on a Shallow Seepage Lake in the The Influence of Atmospheric North Carolina Coastal Plain Deposition of Nitrogen

Nathan Hall, Univ. North Carolina Institute of Marine Sciences L**inda Ehrlich**, Spirogyra Diversified Environmental Services Diane Lauritsen, LIMNOSCIENCES ddlauritsen@gmail.com

May 17, 2022 Joint Aquatic Sciences Meeting, Grand Rapids, Michigan

UNDERSTANDING LAKE CHANGES

Data

versus

Assumptions

Water and nutrient budgetsassess internal + external nutrient sources

Influence of atmospheric deposition-greatest in shallow seepage lakes

Our lake will be clear

Lake level will be static

NC Bay Lakes

Thousands of Carolina Bays in Atlantic Coastal Plain, with similar morphology-most are wetlands

Bladen Bay Lakes are oriented SE-NW

Sand rim at SE shore, situated in wetland basins

WHITE LAKE

Shallow

Mean Depth 1.9 m, Max 2.9 m

Small

1,067 acres

Seepage Lake

No inlet, source water = rainfall + GW

Digital Compilation of 1938 USDA Aerial Photos, Provided by NC Mountains to Sea Trail

Atmospheric Change: Less Acidic Rainfall

pH, 1989

pH, 2016-2018

Data from National Atmospheric Deposition Program, US EPA Clean Air Status and Trends Network (CASTNET)

pH Changed in Lake as pH Changed in Rain

Increase in
White Lake's pH
levels
over same
period as
rainfall pH
increased
at nearby NADP
station
(NC 35, at
Clinton)

Atmospheric Change: A Nitrogen Hot Spot in NC

Reduction in NO_x (acid)

4x Increase in NH₃ (base)

Dry Deposition High

TN Deposition = Wet +

Dry

in kg-N/ha/year
(2018 Data)

Data from National Atmospheric Deposition Program, US EPA Clean Air Status and Trends Network (CASTNET)

High Ammonium Deposition

2020 annual deposition level was 7.5 kg/ha at Clinton monitoring station

Data from National Atmospheric Deposition Program, US EPA Clean Air Status and Trends Network (CASTNET)

Ammonium Deposition Trend Plot

Site NTN NC35 is Clinton NADP monitoring station close to Bay Lakes

Increase over time, with more annual variability

Site NTN NC35

Data from National Atmospheric Deposition Program, US EPA

Comparing Bay Lakes Nitrogen Trends Over Time

Bay Lakes Total Nitrogen

Historical Data from: Weiss and Kuenzler (1976), US EPA (1975), NC Division of Water Resources Ambient Monitoring Program (1980-2018)

No similar trend for P

Nutrients in Rainfall and in White Lake

White Lake Rainfall Nutrients 2020-2021

8/18/21	11/12/20	9/17/20	5/29/20	4/23/20	3/5/20	2/13/20	DATE
0.75	2.75	2.5	3.3	0.25	1.25	0.25	RAIN (inches)
<0.002	<0.002	0.007	0.045	0.008	0.012	0.017	TP (mg/L)
0.190	0.202	0.385	1.35	0.190	0.302	0.586	TN (mg/L)
0.029	0.018	0.176	0.410	0.107	0.123	0.159	NH3-NH4 (mg/L)
0.059	0.011		0.328	0.068	0.049	0.082	NO3-NO2 (mg/L)
46%	14%		55%	92%	57%	41%	DIN % TN
		55	30	23.8	25.2	34.5	RAIN TN/TP (mass)
<0.010			0.037	0.033	0.050	0.044	LAKE NH3-NH4 (mg/L)
30.5		40.4	40.3	26.3	22.6	27.9	LAKE TN/TP (mass)

Rain is a Source of Bioavailable P and N

Total Phosphorus Range = <0.002 to 0.045 mg/L

Total Nitrogen Range = 0.19 to 1.35 mg/L Ammonium Range = 0.018 to 0.410 mg/L DIN as % of TN = 14 to 92%

Rain TN/TP (mass) Range = 24 to 55

White Lake TN/TP (mass) Range (Feb-Apr 2020) = 22 to 40 Historical TN/TP (mass) for White Lake = 12

Big Rains (3"+) More Common

Sediment Resuspension Muck Layer High P Al, Fe **Nutrient Recycling** N and P in Rain Groundwater Stormwater N and P in N and P in

Rainfall is a Diffuse Nutrient Source

Has a Larger, **More Rapid** Influence

Phytoplankton Response to N in Big Rains

Two >3" rains in February 2021

Bloom of a small desmid, Cosmarium tinctum
>90% of Total BV in April

April 2021 Desmid Bloom, and April 2022 Clear Water Conditions (No Big Winter Rains, DIN)

Same Place, March 2018 Filamentous Cyanobacterial Bloom Persisted Through the Winter

Low-dose
Water Column
P-stripping
Alum Treatment
Applied to
White Lake
May 3-16, 2018

Filamentous Cyanobacteria Eliminated After Treatment

Desmids,
Greens,
Chrysophytes
Generally
Dominate
Phytoplankton
Biovolume

Phytoplankton Diversity Is Increasing

Highest Chlorophyll <u>a</u> Values Associated with Filamentous Cyanobacterial Bloom— Sept 2017 to May 2018

Alkalinity Very Low, pH Can Spike During Blooms

Fish Kill Started as 2018 Alum Treatment Started (pH +2 units in 2 Weeks)

Shallow, Well-Mixed Lake, No pH Refuge

pH Spike in April 2021 (+0.5 in afternoon, to 9)

Feb 2022 Gonatozygon (desmid)

A Healthy, Less Acidic, More Productive White Lake

Unusual aquatic communities:
Desmids,
Aquatic Vegetation

Periods of clarity are a gift, not a given

A challenging message!

Thanks to the Town of White Lake, NC State Parks, and the many scientists who have worked at White Lake In memory of a grand limnologist, David Frey

White Lake Watch www.whitelakewatch.com