From the ARAnet On-Line Library of Public Radio Research

AM Radio Listening

by David Giovannoni

(51 pages)

Originally published as:
Giovannoni, David. "AM Radio Listening: An Annotated Graphical and Tabular Treatise of the Audience to Broadcast Stations on the AM Band; with Historical Perspectives and Extrapolations for the Future." Takoma Park, MD: The Station Resource Group, 1991.

aranet.com

Copyright © 1991

The Station Resource Group
Copyright © 1999
David Giovannoni, Audience Research Analysis;
All rights reserved

AM Radio Listening

A n A nnotated Graphical A nd Tabular Treatise Of The Current State Of The A udiences To Broadcast Stations On The A M Band

With Historical Perspectives A nd Extrapolations For The Future

Offering 0 bservations Pertinent

 To The Implications Of This KnowledgeFor Public Radio Practitioners

David Giovannoni
A udience Research A nalysis
6512 Sweetwater Drive
Derwood, MD 20855
for

The Station Resource Group
7116 Sycamore A venue
Takoma Park, MD 20912

This report was made possible with support provided by the Corporation for Public Broadcasting through its System Development Fund.

The opinions expressed in this report are those of the authors and do not necessarily reflect the opinions or policies of the C orporation for Public Broadcasting.

American Radio by James Duncan, Jr., is quoted with permission. A udiGraphics is a registered trademark of A udience Research A nalysis.

Copyright © 1991
The Station Resource G roup
7116 Sycamore A venue
Takoma Park, M D 20912

Contents

Acknowledgements V
Forward vii
Introduction 1
Stations 3
Two Types Of Public A M Stations 3
Public Radio's AM Stations 4
"C aptive" A udiences 5
Key Facts About Public Radio's AM Stations 5
Class And Power 7
AM Stations By Class And Power 8
The Power Of Power 9
The Inequitable Distribution Of AM Stations And AM Listening 10
Listening Patterns 10
Listening To AM By Class And Power 11
Share Of AM Listening By Class And Power 11
Even W ith Power, M ost Public Radio A M s D on't Stack U p 12
Listening To Public Radio AM Stations
By Class And Power 12
A M 's Displa cem ent 13
FM And AM Radio Share 14
Public A M Radio 15
Public Radio's AM Audience Erosion Far Exceeds AM Band Erosion 16
Public Radio's AM Stations Lose
While Its FM Stations Gain Audience 16
The Remaining A M A udience 17
Comparative Demographic Appeal Map
Of The AM And FM Bands 17
Age Profiles Of AM And FM Listeners 17
Median Age Of AM And FM Radio Listening 18
Older People Use Lots Of FM
While Younger People Ignore AM 19
Listening Patterns 20
AM And FM Radio Listening 20
Formats 21
The Tyranny Of The Band 21
Comparative Demographic Appeal Map
Of AC And Country Stations On The AM And FM Bands 22
Median Age Of AC Listening On The AM And FM Bands 22
Median Age Of Country Listening On The AM And FM Bands 22
Average Age Of Listening To Public Radio Dual Licensees 23
How The Bands Affect Who Listens
To Public Radio Programming 24
Average Age Of Public Radio Listeners By AM And FM Use 24
Dominant AM Formats 25
Comparative Demographic Appeal Map
Of Formats On The AM Band 26
Comparative Demographic Appeal Map
Of Formats On The FM Band 26
Sorting Programming O nto The A ppropriate Band 27
Case Study: Wisconsin Public Radio 28
Economics 31
Revenue 32
Estimating Bottom-Up Revenues 33
C alculating Listener-Sensitive Incomes 34
Expected Listener-Based Income 35
Shape of the Listener-Sensitive Income Curve
For A Public Radio AM Station 36
A dding Top-Down Revenues 37
Shape Of The Subsidized Income Curve
For A Public Radio AM Station 37
Deriving the Total Revenue Curve
For A Public Radio AM Station 38
Estimating Expenses 38
Deriving the Total Expense Curve
For A Public Radio AM Station 39
Surplus or D eficit 39
Deriving Surplus And Deficit
For A Public Radio AM Station 40
Subsidies A nd The National Perspective 41

A CKNOWLEDGEMENTS

This project has benefitted from the contributions of a number of persons and organizations. Thanks go to:

The Corporation for Public Broadcasting's System Development Fund for making this study possible, and to CPB for its continued leadership in creating new and useful knowledge for public broadcasters;

National Public Radio and Peter Pennekamp for making N PR's copy of the A rbitron N ationwide data available;

Joanne Church of the Radio Research Consortium for assembling historical audience data on a matched set of AM and FM stations;

Jack Mitchell for conducting, implementing, and sharing the research at Wisconsin Public Radio;

Larry Lichty for making the AM class system somewhat comprehensible, condoning shameless use of quotes from American Broadcasting, and his added random insights, and

Tom Thomas, Terry Clifford, and the Station Resource Group for their foresight and perseverance in realizing this study.

Except where noted, all audience estimates presented herein are based on A rbitron measurements, and have been generated for this study by A udience Research A nalysis.

Forward

Although many people think of public radio as an FM service, the Corporation for Public Broadcasting supports some 34 AM stations. Another half-dozen AM stations with like programming goals operate on a noncommercial basis close to CPB's minimum levels.

While many of public radio's A M stations are experiencing alarming audience declines, other public broadcasters are considering expanding their services through the acquisition of A M frequencies. Both current and prospective public radio A M operators are working with very little information about the current state of the A M band.

To inform these endeavors, The Station Resource Group has developed an up-to-date portrait of AM radio listening-with a particular focus on public radio's AM stations. With support from CPB's System Development Fund, and with the cooperation of N ational Public Radio and the Radio Research Consortium, this project is driven by such questions as the compatibility of AM public radio with its FM counterparts, the appropriate level of investment in programming for A M stations, and the feasibility of developing new A M public radio stations.

SRG commissioned David Giovannoni of A udience Research A nalysis to prepare a comprehensive analysis of AM listening. While audience and listening data alone do not fully answer questions about public radio's A M future, they can provide critical guidance for decisions that must be made by individual stations and national policy-makers.

A mong the research questions identified are:

- What is the state of AM radio listening today? How do AM listeners and listening compare to FM listeners and listening?
- Are these differences caused by the programming available on the two bands, or are they a function of the bands themselves?
- How is the audience for public radio's AM stations changing? How do these changes compare with public radio's FM stations?

The results of the study provide a privileged look at the context for A M broadcasting today. The report is rich in data, some confirming the conventional wisdom, much of it providing new insights.

Looking Ahead. Giovannoni's central message is much like an old adage of the restaurant business-food and service are important, but location is everything. His report makes it clear that in his judgment public radio's A M stations now occupy a less-than-desirable site.

One of the basic tenets taught in A merican business schools is the importance of knowing what business one is in. The classic case study is the railroad industry, which failed to grasp that it was in the transport business, not the train business, and found itself eclipsed by the automobile, long-haul trucking, and air travel.

Many public radio stations have come to understand that, first and foremost, they are in the broadcasting business, and are therefore subject to a variety of the business's conventions- particularly in the ways they define goals and measure success. A number of stations are also in the education, journalism, musicology, community development, and entertainment businesses, which al so have their conventions.

In contrast, few stations would claim to be in the business of A M or FM transmission-these are merely the required tools. At its broadest level, this report helps us evaluate the suitability of a tool to its task. Giovannoni's findings suggest that most AM facilities are reaching the end of their useful life as a tool for the broadcasting business.

But the railroads also provide lessons about the durability of old tools. While today's rail business is but a shadow of its former self, it still plays important roles in urban mass transit, the highly travelled Northeast corridor, and in a few other special situations. Like the railroads, AM may have some important uses for years to come-albeit diminished from the glory days, limited to special circumstances, and most likely dependent upon major subsidies. These uses may well be for businesses other than what we think of as broadcasting, and may need to be planned and evaluated with new goals, expectations, and benchmarks.

This report should help public radio make better use of its always scarce resources by informing tough decisions about how best to use the AM stations now in operation, where long-standing efforts may need to be abandoned, and where new opportunities may still exist.
-Tom Thomas
Terry Clifford

Introduction

On this campus pioneer research and experimentation in "wireless" led to successful transmissions of voice and music in 1917, and the beginning of broadcasting on a scheduled basis in 1919. Experimental station 9XM transmitted telegraphic signals from Science Hall until 1917, when...in that year, Professor Earle M. Terry and students built and operated a "wireless telephone" transmitter.... Thus, the University of Wisconsin station...has been in existence longer than any other.

- Historical Marker at Vilas Communication Hall Madison, Wisconsin

Experiments in wireless telephony at pioneer stations are landmarks in the history of what has become public radio in A merica. But as important as they were in public radio's development, they have about as much relevance today as the A M band on which they occurred.

The future of public radio-indeed, the future of all audio broadcasting as we now know it-is on FM and the technologies that will displace it. This is a natural function of one technology displacing another, as surely and as quickly as the automobile replaced the horse and buggy.

Forty years ago, AM was radio. Until 1978, A M claimed more than half of all hours spent with radio. Today, AM accounts for less than a quarter of all radio listening- most of which is to a handful of powerful stations in major markets. AM is passing away with the generations who grew up with it. Indeed, for those who grew up with FM, AM doesn't exist; FM is radio.

As their audiences continue to dwindle, AM stations' revenues, profits, and values continue their twenty-plus-year decay, and there is no hint of these trends reversing or even abating. At this rate, A M will become the first electronic technology to forfeit its status as a mass communication, broadcast medium.

This examination delves into AM listening data for commercial and public stations. It seeks to discover opportunities for existing public AM stations and for public radio on the AM band. It finds that opportunities may exist, but only if the A M operation is highly subsidized.

Unlike commercial stations for which revenues are tied to audience levels, about half of public radio's operating revenues are not audience driven but come instead from various subsidies. Public radio's ability to attract such subsidization may allow it, in select cases, to eke the last bit of life out of an A M property. But this opportunity is limited to a fixed and relatively short term. An investment in $A M$ is not an investment that will pay dividends very far into the future.

Outline And Scope. This study presents the most recent data about listeners and listening to the AM band in general, and to public AM stations in particular. The most central "truths" are told by graphics. Text ties the graphics together and puts them into context.

It begins with an overview of the two broadcast bands in America. Although commercial AM and FM stations exist in relatively equal numbers, public radio is dominated by stations on the FM band. The public stations on the AM band are of two types-"stand-alones" and "dual licensees"- each with its own set of constraints and opportunities.

Great differences exist among the various types of AM facilities. A long with format and programming, an AM's power and class are the two most influential forces on audience and audience-derived revenues; they hold the key to viability for commercial and public broadcasters alike.

Audiences to public AM stations generally do not equal the audiences to commercial AM stations with the same class and power. Indeed-and this is a central finding-the exodus from public radio's AM stations greatly outpaces the AM band's decline. The principal cause: outdated programming strategies common among public radio's dual licensees.

A M 's displacement by FM is documented, as are the effects of each band on listening patterns. The bands exert tyrannical forces on who will or who won't listen to programming on their stations. These forces can overwhelm the appeal of the programming itself.

This study concludes by presenting a structure with which public broadcasters can evaluate the economics of AM acquisition and operation. In some cases, a window of opportunity may by open for another few years; in others, the window has al ready slammed shut.

Stations

I have in mind a plan of development which would make a radio a "household utility" in the same sense as the piano or phonograph. The idea is to bring music into the house by wireless.... A radiotelephone transmitter having a range of, say, 25 to 50 miles can be installed at a fixed point where instrumental or vocal music or both are produced. The receivers can be designed in the form of a simple "Radio Music Box" and arranged for several different wavelengths, which should be changeable with the throwing of a single switch or pressing of a single button.
— David Sarnoff, 1915

Although there are virtually equal numbers of $A M$ and $F M$ stations in the commercial broadcast field, FM dominates noncommercial radio.

Adding the number of construction permits to the number of stations now on the air, there are today about 5,300 commercial stations authorized on each band. In comparison, public radio is dominated by stations on the FM band. Of the approximately 1,500 public FM stations currently on the air, about 1,480 operate in the reserved noncommercial portion of the FM band and another 40 operate above 92 FM. ${ }^{1}$ In comparison, only 40 A M facilities are operated as public stations.

The table on the following page lists these AM stations along with selected membership, affiliation, ownership, and technical information.

Two Types of Public AM Stations. The 40 public A M stations are operated by two types of licensees. "Dual licensees" also hold an FM license; "stand-alones" do not. Over half (23) of the 40 public AM stations are operated by dual licensees. They account for well over 90 percent of public radio's national A M audience.

Dual licensees and stand-alones operate under very different programming circumstances. A licensee with both an AM and an FM station

[^0]
Public Radio's A M Stations

ST	CALLS	LIC	FREQ	KW	CPB	N PR	A PR
AK	KBBI		890	10	CSG	M emb.	Primary
AK	KBRW		680	10	CSG		Primary
AK	KCHU		770	1	CSG	M emb.	Primary
AK	KDLG		670	10	CSG		Primary
AK	KIAL		1450	. 05	Sole Svc.		Repeater
AK	KIYU		910	5	Sole Svc.		Repeater
AK	KNSA		930	2.5	Sole Svc.		
AK	KOTZ		720	10	CSG	M emb.	Primary
AK	KSDP		840	1		A sso.	Repeater
AK	KSKO		870	5	CSG		Primary
AK	KYUK		640	10	CSG	M emb.	Primary
A Z	KAW C		1320	1	CSG	M emb.	
A Z	KUAT	Dual	1550	50	CSG	M emb.	Co-Lic.
FL	WKGC	Dual	1480	. 5		A sso.	
HI	KIPO	Dual	1380	5		A sso.	Tertiary
IA	W Ol	Dual	640	5	CSG	M emb.	Co-Lic.
IA	W SUI	Dual	910	5	CSG	M emb.	Co-Lic.
IL	W ILL	Dual	580	5	CSG	M emb.	Co-Lic.
IN	W BAA		920	5	CSG	M emb.	Primary
KS	KKSU		580	5	CSG	M emb.	
M	WKAR	Dual	870	10	CSG	M emb.	Co-Lic.
M N	KNOW	Dual	1330	5	CSG	M emb.	Secondary
M N	KUOM		770	5	CSG		
ND	KFJM	Dual	1370	1	CSG	M emb.	Co-Lic.
NM	KABR		1500	1	Sole Svc.		
NY	W EBR	Dual	970	5	CSG		Co-Lic.
NY	W NYC	Dual	820	2	CSG	M emb.	Co-Lic.
NY	W XXI	Dual	1370	5	CSG	M emb.	Co-Lic.
OH	WOSU	Dual	820	5	CSG	M emb.	Co-Lic.
OH	WOUB	Dual	1340	. 5	CSG	M emb.	Co-Lic.
OR	KBPS	Dual	1450	1	CSG	M emb.	Co-Lic.
OR	KOAC	Dual	550	5	CSG	M emb.	Repeater
OR	KSJK	Dual	1230	1		A sso.	Co-Lic.
PR	W EUC	Dual	1420	1			
PR	WIPR	Dual	940	10	CSG		
SD	KUSD	Dual	690	1	CSG	M emb.	Co-Lic.
WA	KWSU	Dual	1250	5	CSG	M emb.	Primary
WI	WHA	Dual	970	5	CSG	M emb.	Co-Lic.
WI	W LBL	Dual	930	5		A sso.	Repeater
W V	W V M R		1370	5	Sole Svc.		

has the option of using the two stations to complement and supplement one another, placing programs on the station to which they are best suited. Stand-alone AM stations have only a single station with which to take their best shot. As a result, licensees operating in the two different situations may come to quite different conclusions about the best programming strategy for their AM station.
"Captive" Audiences. M ost stand-alone public AM stations (11 out of 17) are in small and isolated Alaska communities. Because they are often one of the few, if not the only, station(s) in town, their listeners are essentially "captive." In contrast, the primary lessons presented in this report are shaped by the experience of A M stations in competitive situations, where listeners have numerous choices on both the AM and FM bands. Indeed, A rbitron, upon which this report relies for its listening data, does not measure listening in most of the communities served by the A laska A M stations.

A s a result, most of the findings presented here are unlikely to apply to the stand-alone Alaska stations, or to other AM stations that now operate or that may be established in similarly isolated communities.

This study applies most directly to public radio's 23 dual licensees and its six stand-alone operations outside of Alaska. In addition, those considering expansion to $\mathrm{A} M$ will find much of interest here.

Key Facts A bout Public Radio's A M Stations

34 Stations Number Supported By CPB
12 Stations Number Supported By CPB In A laska
$\$ 22,800,000 \quad$ Nonfederal Financial Support
25,300 Persons
2.5 Percent
<0.3 Percent
<. 01 Percent
A verage Q uarter-H our A udience Share of Public Radio Listening
Share of A M Radio Listening
Share of Radio Listening

Class And Power

PLEASE ORDER YOUR MINIONS OF SATAN TO LEAVE MY STATION ALONE. YOU CANNOT EXPECT THE ALMIGHTY TO ABIDE BY YOUR WAVELENGTH NONSENSE. WHEN I OFFER MY PRAYERS TO HIM I MUST FIT INTO HIS WAVE RECEPTION. OPEN THIS STATION AT ONCE.

- AIMEE SEMPLE MCPHERSON - Telegram to Secretary of Commerce Herbert Hoover

AM evolved in social and media environments quite unlike those in which FM evolved. The regulatory responses to those shifting environments caused first the Department of Commerce, then the Federal Radio Commission, and finally the Federal Communications Commission to develop the class system of AM broadcasting that we still have today.

Without historical perspective, this hierarchy of AM stations seems bizarre-as outdated and arcane as the milieus that spawned it. But this system is extremely important to understand because the class and technical characteristics of an AM station are as important as its format in determining its viability.

The AM classification system regulates not only power and frequency, as with FM , but also hours of operation (day and night) and signal radiation patterns (accomplished through directional antenna arrays). ${ }^{2}$ There are numerous exceptions within the system, but in its simplest form the system maintains four basic classes of A M stations.

Class 1 (clear dominant) stations cover the most extensive geographies. Each station was originally intended to have its frequency (essentially) to itself to avoid interference and to maximize its range. Today, all of the 25 class 1-A stations and all but one of the 34 class 1-B stations operate at 50,000 watts. Class 1-A s operate around the clock at full power with non-directional arrays. ${ }^{3}$

[^1]AM Stations by Class and Power
FCC AM Engineering Database，Arbitron 1990 Nationwide

®¢¢	$L \cdot L$	00G＇9LG	ぁ・「て	$0 \square 0^{\prime}$ ¢
¢てて	8 •	009＇ 29	$L \cdot \mathrm{~S}$	8LZ
90 ¢	9° ஏ	00 ¢「しもを	て＊しI	0 も8
8Lて＇て	6° 乙ย	$00 \varepsilon^{\prime} \mathrm{SGも}$ ¢	さてて	8L0＇T
Tsz	て＇τ	000×88	て＇L	โรย
0 もも	$9 \cdot \varepsilon$	00て「てして	L・てI	8 โ9
064	$9 \cdot$	$008^{\text {＇G6T }}$	I．G	$8 も$－
0です！	9＊	009 「乙も	$0 \cdot \mathrm{~S}$	とぁて
LT0＇8	ロ・てI	006 「て6	∇^{*} Z	SIL
て8て「乌て	S．T T	009＊6s8	L°	®¢
চOT「0G	8．9I	009 「こらでL	$S^{\text {－}}$	¢ \downarrow
$\varepsilon \tau S^{\prime} \tau$	0．00t	008^{\prime} ¢9才「し	0＊00T	0L8 ¢
		प＇דawns	UNGD¢Ga	צ＇Genwn
SNOSษGa Hర゙叉	SNOS	C Hరच	SNO	TLS

Class 2 (clear secondary) stations were also intended to serve extensive areas, but not as extensive as class 1 s'. Of the 1,575 class 2 s in operation today, 115 operate at 50,000 watts, 243 operate at 10,000 watts, 248 operate at 5,000 watts, and the rest operate at 1,000 watts or less. Stations in this class have a mixture of non-directional and directional arrays and night time operating restrictions, depending upon the location of the station and the proximity and direction of others on its frequency. Most 50,000 watt class 2 s operate at night; most class 2 s with less power do not.

Class 1 and class 2 stations share a set of frequencies that are not shared by other classes of stations in the U nited States.

Class 3 (regional) stations were intended to be regional in reach. They share a unique set of frequencies, and most use directional arrays to protect other class 3 s . Half of the 2,200 class 3 s operate at 5,000 watts during the day. M ost power down at night, and many go off the air.

Class 4 (local) stations were created to serve highly localized areas on only six frequencies exclusive to this class. Most operate at their maximum allowed power of 500 or 1,000 watts. Because their signals do not propagate very far, class 4 stations operate day and night with non-directional arrays.

The Power Of Power. This analysis sorts all AM stations into 11 technical types based on class and power as of the Spring 1990 A rbitron sweep. The table on the opposite page summarizes the most pertinent information about each type of station. ${ }^{4}$

Although the 59 class 1 stations account for just over one percent of all AM stations, they generate well over one-quarter (28%) of all AM listening. The average class 1-A station serves 50,100 AQH ${ }^{5}$ listeners across the broadcast week; the average class 1-B station serves 25,300

[^2]listeners. Compare these audience levels to the average of $1,500 \mathrm{AQH}$ persons across all A M stations.

Class 2 stations at 50,000 watts account for another 12 percent of all AM listening. These 115 stations average 8,000 AQH listeners across the broadcast week.

Although the 17450,000 watt A M s represent less than four percent of all AM stations, they account for 41 percent of all AM listening in A merica. They reach vast numbers of people because of their power and location in urban areas, nearly every person in the lower 48 states can receive more than one of these 50,000 watt A M stations. Most can receive at least one with a length of wire, a crystal, and a cat's whisker.

The 1,078 class 3 stations operating at 5,000 watts (regionals) comprise the largest single group in this analysis. Accounting for 22 percent of all AM stations, they generate 33 percent of all AM listening. They average 2,300 A QH listeners across the broadcast week.

Together, the 50 kilowatt powerhouses and the five kilowatt regionals account for three-quarters (74\%) of all A M listening, or 15 percent of all radio listening. The remaining 3,500-plus AM stations, with AQH audiences averaging between 1,400 and 230 persons per class/power group, account for only one-quarter of all AM listening, or five percent of
 all radio listening, in A merica.

Listening Patterns The 50 kilowatt stations dominate A M radio use in every daypart across the week. These powerhouses are somewhat more dominant early morning and late evenings.

Morning dominance can be attributed to the preponderance of news programming on the 50 kilowatt stations, and the fact that many other stations are not on the air (or not on the air with full power) until sunrise or early morning. Similarly, evening dominance is attributable to the clear channel nature of 50 kilowatt stations: most stay on the air at night, unlike many other A M stations.

The graphs below show how much listening is done to each major type of AM station throughout the day and week (left column) and the share of A M listening contributed by each type of station (right column).

Even With Power, Most Public Radio AMs Don't Stack Up. The graph below shows how public AM stations compare in audience to the average commercial stations of their class and power (marked by black boxes in the graphic). Only a handful of public stations perform as well as the average station mark. ${ }^{6}$

Listening to Public AM Stations By Class and Power 1990

This comparison doesn't control for market size, competitive situation, or other factors that influence levels of audience service. Further, a similar comparison of public radio's FM stations with audience benchmarks for commercial stations of comparable power and antenna height would also reveal a pattern of "underperformance."

But as data presented in subsequent sections will show, public radio's AM stations are in significant distress. The gap between public and commercial A M stations is growing, not shrinking.

[^3]
A M 's Displacement

The power of transmitting sets will gradually increase [because] there is no way to eliminate the effects of atmospheric disturbances...and because of the fact that from the program standpoint, it is economically better to concentrate talent at one point. All these factors point to the elimination of the present type of antenna which will disappear in the same manner as the overhead telegraph, telephone, electric light and trolley wires have disappeared in the last twenty years.

- Edwin H. Armstrong, 1924

Listeners have been abandoning the "standard broadcast" AM band in favor of FM for well over 20 years. Technical displacement is the reason. By simply switching to FM , the consumer hears clean stereo, full fidelity, and no A M static.

FM has been the audibly superior technology since its invention in 1933. It is now standard equipment on most radios in use. This hasn't always been the case. Although FM stations have existed since the 1940s, the expense of specialized receiving equipment made it a luxury for most A mericans. ${ }^{7}$ AM radio was radio through most of the 1960s. As late as 1966, fewer than half (48%) of all A merican homes had an FM receiver.

Spurred by transistor technology and innovative formats (themselves spurred by regulations that discouraged extensive simulcasting), FM came into its own in the 1970s. By 1975, FM receivers were in 93 percent of all homes, 30 percent of all automobiles had FM, and FM accounted for one-third of all radio listening.

AM stations dominated radio listening until 1978. That was the last year that more listening was done to AM than to FM. Since then, FM listening has been increasingly dominant.

[^4]

In 1991, nearly four out of five hours that A mericans spend with radio are spent tuned to the FM band. ${ }^{8}$ The AM and FM share models graphed on the opposite page are purely technical extrapolations ${ }^{9}$ of the AM and FM listening curves based on history; but they strongly suggest that by the year 2000, A M will account for only 10 percent of all radio listening- less than half of what it is today.

These models assume the introduction of no new over-the-air audio transmission technologies. When these technologies emerge, they will accelerate the abandonment of AM. Indeed, their introduction will mark the decline of listening to the FM band as well.

Public AM Radio. Public radio's AM stations are not exempt from the AM exodus. In fact, analysis of the AM stations held by dual licensees ${ }^{10}$ shows that the audience to public AM stations is plummeting at an average rate of 10 percent per year.

The graphics on the next page illustrate the magnitude of this problem. Between 1986 and 1990, the national audience to all AM stations declined by 14 percent, while the combined audience for public radio's AM stations held by dual licensees declined by 30 percent. During the same period, the national audience to all FM stations grew by 10 percent, while the combined audience for the FM side of the dual operations increased 13 percent-in line with the growth rate for the system of CPB-supported stations.

[^5]9 The following formula expresses a model that closely fits Duncan's 29 observed values of $A M$ radio share ($R=.996$):

$$
A M \%=100 \times \log (.21398 \times Y-420.19)
$$

where $Y=$ Year during a spring sweep, or $Y=Y$ ear +.5 during a fall sweep.
${ }^{10}$ Based on 11 dual licensees for which Arbitron data are available from the Radio Research C onsortium.

Public Radio's AM Audience Erosion Far Exceeds AM Band Erosion

\qquad
All FM Stations
All AM Stations -......
AM of Dual Licensee

Public Radio's AM Stations Lose While Its FM Stations Gain Audience

Not only are public radio's AM stations the victim of the A M band, they are clearly suffering the effects of another negative factorinappropriate programming (discussed later in the report).

The Remaining AM Audience. The median age of AM listeners across all stations, all formats is 57 years old-a full generation older than FM's 33 -year median age. (The comparative appeal of public AM and FM stations is discussed below, pp. 23-24.)

These medians hide the fact that one in three AM listeners is over 65 years of age. This group includes people now in their seventies, eighties, and nineties.

At no time during the day or week is AM's audience younger than FM 's, as this graph demonstrates. AM serves its youngest audience late weekday afternoons; even then, more than half of its listeners are over 50 years old. At no time during the week does the median age of FM 's listeners rise above 40; after 9:00 a.m. it is closer to 35, dipping down to 25 late evenings.

For most purposes, AM does not exist for persons under 24 years-of-age; they spend only one hour tuned to the band out of twenty tuned to radio. Indeed, only 12 percent of all radio listening by persons aged 25 to 34 is to A M, as is only 20 percent of that done by persons between 35 and 44 years-of-age.

Although younger people do not listen to A M, older people do listen to FM. FM claims two-thirds (69\%) of the radio listening among persons 45 to 54 years-of-age, more than half (53%) of the listening by those 55 to 64 years-of-age, and well over one-third (39\%) of the listening by A M 's most loyal demographic- persons 65 and over.

In short, despite the signs of life it still exhibits, the AM band is in certain decline. The life that's left in the band appears to be relatively short-lived.

Listening Patterns. The most listening to AM is done between 5:30 a.m. and 10:00 a.m. weekdays, and between 7:00 a.m. and 10:00 a.m. Saturdays. At these times more than 10 million persons are listening to AM. FM listening doesn't drop below 10 million persons after 5:00 a.m. on weekdays, 6:00 a.m. on Saturdays, and 7:00 a.m. on Sundays-
 at least, not until late evenings.

Listening to the AM band strongly reflects the lifestyles of its older listeners. For instance, it lacks the midday listening-much of which is at work-seen in the FM curve; there is nearly as much listening to FM middays as there is during "drive times." The "afternoon drive" surge once seen on AM has been retiring along with AM's listeners over the years; afternoon drive now belongs to the FM generation. And on weekends, AM listening peaks four to five hours earlier than on FM -just as all radio listening does among persons over 55 .

AM's predominant formats also shape listening to the band, as the next section demonstrates.

AM And FM Radio Listening Saturdays Arbitron Nationwide 1990

Formats

The Westinghouse Corporation opened Chicago's first radio station, KYW, on November 11, 1921.... The KYW program schedule for the 1921-22 season was "entirely Chicago Civic Opera. All performances, afternoon and evening, six days a week, were broad-cast-and nothing else."
-F. G. Fritz quoting Erik Barnouw

The Tyranny of the Band. Some observers have posited that AM's audience is shrinking because all of the "good" formats have migrated to FM, and that it's older because FM has all of the "young" formats. Not only does this argument put the buggy before the horse, but it ignores the fact that all of the major formats that exist on FM are also broadcast on AM (public radio included). Indeed, AM has the All News format all to itself.

Yet the effects of the AM band on listening and listeners is overwhelming. The audience for an AM format is significantly older than the audience for the same format on FM. This is because the AM band screens out younger listeners; they just aren't there to listen. For the same reason, putting a young format on AM significantly attenuates the size of its audience- the AM band simply doesn't exist for many younger persons.

The filtering effects that the A M band has on audiences are shown in the graphics on the following pages. Although only Country and A dult Contemporary are shown, AM's audience is older than FM 's for every major format.

The A M band's filtering effects are quite operative in public radio, too. The graphic below compares the age disparities among dual licensees; the $A M$ is older than the FM in every case. (These stations are part of the Audience 88 study, an analysis of public radio's listeners based on data gathered in 1986; age estimates are computed from this database.)

Average Age of Listening To Public Radio Dual Licensees

Of course, enormous variations can exist within formats. For instance, there are older and younger AC formats, Country formats, and so forth; many created as programmers adjusted the age appeal of their formats to better match the band. This is certainly part of the age disparity seen between audiences for the same format on AM and FM.

Yet pure examples of the tyranny of the band abound. Commercial simulcast operations inevitably serve older listeners on their A M s. A nd as the top graphic on the next page shows, the same national programming on public stations draws an older audience on $A M$ than on $F M$.

Finally, Audience 88 's sample suggests how public radio's listeners cross from band to band, as the bottom graphic on the next page shows. Those who listen only to FM radio are nearly 20 years younger than those who listen only to A M (left column); those who listen to both are in the middle. Listeners to public radio's AM stations are ten years older on average than listeners to public radio's FM stations (right column).

Average Age of Public Radio Listeners By AM and FM Use

Dominant AM Formats. By far the most listened-to AM format is News/Talk; alone it generates 28 percent of all A M listening. All News stations generate another 9% of all AM listening. In short, All News and $\mathrm{News/Talk}$ formats account for well over one in three hours (37\%) spent with A M radio.

Adult Contemporary, Country, and MOR/Big Band/Nostalgia each account for 11 to 12 percent of all A M listening.

Together, these four format groups account for three-quarters (72\%) of all AM listening. They account for 82 percent of all A M listening by persons over 65 years old.

Of course, format preferences change with age- even on A M radio. The strongly ethnic Spanish/Latin and Urban Contemporary formats claim about one-third of all AM listening by persons under 24 years old. But put back into the context of total listening, these A M formats represent less than two percent of all radio listening by these younger listeners.

The following graphics map out the age and gender appeals of formats on the AM band (next page) and formats on the FM band (subsequent page). The cross hairs mark the age and gender of the band-all stations, all formats.

Sorting Programming Onto The Appropriate Band. Most public AM stations are run by a licensee that also operates an FM station. The tyranny of the band has much to say about what public radio programming belongs on which band.

FM dominates radio-especially public radio. FM and public radio grew up together. CPB and NPR were formed as people began to abandon the AM band en masse. Much of public radio's audience growth has been courtesy of FM's growth. The well-educated appeal of public radio's most prevalent programming is as identified and as congruent with the FM band as is any format.

Indeed, the generation gap that divides AM's listeners from FM's is central to understanding how best to program stations on the two bands. Dual licensees that have relegated "music" to their FM and "talk" to their AM are responding to the radio environment of the 1970s. The relatively young appeal of public radio's national news

The Radio Information Center identified the formats for 5,599 stations- virtually the entire list of stations reported in A rbitron's 1990 Nationwide study. Format listening was calculated from Nationwide by Audience Research Analysis. The formats are abbreviated as follows:

AC	A dult Contemporary
A OR	A lbum Oriented Rock
BLK	Black/R\& B/Soul
BUS	Business N ews
COU	Country
CHR	CHR/C ontemporary Hits/
	Top 40
CLS	Classical
CR	Classic Rock
ETH	Ethnic
EZ	Easy Listening/Beautiful
	M usic

GO G olden Oldies
JAZ Jaz
NWS All News
NA New A ge
NT News/Talk
RE Religious
SP Spanish/Latin
SC Soft C ontemporary
ST Standard/Big Band/
N ostalgia/M OR
UC Urban C ontemporary
V Variety

programming shares a high affinity with the FM band. ${ }^{11}$ Placing it on AM essentially makes it unavailable to many of its potential listeners. If any type of current public radio programming belongs on $A M$, it is opera. Opera's listeners are relatively old; most grew up listening to opera on AM; and many older listeners are less sensitive to the audible differences between the A M and FM broadcast technologies.

The following two pages present a case study of the AM/FM split in Madison, Wisconsin. WHA-AM and WERN-FM embodied the typical AM/FM programming split prevalent in public radio to this day-talk on AM, music on FM. If the lessons learned in Madison are any indication, most dual licensees are programming quite counter-productively. Maximizing public service requires sorting the programming onto the more appropriate band using a more sophisticated set of criteria than that offered by the "talk/music" split.

[^6]
C ase Study: W isconsin Public Radio

Background: Wisconsin Public Radio controls two stations in Madison: W HA-A M and W ERN-FM. In 1977, the programming on these two stations was split along "talk" and "music" lines, quite similar to the programming split so common among public radio's dual licensees. Although this split served listeners well into the 1980s, four continuous years of audience decline on the FM and no growth on the A M caused Jack M itchell, Director of Radio, to ask if it was time to again reorganize the two services.

In December 1989, after examining the A M and FM audiences in Madison with George Bailey, David Giovannoni summarized the findings and programming ramifications in a letter to Dr. Mitchell. Portions of this letter are reprinted here, with permission.

Factor analysis of Arbitron listening data clearly shows that WPR is doing three major programming streams—Classical Music (excluding long form programs and opera), NPR/National News and Information, and Local Talk (in the spirit of the Educational Extension). Listener interest as expressed in the focus groups validate these three streams; in other words, listeners perceive each to be a different and coherent service. All are viewed positively.

Each stream makes a fine format. Ideally, WPR would have three stations with a single format on each. But as there are only two stations, and since all three formats are considered necessary, two of them must be squeezed onto a single station-a single band.

The data are clear about Local Talk continuing on AM. It is old and AM is old. And as you eloquently argued, the Classical Music announcer/record format belongs on FM. There are strong arguments for putting NPR/National News on FM rather than on AM.

- Although it was the right idea in the 1970s, the "Music On FM—Talk On AM" split has become dysfunctional. NPR/National news needs to be on FM, where its potential audience is.
- The combination of Local Talk with NPR/National "Talk" is no longer optimal. Through their listening patterns and their comments in focus groups, listeners have shown the presumed "voice appeal" to be inoperative. The appeal of NPR/National News is significantly younger than the Local Talk appeal. They are different programming streams.
- The FM band continues to gain listeners faster than the AM band continues to lose them; FM is the band with the greatest audience potential now and in the future. FM is where WPR must put its strongest programming if it is to stem its audience erosion and to prepare for the future.
- By having Morning Edition and other central parts of NPR/National News on AM, WPR is limiting the number of people now served by that programming; by keeping the program stream on AM, WPR is dooming its best programming to increasing under-performance with each passing day.

In short, more listeners will be served, and served better, by putting NPR/National News on the FM.

This move poses a few problems, most of which are readily surmountable. The most vexing is what to do with the AM. Of course, weekdays are where the opportunity must be seized, and where the last remaining potential of the AM station will be squeezed for the next decade. And don't lose sight of the importance of the 9:00 a.m. to 3:00 p.m. daypart on both Saturday and Sunday.

Programming options abound, such as putting talent with an "older" or more "educational" appeal onto the AM—even if they are about music, such as Karl Haas and Opera. Or you could run the station cheap by rebroadcasting "best of" interviews, lectures, or chapters. I encourage WPR to think anew.

Thinking anew means shuffling existing programs to their optimum positions and refining music presentations to fit the more highly targeted position of the FM station. Thinking anew requires a clear understanding that AM is dying, and dual licensees can no longer hope to keep it alive by sacrificing their best programming to it at the expense of the FM.

Significant changes were made in response to the research. WHA became the "Ideas" service and W ERN became the "N ews and Classical" service.

At first the changes met with negative response. W hen Morning Edition displaced classical music on W ERN, long-time listeners wrote irate letters to newspapers and established angry committees.

But since then, the changes have proven themselves and positive responses have been overwhelming. On-air fundraising is up. A rbitron estimates show W HA's audience has increased-a remarkable result given the continuing exodus from the band. The first sweep after the change W ERN reversed its four year audience decline by more than doubling (+228\%) its A QH audience; listening was up across all dayparts. A s of this writing W ERN serves a larger share of its market's radio listeners than any public radio station in A merica.

If the past serves as prologue, there do not appear to be many listeners in public radio's A M future. Even if all dual licensees were to address the tyranny of the band and change their programming overnight, they would be hard pressed to stem the loss of AM listeners to FM and mortality.

In the effort to maintain dual services, many will strive to maximize listening to-and support of-their FMs in the hope of better subsidizing their AMs. And many will move toward minimizing the financial loss generated by the A M service by reducing its operating expenses.

Whether attempted by a dual licensee or a stand-alone, operating a station on the AM band entails balancing some fairly predictable economic forces.

Economics

Commercial broadcasters are getting out of AM as fast as they can, and selling the stations at a loss to weird operations like foreign language or home shopping or religion. Others are simply mailing the license back to the FCC. The public radio logic would be familiar: If we don't operate an AM station, nobody else will.
— George Bailey, 1989

A ttracted by the depressed prices of A M properties or lured by the offer of free licenses, some public broadcasters are tempted to expand their operations to the A M band. AM is seen by some as a means of extending public radio's reach into unserved geographic areas, attracting new types of listeners, and even forming whole new networks.

In places such as rural Alaska, where there are few radio signals available, $A M$ is likely to remain as viable as $F M$. But in areas where AM and FM signals compete, there is no indication whatsoever that the decline of the A M band can be halted, let alone reversed.

Still, isn't there some way that public radio can somehow exploit the AM band? In virtually every market, there's more listening to the A M band than to public radio. If an AM could be got cheap and run cheap, couldn't it contribute to public radio's service?

This question must be answered on a case-by-case basis. But in all instances the answer lies in this balance: what is the price of obtaining and operating an AM property, and is this less than the revenues and other benefits derived from its operation?

The following analysis suggests what economic variables public broadcasters might consider in deciding whether or not to expand into AM. For example, can the gift of a failing commercial A M license be turned into a viable public radio operation? Is the license an asset or a liability? A nd if an asset, what would a station be worth if money had to be paid for it?

What a station is worth depends on 1) how much revenue its operation can generate, 2) how much it costs to earn this revenue, and 3) how long revenues can be expected to exceed costs.

Revenue. Commercial stations work in a "bottom-up," audience-driven economy in which revenues are generated in close proportion to the service they provide. The more people listen to a commercial service, the more attractive it is to advertisers, the more it can charge for time, and the greater its revenues.

Public radio's revenues are derived only in part through a bottom-up, listener-sensitive economy. During the last decade it has increased its reliance on listener income and underwriting-both direct functions of audience size. According to CPB estimates, listener-sensitive income accounted for 18 percent of public radio revenues in 1980; in 1989, this source accounted for 33 percent. Tax-based income provided 69 percent of public radio's revenues in 1980, compared to 49 percent in 1989.

Yet despite this shift in recent years, the bulk of public radio's income still flows from the "top down." Much of its income is derived through lump-sum allocations from tax-based sources, such as publicly-funded educational institutions, and federal, state, and local governments. Subsidization levels are rarely (and even then, loosely) listener-sensitive; they are realized principally by virtue of broadcasting the service, not by virtue of people actually listening to it.

In short, in a bottom-up economy, revenues are in lock step with audience size; in a top-down economy, they are not. Public radio has a foot in each economy. When evaluating the potential revenues to be derived from an AM property, the public broadcaster needs to assess both revenue streams.

What follows is a set of considerations for assessing the value of an AM property. It begins by estimating "bottom-up", or listener-sensitive revenues.

Estimating Bottom-Up Revenues. Virtually all revenues in commercial radio are listener-sensitive. For every listener-hour of service provided by commercial radio, the industry receives about three and one-half cents (3.56¢) in advertising revenue. ${ }^{12}$ Most of this income is from local time sales (2.73\$), but spot (.65\$) and network (.18\$) revenues are also significant.

Compare this to public radio, for which only half of all revenues are listener-sensitive. Public radio stations receive about two audiencesensitive cents for every listener-hour of service they provide. ${ }^{13}$ A little over a penny (1.14¢) is from listener contributions; a little under a penny (.85¢) is from underwriters.

A broadcaster may prefer as a benchmark the listener-sensitive performance of a known public station. The sidebar on the next page shows how this is done.

Whatever numbers the public broadcaster uses, estimating the amount returned to the station per hour of listening is the first step toward projecting the station's potential listene-sensitive income.

The next step is to estimate the level of audience service that might be provided by this station. This is based on average quarter-hour audience.

[^7]\[

$$
\begin{aligned}
& \frac{\$ I_{1}}{L H}=\$.0114 \text { per Listener Hour } \xlongequal{\$ 59,647,000} \frac{\text { year }}{} \times \frac{\text { year }}{6,570 \text { hours }} \times \frac{1}{797,000 \text { listeners }} \\
& \frac{\$ I_{u}}{L H}=\$.0085 \text { per Listener Hour } \xlongequal{\$ 44,751,000} \times \frac{\text { year }}{6,570 \text { hours }} \times \frac{1}{797,000 \text { listeners }}
\end{aligned}
$$
\]

As shown in the previous section, AQH audience is highly dependent on the class and power of the station. A broadcaster graced with a class 1-A clear channel will serve many more people than a broadcaster faced with a low power daytimer. Using these average AQH estimates, the top graphic on the following page estimates the listener-sensitive revenues that might be expected by commercial and public broadcasters operating an A M facility of any type. ${ }^{14}$

A "detail" chart is included (opposite, bottom) to highlight income expectations for lower powered stations-more apropos for public broadcasters. For example, a class 3 station operating at 5,000 watts might expect to generate close to $\$ 300,000$ in listener support and underwriting. In contrast, a class 3 station operating at 1,000 watts would be likely to generate about $\$ 50,000$ in listener sensitive revenue.

C alculating Listener-Sensitive Incomes

W hat might the expected revenues per listener-hour be in any particular market? The performance of an existing public station may provide a better benchmark than a national average. A public broadcaster can calculate listener income per listenerhour (I_{1}) and underwriting income per listener-hour (I_{u}) for an existing station, as follows.

Determine annual consumption of the station in listener-hours (LH per year) by multiplying the station's full-week average quarter-hour audience (L) times the number of hours on the air during a year between 6:00 a.m. and 12:00 midnight (H , often equal to $6,570=18$ hours per day time 365 days per year). Then divide annual listener income $\left(I_{1}\right)$ or underwriting income $\left(I_{u}\right)$ by listener-hours per year.
${ }^{14}$ The formulae for estimating listener-sensitive income are simple variants on those seen before.

$$
\begin{aligned}
& \frac{\$ I_{1}}{y e a r}=\frac{\$ I_{1}}{L H} \times \frac{\text { days }}{\text { year }} \times \frac{\text { on-air hours }}{\text { day }} \times \text { listeners } \\
& \frac{\$ I_{u}}{\text { year }}=\frac{\$ I_{u}}{L H} \times \frac{\text { days }}{y e a r} \times \frac{\text { on-air hours }}{\text { day }} \times \text { listeners }
\end{aligned}
$$

Any new service will take time, perhaps years, to reach its full audience potential, and even longer to reach its full listener and underwriting support potentials. National or locally-derived "norms" are based on mature situations, and should be discounted during the first few years of operation. Given these considerations, the shape of the listen-er-sensitive revenue curve for a public radio AM station will probably be along the lines of that shown in Figure 1, whatever the size of the numbers.

Figure 1

Shape Of The Listener-Sensitive Income Curve For A Public Radio AM Station

Conceptually, the station begins with no listener-sensitive revenues because it begins with no listeners. The audience grows with time, eventually reaching its peak. Underwriting income may or may not lag audience size, depending on the station's ability to raise it. Listener income certainly lags audience size by a year or two, as it takes time for the station to become personally important to its listeners. ${ }^{15}$ A fter listener-sensitive revenues reach their zenith, they begin to decline as the exodus from the AM band becomes the dominant force affecting audience size.

[^8]Adding Top-Down Revenues. Estimates of top-down revenues, or subsidies for operating the broadcast service, are highly specific to the individual situation. To the extent that they can be estimated, they too can be worked into the viability projections.

Figure 2 shows the shape of two possible subsidization curves-one for a fixed-term subsidy (perhaps a startup grant), the other for a guaranteed long-term subsidy.

Figure 2
Shape Of The Subsidized Income Curve
For A Public Radio AM Station

Of course, there are many variants on the possible shapes of these curves. To consider are: NTIA facilities grants; CSGs, NPPAGs, and other CPB grants; state funding for public broadcasting; government agencies or foundations that may underwrite a particular service on a continuing basis; and indirect support from parent institutions.

The listener-sensitive revenue curve is added to the subsidization curve to yield the revenue curve for a public radio station. Figure 3 on the next page demonstrates how two curves add.

Figure 3

Deriving The Total Revenue Curve For A Public Radio AM Station

Estimating Expenses. Given these estimates of the station's revenues, what is it going to cost to launch and maintain its operation? W ill revenues exceed expenses, and if so, for how long?

The cost of beginning any new broadcast service is not trivial. The license may need to be purchased and possibly financed. Facilities must be acquired and/or modified. Legal fees must be paid. Even if the station is a gift, there are always very real startup costs associated with management attention and staff time.

Once startup costs are paid and the station gears up for and begins operation, the well-known slate of operational expenses are incurred: staff, programming, rent, utilities, and so on. Over time operations tend to become more expensive due to salary increases, escalating programming costs, rent and utility hikes, and so forth. Although operational expenses can be cut with relatively drastic measures (such as firing staff or dropping major national programming), this analysis assumes that a station will go on the air with staff and programming that it will maintain through the years, and that operating costs will creep up over time.

Figure 4 shows how start-up and operational costs might combine to yield the total expense curve for a public radio station.

Figure 4
Deriving The Total Expense Curve
For A Public Radio AM Station

Costs up front are high, but they decline rapidly as operations and operational costs commence. Ongoing costs increase with time, yielding a "u-shaped" expense curve. This example assumes no acquisition costs are financed; they must be added in if they exist.

Surplus or Deficit. When revenues exceed expenses, the station is operating in the black. In the commercial world this is called "profit;" in public radio it is usually termed "surplus." A station generates a "deficit" when expenses exceed revenues.

Figure 5 shows how the revenue and expense curves can combine for a public station to yield a surplus or a deficit.

The graph assumes that all startup costs are covered by a fixed term grant, and that the station incurs no financing burden. The area between the two curves containing a plus sign is where revenues exceed expenses; the station is generating a surplus. The area containing a minus sign is where expenses exceed revenues; the station is generating a deficit. ${ }^{16}$

[^9]Figure 5

Deriving Surplus And Deficit
For A Public Radio AM Station

Much will depend on who holds the station license, and what mission guides its operations. The economic equation for a public radio AM station will be strongly influenced by the program service the station presents, and the extent to which the importance of that program-ming-to the licensee, to various government entities, to foundationscan stimulate and justify to kinds of subsidies that will increasingly be needed to sustain the broadcast effort.

A cquisition and startup costs are fixed term and usually known up front. Most public broadcasters would not consider adding an AM station that they could not finance on their own, with grants, or with assurance that the station would return the investment.

By addressing the question in this way, some public broadcasters will determine that a particular A M property holds no future for them; even their most generous estimates would show that the station could not realize a surplus or break even in the immediate future. Expenses will increase and revenues will decrease. Given these forces, if an AM can't break even today, it's not likely to ever operate in the black. If there ever was a window of opportunity, it has since slammed shut.

Others will determine that an $A M$ property may in fact be able to generate revenues that meet or exceed expenses-at least for a while. But again, the forces at work dictate that expenses are very likely to
ultimately exceed revenues. Here the key questions are of term. How long can the station remain self-supporting? ${ }^{17}$ How long will this window of opportunity remain open?

Although these questions cannot be answered with precision, they will help managers decide whether or not to establish a new AM operation, and-every bit as critical-to determine how long they might expect to run it. A n A M property offers a fixed term opportunity at best.

Taking over an A M station is like filling an empty poker table seat on a sinking river boat. The excitement of playing a winning hand is quickly overshadowed by a growing sense of urgency.

Subsidies And The National Perspective. This analysis has focused on decision-making at the local level. National policies are also informed by this study; however, they bring with them additional concerns.

The viability of a commercial AM is tightly linked with listening levels. Commercial AM owners are minimizing their costs as the audiences and the revenues they generate continue to decline. If a commercial A M can't turn a profit today, it probably never will.

Although a public station typically costs less to run than its commercial counterpart, the subsidies available to it are what may allow it to turn a failed commercial A M property into a viable public operation.

The source of the subsidy is irrelevant from the purely local perspective; a dollar from a Community Service Grant spends the same as a dollar from a local foundation. However, the source of the subsidy has significant national consequence. Indeed, unless expansion into the A M band generates more subsidies than it drains from existing sources, it may be detrimental to the public radio system as a whole.

The reason is simple. Even though AMs can be acquired inexpensively, their prospects for significant audience service are very limited. FM is today's radio band of choice. Virtual 100 percent A M penetration, more than six AM receivers per household, portable and personal AM receivers, and AM stereo have not rescued the band from technical and social
${ }^{17}$ "-"Self-supporting" in this sense includes all forms of subsidization.
obsolescence. Can a surge of public radio programming onto the band hope to do better?

Siphoning resources from what is now primarily an FM service to bolster services on a dead-end band weakens the system's ability to serve listeners where they are now- and where they will be-listening.

On the other hand, a push to expand onto AM may be a worthy national policy if:

- It occurs without weakening the existing FM system (the "No Load" strategy). If, for example, an AM station were donated to a public broadcaster operating an FM station, and if the public broadcaster could operate the station on a self-sustaining basis, there would be an increase in service at no cost to the FM. From a national perspective, however, this dynamic occurs only if the A M station does not claim dollars from a common resource pool (such as CSG funds).
- It benefits the FM system by reducing some of the FM 's costs (the "Economies of Scale" strategy). Adding an AM station to an FM operation will not, of course, make any of the FM station's costs go away. But a number of costs are unlikely to increase significantly. If such costs are appropriately allocated between the AM and FM operations, and if the AM can carry its own share, the FM operation comes out ahead. Indeed, it may even make sense to operate the AM station at a small loss, provided that any such loss is offset by equal or greater gains for the FM. From a national perspective, such economies would been seen in having a larger number of stations sharing such common cost items as national programming, interconnection, training, research, and representation.
- It increases the general subsidy pool in a proportion greater than its drain (the "Bigger Pie" strategy). In most radio markets of significant size, there is no spectrum space available to launch a new, noncommercial FM station. Operating an AM facility may provide some limited service to currently unserved or underserved audiences, which may stimulate and help sustain increases in public sector support for public radio.
- It provides the catalyst to amass enough local support to subsequently acquire or establish an FM (the "Saint Paul" strategy).

Some years ago, Minnesota Public Radio acquired an AM station in St. Paul. Over time, MPR developed a successful news operation on the station, and established it as the anchor for a statewide network of news-oriented FM stations. Capitalizing on the momentum established by the AM news operation (and the anticipated proceeds from selling the AM property), MPR recently acquired an FM frequency, to which it has moved its news operation. From a national perspective, this approach is simply an interim step to a larger, stronger FM system.

- It delivers first public radio service to isolated communities (the "Captive Audience" strategy). A s noted earlier, AM may remain a viable medium in highly isolated communities for some years to come. Because of the mountainous or expansive terrain often found in such communities, AM has certain coverage advantages over FM's line-of-sight signal. Further, in some such communities, spectrum space on the FM band remains available should a switch in technologies be desirable at some point in the future. From a national perspective, new AM stations in such communities would advance the goal of achieving full national coverage.
- It fosters research and development of new programming services that will be implemented in a digital transmission environment (the "M edia Lab" strategy). Looking beyond today's radio environment dominated by FM, public broadcasters must begin anticipating digital audio transmission technologies. Many observers foresee a new environment with a plethora of delivery channels, leading away from broadcast programming services as we know them to highly specialized "ultra niche" or narrowcast services. With so little to lose, AM facilities may provide fertile development and testing grounds for new public service programming options.

[^0]: - - - - - - - - - - - - - - - - - - - - -

 1 Because many of these $F M$ stations are owned by religious broadcasters or operated by and for students, most considerations of the "public radio system" are limited to 700 FM stations (and 40 A M stations). This study adheres to this convention.

[^1]: 2 For AM, antenna height is not correlated with signal propagation as it is in FM.
 3 The $1-\mathrm{N}$ class of station is exclusive to Alaska. These 17 stations are allowed to perate on "clear channel" 1-A frequencies as their distance from the lower 48 states minimizes the potential for interference. Ten are public stations supported by the Corporation for Public Broadcasting.

[^2]: 4 All audience estimates in this report are based on average quarter-hour (AQH) listening data as supplied by Arbitron and analyzed by Audience Research Analysis. Exceptions are noted.

 5 As used by Arbitron, AQH (average quarter-hour) audience is the number of persons listening during a 15 -minute period as averaged across the broadcast week, Monday through Sunday 6:00 a.m. through 12:00 midnight. Cume audience is the total number of persons who listened for at least five minutes sometime during the week.

[^3]: --- Class and power categories are ranked by the size of the audience to the average commercial station. Class 1 stations are not shown as there are no Class 1-A or 1-B public stations.

[^4]: --- ${ }_{7}$ In 1945 , the $\overline{\mathrm{F}} \bar{C}$'s decision to shift the frequency allocation of the broadcast FM band made about one-half of a million FM receivers obsolete overnight. This regulatory move also did much to retard FM 's acceptance by the public.

[^5]: ${ }^{8}$ James Duncan's American Radio publishes the industry's most quoted estimates of AM and FM share (the actual observations upon which the graphics on the opposite page are based.) Based on Arbitron's published listening estimates to commercial stations in metro areas, Duncan calculated AM's share at 26.1 percent in spring 1990. This method ignores listening outside of metro areas and public radio listening-a 2.9 share nationally, more than 97 percent of which is to FM. This analysis establishes these numbers from Arbitron's 1990 Nationwide study which, when public radio is included, identifies the band for 88.4 percent of all radio use. The result: AM's share of all (identified) listening is 23.7 percent - two and one-half percentage points lower than Duncan's estimate.

[^6]: ${ }_{11}$ Refer to AUDIENCE 88's Programming report for a discussion of appeal, affinity, and age differences among public radio program types. This analysis extends the concept of affinity to include the band.

[^7]: ${ }^{12}$ The Radio Advertising Bureau estimated that commercial stations billed $\$ 8.42$ billion in 1989. This is the total income for the commercial radio industry. In Spring 1989, Arbitron estimated 36.04 million average persons using radio between 6:00 a.m. and 12:00 midnight; multiplying times 6,570, the number of hours in a year (18 hours per day times 365 days per year), yields an estimate of 237 billion listener-hours of radio consumed in 1989. Income per listener-hour is calculated by dividing $\$ 8.42$ billion by 237 billion listener-hours.

 $$
 \$.0356 \text { perListener Hour }=\frac{\$ 8,420,000,000}{y e a r} \times \frac{y e a r}{6,570 \text { hours }} \times \frac{1}{36,039,600 \text { listeners }}
 $$

 ${ }^{13}$ Based on 1989 CPB financial and Spring 1989 A rbitron N ationwide data for the system of CPB-Supported stations. Calculations as per models presented in Programming Economic sby David Giovannoni, Thomas J. Thomas, Theresa R. Clifford et al CPB, 1989.

[^8]: 15 Refer to "A udience Leads Membership" on page 26 of Audience 88 's Membership report, CPB, 1988.

[^9]: ${ }^{16}$ This analysis assumes the future salvage value of the AM license and facilities to be negligible. Those assuming otherwise should add these values into their calculations.

