

Nanobubble Insights – Case Study

Reducing Fertiliser Use in Hydroponic Lettuce Without Sacrificing Quality

Organisation: Nanobubble Insights (Microshoots Laboratory)

System: Nutrient Film Technique (NFT)

Crop: Lactuca sativa (Green Batavia lettuce)

Location: Dundee, UK

Up to 50% reduction in fertiliser input with comparable plant growth and visual quality versus a standard control.

Early laboratory trials indicate that nanobubble-enriched solutions can maintain crop performance at substantially lower nutrient concentrations.

At a Glance:

- **Objective:** Improve nutrient-use efficiency (NUE) in a controlled-environment hydroponic system.
- **Design:** Side-by-side comparison of standard fertiliser (Control) vs. NanobOx-enabled nutrient solution at 50% of the standard concentration (NanobOx treatment).
- **Monitored:** Growth/leaf quality, root development, solution stability, and routine system parameters (pH, EC, DO).
- **Outcome:** Visual parity in crop quality with markedly lower fertiliser inputs.

The Challenge

Hydroponics already conserves water and space, but fertiliser demand remains a cost and sustainability pain point. The question we set out to answer: Can we deliver the same crop quality with far less nutrient input?

Our Approach

We integrated NanobOx technology into an NFT lettuce system at the Microshoots Laboratory and compared two treatments:

- **Control:** Standard commercial hydroponic fertiliser regimen.
- **NanobOx Treatment:** Nutrient solution operated at approximately 50% of the standard fertiliser concentration, with nanobubbles incorporated.

Environmental conditions (light, temperature, humidity) were maintained within lettuce best-practice ranges. We tracked growth and health indicators, took root/leaf observations, and monitored nutrient solution behaviour throughout the cycle.

What We Observed

- **Comparable plant growth and visual quality to the control:** normal morphology, colouration and turgor; no visible deficiency symptoms (Figure 1).
- **Healthy root development:** roots remained bright and structurally robust across the cycle.
- **Stable solution:** parameters (pH, EC) were routinely checked and adjusted to remain within the optimal range for lettuce production.
- **Early efficiency indicator:** Preliminary results suggest enhanced nutrient uptake and utilisation when NanobOx nanobubbles are present.

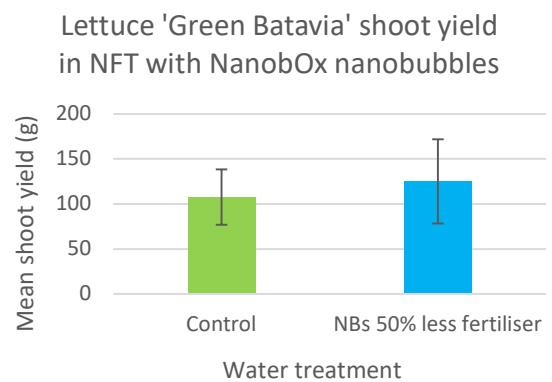


Figure 1. Control (left) vs. NanobOx-treated (right) lettuce in NFT system, and graph showing yields at harvest.

Early Insights from the 25% Fertiliser Trial (Ongoing)

A second phase of testing is currently halfway through its growth cycle, using only 25% of standard fertiliser concentration while maintaining nanobubble enrichment.

Preliminary observations:

- Growth rate remains strong, with plants showing healthy leaf colour and morphology at mid-cycle.
- Root density appears enhanced compared to control indicating active nutrient uptake.

Why It Matters

Reducing fertiliser by 50–75% without compromising quality can translate into:

- Lower operating costs per kilogram harvested.
- Smaller environmental footprint from reduced nutrient manufacture and runoff risk.
- More resilient production under tight supply or regulatory constraints.

Current Scope & Next Steps

This is an early-stage, controlled laboratory trial. To validate and quantify the effect on a commercial scale, we are:

- Extending to replicated trials with yield, time-to-harvest, and Nutrient Use Efficiency metrics – such as nutrient uptake and utilization efficiency, and yield per unit of fertiliser applied.
- Testing across additional cultivars.
- Preparing a technical note and dataset for peer-review and partner due diligence.

Planned Future Trials

- **Trial design:** Replicated, factorial comparisons to isolate NanobOx nanobubble effects e.g. fertiliser concentration further reduced.
- **Continuous monitoring:** Using WiFi monitors to log pH, EC, ORP, and temperature continuously.
- **Uptake kinetics:** From the data logs estimate nutrient uptake rates.

- **Dosing strategy:** Compare fixed setpoint control versus dynamic dosing (small, frequent additions) to test stability and responsiveness under NanobOx nanobubbles.

How Partners Can Engage

- **R&D pilots:** Run a scoped pilot in your facility (vertical farm, glasshouse, or research site) or in the Microshoots Laboratory.

Interested in a pilot? Contact: jennifer@nanobubbleinsights.com