods of much lower current draw, which allows for the motor to cool down. 

 

Question #7 

The square-law load on the motor requires some special consideration to simulate properly in both 

forward and backward directions. That is, your simulation may fail if your motor velocity ends up 

negative unless you take certain precautions. What issues may arrive when running the motor with 

negative velocity? How can you account for this in your block diagram to allow negative velocities 

without issue? 



If the motor velocity ends up negative, it will result in the fan reaching an infinite velocity because the 

torque will always be in the same direction as the angular velocity, which mean speed will always be 

increasing. This can be accounted for by multiplying the angular velocity by the absolute angular 

velocity, which retains the sign, instead of squaring the term. 

 

 

Question #8 

To properly model the stall conditions for the DC motor you were asked to produce a second system 

model with reduced order. Explain, in your own words, why this approach better represents stall 

conditions as compared to applying a constant load torque equal to the stall torque. You may want to 

try running your general model with the load torque input equal to the stall torque to help answer this 

question effectively. In your explanation describe both: the effects corrected by usage of the reduced 

order model, and, why the reduced order model provides this correction. 

Applying a constant load torque equal to the stall torque is a bad approach because it fails to capture 

the dynamic behavior of the system where the voltage increases up to its maximum value. The 

reduced order models corrects the issue of not capturing the dynamic effects of the system by 

starting all values (current, torque, etc) at zero, like a motor would when first being started. 

 

Question #9 

DC motors are reversible due to the lossless transduction within the motor. That is, a motor can also 

act as a generator. Explain, in your own words, how the model developed to represent our motor 

may be used to represent a generator.  

• How does our perspective on the model change and what sort of inputs and outputs would be of 

interest looking at our motor as a generator? You may want to consider the four “quadrants” 

representing different operating regimes for motors - which quadrants represent “motoring” and 

which represent “generating”? 

• How can you determine the quadrant for a motor based on the state variables used in this 

simulation (im and Ωm). 

The model could represent a generator by having angular velocity and torque be an input and the 

current and voltage being an output, so the mechanical power would be generating electrical power. 

The quadrants that represent "motoring" is when electrical power is being used to create mechanical 

power, and the generating quadrants is when electrical power is being made. The four quadrants are 

because positive power can create positive power, negative power can create negative power, and 

negative power can create positive power for both electrical and mechanical. 

The quadrant for a motor can be determined based on which state variables are positive or negative 

and what the input and output are to the system. 

 


