

Schubert & Salzer VALVES

SCHUBERT & SALZAR

Core Valve Offering

Other Offerings

Sliding Gate Wafer

Seat Valves

Ball Sector Valves

Sanitary Valves

Schubert & Salzer Sliding Gate Valves

Operating Principle

CV value

Flow Characteristics

Tightness

Valve Fail Position, Open/Close

Actuating Force

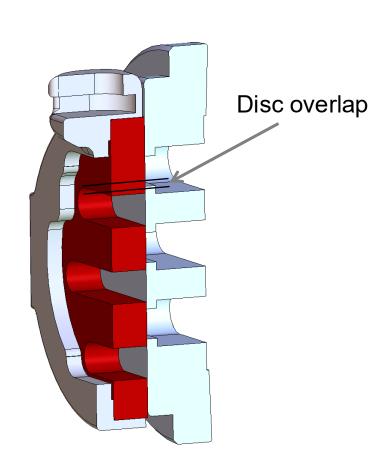
Service Life

Upstream Pressure creates the Shutoff

Moving disc

Fixed disc

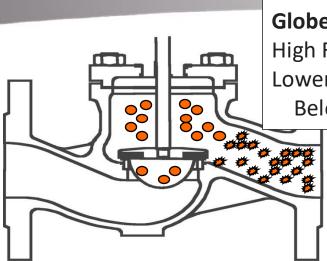
Coupling ring



Machined & Lapped together for hours "Matched Pair" of Discs

Disc Overlap

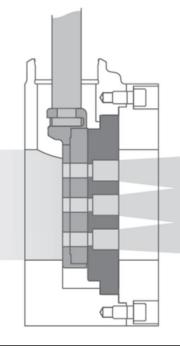
Disc Overlap is Key

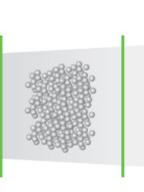

Class IV to Class V Shutoff

1 to 2 mm Disc Overlap for tight sealing
Improved shutoff thru life of the valve
Due to constant lapping as valve modulates

	Overlap	Valve stroke	Overlap		
DN (ln)	(mm)	mm (in)	%		
15 (1/2)	1.0	6.25 (.246)	24.0%		
20 (3/4)	1.5	6.25 (.246)	24.0%		
25 (1)	1.5	6.25 (.246)	24.0%		
32 (1-1/4)	1.5	6.25 (.246)	24.0%		
40 (1-1/2)	1.5	6.25 (.246)	24.0%		
50 (2)	1.5	8.25 (.325)	18.2%		
65	1.5	8.25 (.325)	18.2%		
80 (3)	1.5	8.25 (.325)	17.1%		
100 (4)	1.5	8.25 (.325)	17.1%		
125	1.5	8.25 (.325)	17.1%		
150 (6)	2.0	8.25 (.325)	22.9%		
200 (8)	2.0	8.25 (.325)	22.9%		
250 (10)	2.0	8.25 (.325)	22.9%		

Centralized Flow Results In More Durable Valve





Globe Valve Cavitation

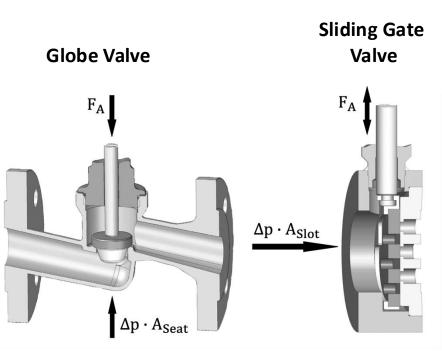
High Flow Velocity in Narrowest Section of Valve Lowers Local Pressure

Below Local Saturation Pressure of the Liquid

Cavitation

Vapor Bubbles Occur Collapse in Areas of High Pressure Damages Valve

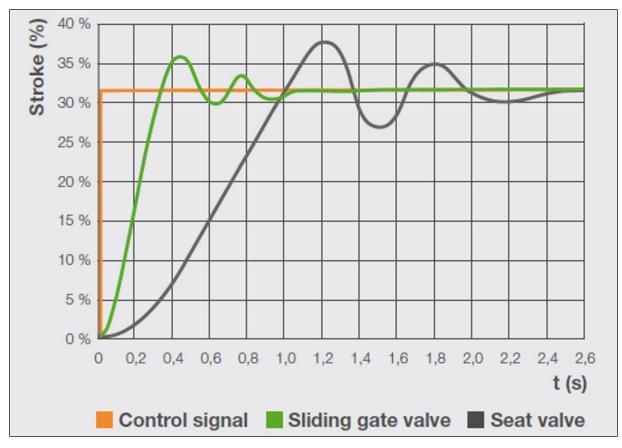
Improved Cavitation Behavior


Straight Through Flow
Eliminates Additional Turbulence
Multiple Orifice Patterns Break Up the Flow
Reduce the Flow Energy
Resulting in Quieter & More Durable Valve

Lower Torque With Faster Response

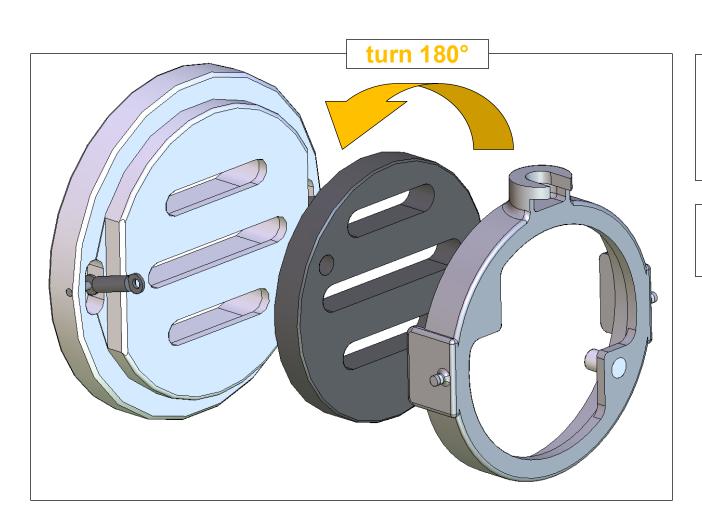
Lower Torque with Faster Response

Perpendicular Forces w SG Valve Versus Opposing Forces w Globes Typically SG's are **10% of Globe Valves**



 $F_A = \Delta p \cdot A_{Seat}$

 $F_A = \Delta p \cdot \mu \cdot A_{Slot}$


Faster Response

Due to Lower Actuating Torque & Smaller Actuator Volume Results in Better Control Quality

Changing Valve Action is Easy

Changing the Valve Function

FROM Spring closes NC
TO Spring Opens NO
Rotating Moving Disc changes the Valve Action

Equal Percentage Function

Turn Both Moving Disc and Fixed Disc

Sliding Gate Valve Silver Bullets

Fits into Tight Spaces

Compact Construction Much Lower Weight than Globes

No Valve Seat

Eliminates Globe's Biggest Weakness

Excellent Rangeability

From 30:1 to 160:1

Flexible Max CV Values

Simple Exchange of Fixed Disc Plate CV Max Ranges from 0.02 to 1056!!

High Differential Pressures

Up to 1450 PSI

While Maintaining Precise Control

Flexible End Connections

Wafer, Flanged, Threaded

Minimal Wear

Due to Centralized Flow
Cavitation is pushed downstream
Lower Turbulence = Lower Erosion
Short Stroke Length [1/4" to 3/8"]
Greater Packing Life

Lower Torque Required

Perpendicular Forces w SG Valve Versus Opposing Forces w Globes Typically SG's are **10% of Globe Valves**

Extremely Low Leakage Rate

Less than 0.0001% of Max CV

Due to Self-lapping Disc + Medium Pressure against the Disc Using Surface Seal NOT Annular Seal

Faster Response

Due to Lower Actuating Torque & Smaller Actuator Volume Results in Better Control Quality

CV's & Seating Details

Variable C_v values

9.3

52

60

35

107

56 179

89

275

135

392

171

650

296

1056

19

9.9

32

14

41

67

110

56

246

104

408

667

23

46

72

110

eq. perc

eq. perc

eq. perc

eq. perc

2"

3"

5"

8"

2 1/2"

(mod.) linear

(mod.) linear

(mod.) linear

(mod.) linear eq. perc

(mod.) linear

(mod.) linear

(mod.) linear

(mod.) linear

(mod.) linear eq. perc

eq. perc

eq. perc

eq. perc

eq. perc

Orderin	ig code	-	Α	1	В	6	2	7	С	3	4	8	5	9
Size	Charact.	100 %	63 %	40 %	25 %	20 %	16 %	12 %	10 %	6.3 %	2.5 %	2 %	1%	0.4 %
1/2"	(mod.) linear eq. perc	4.6 2	3	2 1.3	1.6	- 0.4	0.82	0.57	0.51	0.3 0.12	0.16	0.09	0.05	0.021
3/4"	(mod.) linear	7.4	-	-	-	-	1.16	-	-	-	-	0.15	-	-
1"	eq. perc (mod.) linear	3.5 13	7.4	1.7 4.6	-	-	1.9	-	1.08	0.72	0.3	-	0.16	0.05
	eq. perc	5.8	-	2.8	-	1.3	-	-	-	-	-	-	-	-
1 1/4"	(mod.) linear	19	12	-	-	-								

8.1

3.2

14

17

9.3

12

Variable CV Values & Characteristic Curves By simply replacing the Fixed Sealing Disc

Variable C, values and characteristic curves - By simply replacing the fixed sealing disc:

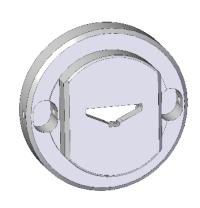
16% reduced

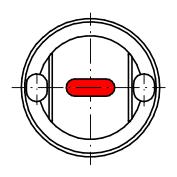
0,4% reduced

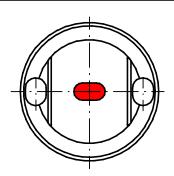
Seating Details

	Function unit					
	Carbon - SST	SFC	STN2	STN3		
Friction coefficient	0	0	0	0		
Actuator force	0	0	0	0		
Leakage rate	0	0	0	0		
Chemical resistance	00	0	0	0		
Ability for high differential pressure	0	0	0	0		

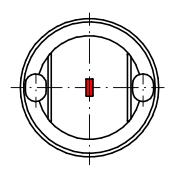
Different Discs, Different Flow Characteristics



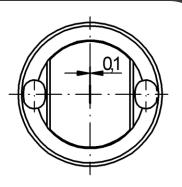




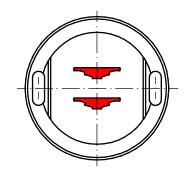
Reduced CV Options



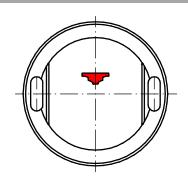
Valve disc $\frac{1}{2}$ " linear 100%, Cv = 4.6

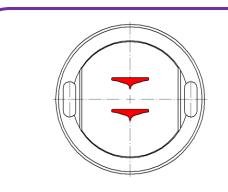


Valve disc $\frac{1}{2}$ " linear 40%, Cv = 2.0

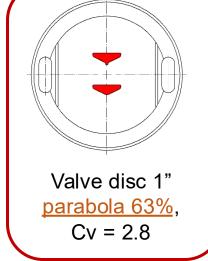


Valve disc $\frac{1}{2}$ "


<u>linear 10%</u>, Cv = 0.51


Valve disc $\frac{1}{2}$ " linear 0.4%, Cv = 0.021

Valve disc 1"
equal percentage 100%,
Cv = 5.8



Valve disc 1"
equal percentage 20%,
Cv = 1.3

Valve disc 1"
equal percentage 40% - SV100,

Cv = 5.8

Much Lower in Weight

Size	8021 Wafer	8621 Flanged	Fisher Globe			
1"	18	29	30			
2"	23	39	85			
3"	34	77	125			
4"	42	110	170			
6"	68	188	350			
8"	105	118	900			
10"	116	N/A	1800			
	Weight in Ibs					

Key Applications

Typical Applications

Cooling water & Steam systems

Thermal Fluids/Fuel Oils

RO systems

High-point vents and low-point drains

Feedwater

Chemical feed

Condenser air extraction

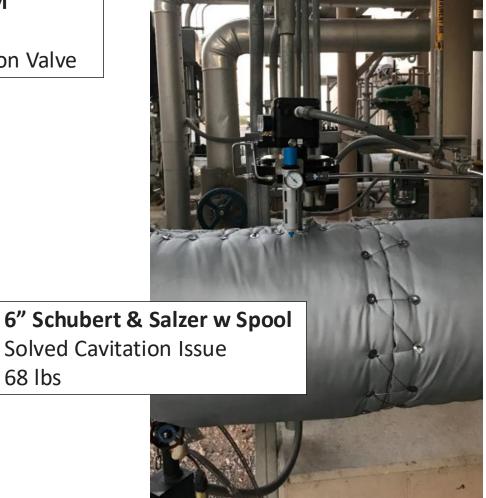
Extraction drain systems

Boiler vents and drains

Main steam vents and drains, and heater drains

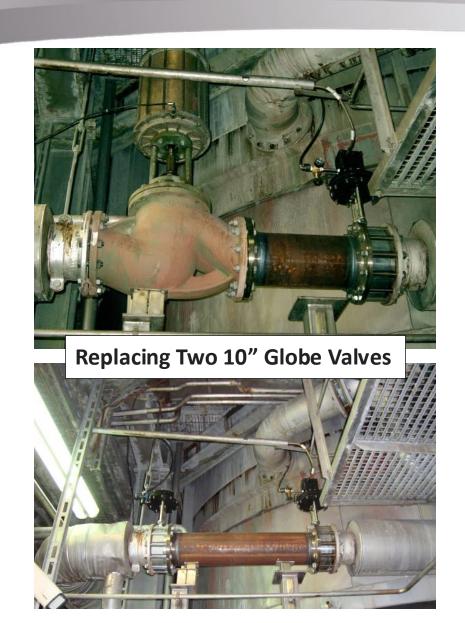
Turbine oils, seals and drains

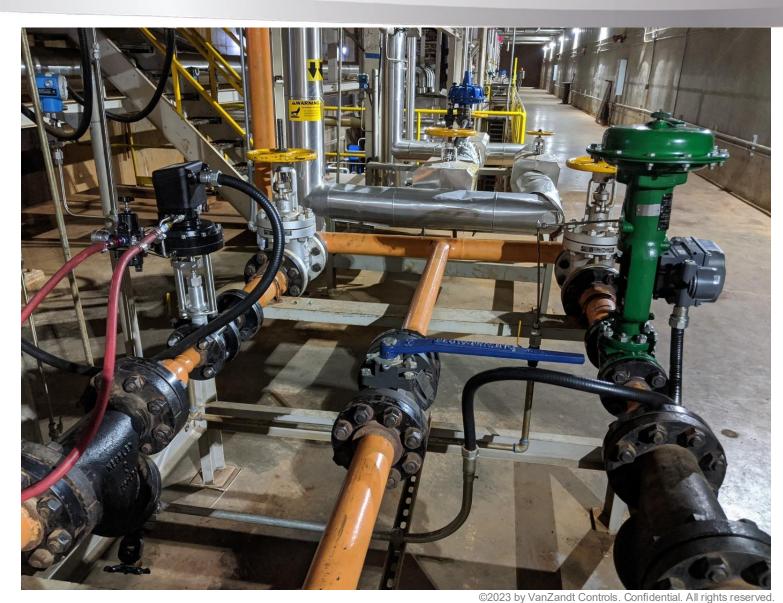
Any Gas Service


More Compact, Lighter Weight

Public Service Co of NM

Afton Power Plant Condensate Recirculation Valve




6" Fisher Globe Valve

Repaired each year due to Cavitation P1=168PSI, P2=5PSI 200F 960to 1920 GPM 498 lbs

More Compact, Lighter Weight

Special Design for Hydrogen Service

Hydrogen Green Energy Service

Tighter Shutoff
Bellows Seal on Packing
Very Compact for Skid Applications

Recommend for Hydrogen Applications

Tongue-and-groove flange sealing Stem sealing with bellows for Hydrogen

Code Y

Version for Gaseous Hydrogen
Based on the limit values of TA-Luft (ISO 15848)
Body sealing PTFE
Sealing at the Packing Tube FKM O-rings
Max Fluid Temperature +200°C [392°F]

Code Z

Version for Gaseous Hydrogen
With increased tightness requirement
Special sealing of the body and packing tube with FKM O-rings
Max fluid temperature +200°C [392°F]
Max leakage rate of housing and stem sealing
5E-6 mbar x liters/s [5 ppmv] at helium sniff test with 6 bar