

Declarative vs. Scripted Pipeline in Jenkins

The productivity of your development workflow may be greatly increased by

automating your build, test, and deployment procedures in the context of Continuous

Integration and Continuous Deployment (CI/CD). This is made possible by Jenkins, one

of the most widely used automation servers, using Jenkins files. A Jenkins file is a text file

checked into source control and contains the definition of a Jenkins pipeline. This short

tutorial will assist you in writing your first Jenkins file script, which will be your first step

in automating pipelines.

Understanding Jenkins Files:

A domain-specific language (DSL) based on Groovy is used to write Jenkins files. You can

script your complete build process since they provide a set of actions and the setting in

which they should be performed. Declarative and Scripted Pipelines are the two different

syntaxes that Jenkins, the open-source automation server, offers for specifying your

CI/CD pipeline inside a Jenkins file. Although their syntax, flexibility, and usability are

different, they both accomplish the same basic goal of automating the development,

testing, and deployment of software.

Declarative pipeline syntax is recommended for people unfamiliar with Jenkins as it is

simpler to understand.

Declarative Pipeline:

Declarative Pipeline syntax was introduced to make pipeline specification more formal

and specified, making it easier to write complicated pipelines.

It is distinguished by:

1. Syntax Simplicity: Makes use of a more easily understood and legible syntax,

which facilitates learning for novices or individuals who would rather write less

code.

2. Pipeline Block: Provides a user-friendly means of defining the phases and steps by

encapsulating the complete pipeline operation inside a pipeline block.

3. Included Directives: Provides out-of-the-box support for conditional statements,

environment variables, agent selection, post actions, and more.

Error Checking and Validation: Provides syntactic error checks and validation to

lower the likelihood of pipeline failure brought on by scripting mistakes.

 ‘’’

#!/usr/bin/env groovy

import groovy.json.JsonSlurperClassic

import jenkins.model.Jenkins;

import hudson.model.*

parameters {

 string(name: 'parameters', defaultValue: '', description: 'some parameters')

}

pipeline {

 agent { node { label 'master' } }

 options {

 some pipeline options

 }

 stages {

 stage ('Build'){

 steps {

 script {

 }

 }

 }

 stage ('test') {

 steps {

 script {

 }

 }

 }

 stage ('deploy') {

 steps {

 script {

 }

 }

 }

 }

 }

}

 def somedefenition () {

 return "somedefenition"

}

Scripted Pipeline:

Predating Declarative Syntax, Scripted Pipeline offers a more potent and

versatile method of pipeline definition. It is distinguished by:

1. Flexibility and Control: Provides complete command over the pipeline

logic by utilizing the Groovy language's capability, making it perfect for

intricate processes.

2. Groovy-oriented Programming: written in a DSL that uses Groovy and

supports standard programming techniques like conditionals and loops.

3. Node Block: In the Jenkins system, an executor and workspace are

assigned via a node block.

‘’’

node {

 stage('Build') {

 script {

 def mvnHome = tool 'M3'

 def mvnCMD = "${mvnHome}/bin/mvn"

 sh "${mvnCMD} clean package"

 }

 }

 stage('Test') {

 script {

 def mvnHome = tool 'M3'

 def mvnCMD = "${mvnHome}/bin/mvn"

 sh "${mvnCMD} test"

 }

 }

 stage('Deploy') {

 script {

 def mvnHome = tool 'M3'

 def mvnCMD = "${mvnHome}/bin/mvn"

 sh "${mvnCMD} deploy"

 }

 }

}

Syntax and Structure: Groovy code is used by Scripted Pipelines to create

more complicated and flexible definitions, whilst Declarative Pipelines

provide a more straightforward and structured syntax with predefined parts.

Flexibility vs. Ease of Use: Declarative Pipelines are ideal for workflows that

are simpler to build and comprehend, or for individuals who are new to

Jenkins. Complex, conditional, or highly customized pipelines are better

suited for scripted pipelines because of their Groovy-based logic.

Error Handling and Validation: Declarative pipelines lower the possibility of

pipeline failures brought on by scripting errors by offering more thorough

syntax validation and error handling right out of the box.

In conclusion, the decision you make in Jenkins between

Declarative and Scripted Pipelines is based on the complexity

of your project, your level of Groovy ability, and the specific

requirements of your CI/CD workflow.

